
A comparative study of general fuzzy min-max
neural networks for pattern classification problems

Thanh Tung Khuat
Advanced Analytics Institute

Faculty of Engineering and IT
University of Technology Sydney

Sydney, Australia
thanhtung.khuat@student.uts.edu.au

Bogdan Gabrys
Advanced Analytics Institute

Faculty of Engineering and IT
University of Technology Sydney

Sydney, Australia
bogdan.gabrys@uts.edu.au

Abstract—General fuzzy min-max (GFMM) neural network is
a generalization of fuzzy neural networks formed by hyperbox
fuzzy sets for classification and clustering problems. Two princi-
ple algorithms are deployed to train this type of neural network,
i.e., incremental learning and agglomerative learning. This pa-
per presents a comprehensive empirical study of performance
influencing factors, advantages, and drawbacks of the general
fuzzy min-max neural network on pattern classification problems.
The subjects of this study include (1) the impact of maximum
hyperbox size, (2) the influence of the similarity threshold
and measures on the agglomerative learning algorithm, (3) the
effect of data presentation order, (4) comparative performance
evaluation of the GFMM with other types of fuzzy min-max
neural networks and prevalent machine learning algorithms.
The experimental results on benchmark datasets widely used
in machine learning showed overall strong and weak points of
the GFMM classifier. These outcomes also informed potential
research directions for this class of machine learning algorithms
in the future.

Index Terms—general fuzzy min-max, classification, fuzzy min-
max neural network, hyperbox, pattern recognition

I. INTRODUCTION

Pattern classification, which belongs to the class of super-
vised learning, aims to discover information and knowledge
under data through taking advantage of the power of learning
algorithms [1]. It plays a crucial role in many real-world
applications ranging from medical diagnostic [2], electronic
devices [3] to tourism [4] and energy [5].

Multi-dimensional hyperbox fuzzy sets can be used to deal
with the pattern classification problems effectively by parti-
tioning the pattern space and assigning a class label associated
with a degree of certainty for each region. Each fuzzy min-max
hyperbox is represented by minimum and maximum points
along with a fuzzy membership function. The membership
function is employed to compute the degree-of-fit of each
input sample to a given hyperbox. Meanwhile, the hyperbox
is continuously adjusted during the training process to cover
the input patterns.

Simpson was the first one who formulated a fuzzy min-
max neural network (FMNN) using hyperbox representations
and proposed the training algorithms for classification [6] and
clustering [7] problems. Since then, many researchers have
paid attention to enhancing the performance of the FMNN

and addressing some of its major drawbacks. Recent surveys
[8], [9] on the FMNN have divided modified variants into
two groups, i.e., fuzzy min-max networks with and without
contraction process. Representatives of improved models re-
moving the contraction procedure from the training algorithms
and replacing it with particular neurons for overlapping regions
among hyperboxes comprise the inclusion/exclusion fuzzy
hyperbox classifier [10], the fuzzy min-max neural network
with compensatory neuron [11], the data-core-based FMM
neural network [12], and the multi-level FMM neural network
[13]. However, these methods make the structure and learning
algorithms complex, and thus they are hard to expand to
very large datasets. In this paper, we only focus on the first
group of fuzzy min-max variants using basic expansion and
contraction steps with some modifications and improvements
in the learning process.

Several improved versions of FMNN in the first group con-
sist of the enhanced fuzzy min-max neural network (EFMNN)
[14], which adds more cases for the overlap verification and
contraction processes, the enhanced fuzzy min-max neural net-
work with the K-nearest hyperbox selection rule (KNEFMNN)
[15], and the general fuzzy min-max (GFMM) neural network
[16]. While different improved algorithms in the first group
only handle crisp input patterns, the GFMM neural network
can accept both fuzzy and crisp patterns for the input data. This
characteristic supports the GFMM to manage uncertainty in
the input samples explicitly. Another significant modification
of the GFMM is the ability to process both classification and
clustering in a single model. Therefore, the GFMM can be
deployed to handle many types of real-world applications,
especially problems with uncertain data and the input samples
in the form of intervals.

Learning algorithms of the GFMM neural network have a
number of user-defined hyper-parameters, which can have a
significant impact on their performance. Hence, a comparative
study which illustrates the influence of hyper-parameters on
the predictive accuracy is crucial for researchers to consider
the applicability of the GFMM to practical problems. In addi-
tion, the study on the influence of factors on the performance
of the GFMM opens the research directions towards opti-
mizing the parameters and hyperparameters in an automatic

1

ar
X

iv
:1

90
7.

13
30

8v
2 

 [
cs

.L
G

] 
 8

 J
an

 2
02

0



manner. This comparative research includes assessments of
the roles of configuration parameters on the predictive results
of the classifiers, clarifying the efficiency and effectiveness as
well as drawbacks of the GFMM in addressing the pattern
classification problems, and reviewing the classification accu-
racy of the GFMM model in comparison to other techniques
using robust evaluation approaches. Our main contributions in
this study can be summarized as follows:

• A comparative study of the fuzzy min-max neural net-
work for pattern classification problems, making clear the
advantages and disadvantages of each training algorithm
and identifying factors influencing the performance of the
GFMM neural network. Our implementations of learning
algorithms for the fuzzy min-max neural networks as
well as benchmark datasets are publicly available at
https://github.com/UTS-AAi/comparative-gfmm

• We empirically evaluate the GFMM in comparison to
other types of fuzzy min-max neural networks using
the hyperbox expansion/contraction mechanism in the
learning process as well as popular machine learning
algorithms on the benchmark datasets using robust evalu-
ation techniques, i.e., density-preserving sampling (DPS)
[17], parameter tuning by the grid-search method and
cross-validation, as well as statistical hypothesis tests.

The rest of this paper is organized as follows. Section
II describes the learning algorithms of the GFMM neural
network. Several existing problems and motivations are dis-
cussed in section III. Experimental results and discussions are
presented in section IV. Section V mentions some discussions
and potential research directions to improve the effectiveness
of learning algorithms for the general fuzzy min-max neural
network. Section VI concludes the findings of this study and
shows some future works.

II. GENERAL FUZZY MIN-MAX NEURAL NETWORK

General fuzzy min-max (GFMM) neural network was pro-
posed by Gabrys and Bargiela [16], which is the generalization
and combination of Simpson’s classification and clustering
neural networks within a single training algorithm. Learning
process in the GFMM neural network for the classification
problems comprises the formulation and adjustment of hyper-
boxes in the sample space [18]. A significant improvement of
the GFMM network compared to the FMNN is that its inputs
are hyperboxes. This feature is very convenient for represent-
ing uncertain input data, where the values are located in the
acceptable range of data. To ensure the degree of membership
decreasing steadily when the input pattern moves far away
from the hyperbox, Gabrys and Bargiela [16] introduced a
new membership function as Eq. 1.

bi(X) =
n

min
j=1

(min([1−f(xuj −wij , γj)], [1−f(vij−xlj , γj)]))
(1)

where f(z, γ) =


1, if z · γ > 1

z · γ, if 0 ≤ z · γ ≤ 1

0, if z · γ < 0

;

γ = {γ1, . . . , γn} regulates the speed of decreasing of
the membership values.

Unlike the FMNN, the input layer of the GFMM contains
2n neurons (n is the number of dimensions of data), where
first n neurons correspond to n values of the lower bounds of
input data, and the others are n values of the upper bounds.
The connection weights between first n input nodes and
hyperboxes in the middle layer form a matrix V representing
lower bounds of the hyperboxes. The other n input nodes
are connected to the middle layer by a matrix W showing
the upper bounds of hyperboxes. In addition to K neurons
corresponding to K classes in the output layer, the GFMM
neural network adds a node c0 to which unlabelled hyperboxes
in the intermediate layer connect. Each hyperbox Bi in the
middle layer is connected to all class nodes within the output
layer. The connection weight from hyperbox Bi to the class
ck is given by the following equation:

uik =

{
1, if hyperbox Bi represents the class ck
0, otherwise

(2)

The transfer function for each class node ck realizes a union
operation of fuzzy values of all hyperboxes representing that
class label, defined in Eq. 3.

ck =
m

max
i=1

bi · uik (3)

where m is the total number of neurons in the middle layer.
Two different learning methods have been introduced to find

the connection weights of the GFMM, i.e., an incremental
(online) learning [16] and an agglomerative learning [19].

A. Incremental learning

Incremental learning, also known as online learning, devel-
oped by Gabrys and Bargiela [16] contains the creation and
adjustment processes of hyperboxes in the sample space to
cover each input pattern. Generally, the algorithm includes four
steps, i.e., initialization, expansion, hyperbox overlap test, and
contraction, in which the last three operations are repeated.

In the initialization stage, each hyperbox which needs to be
generated is initialized with the minimum point Vi being one
and the maximum point Wi being zero for each dimension.
By this initialization, when an input pattern presents to the
network, the minimum and maximum points are automatically
adjusted identically to lower and upper bounds of the input
data.

Assuming that the input pattern is in the form of {X =
[X l, Xu], cX}, where cX is the label of the input sample X ,
X l = (xl1, . . . , x

l
n) and Xu = (xu1 , . . . , x

u
n) are lower and

upper bounds of X respectively. When X is presented to the
GFMM neural network, the algorithm finds the hyperbox Bi
with the highest membership value and the same class as cX
to check two expansion conditions:

2

https://github.com/UTS-AAi/comparative-gfmm


• maximum allowable hyperbox size θ as Eq. 4:

max(wij , x
u
j )−min(vij , x

l
j) ≤ θ, ∀j ∈ [1, n] (4)

• class label compatibility:
if cX = 0 then adjust Bi
else

if class(Bi) =


0→ adjust Bi, assign class(Bi) = cX

cX → adjust Bi
else→ find another Bi

where the adjustment procedure of Bi is given as follows:

vnewij = min(voldij , x
l
j) (5)

wnewij = max(woldij , x
u
j ), ∀j ∈ [1, n] (6)

If all hyperboxes representing the same class with the input
pattern do not meet the expansion conditions, a new hyperbox
is generated to cover the input data.

If hyperbox Bi is selected and expanded in the prior step,
it would be validated the overlap with other hyperboxes Bk as
follows. If the class label of Bi is equal to zero, then Bi must
be checked overlapping with all existing hyperboxes; other-
wise, the overlap test only occurs between Bi and hyperboxes
Bk representing other class labels.

The overlap test procedure is performed dimension by di-
mension, and for each dimension, four overlapping conditions
are verified as shown in [16]. If there exists an overlapping
zone between two hyperboxes, the contraction operation is
employed to eliminate the overlapping region by tuning their
sizes in only one dimension with the smallest overlapping
value. Four corresponding cases of the contraction process can
be found in detail in [16].

In addition to setting up a fixed value of θ at the beginning
of the learning algorithm and keeping it unchanged during the
training process, another implementation using adaptive values
θ was also introduced in [16]. In this way, the algorithm starts
with a large value of θ, and then this value is decreased during
the presentation of training data. The value of θ is updated
after each iteration as follows:

θnew = ϕ · θold

where the coefficient ϕ (0 ≤ ϕ ≤ 1) controls the pace of
decrease of θ. The learning process stops when no training
patterns are misclassified or the minimum user-defined value
of θmin has been reached. This study will compare the GFMM
neural network with the fixed and adaptive values of the
parameter θ.

B. Agglomerative learning based on full similarity matrix

In the incremental learning algorithm, hyperboxes are created,
expanded, and contracted whenever the input pattern comes
to the network. Hence, the performance of the GFMM neural
network is influenced by the data presentation order. To
reduce the influence of the data presentation order on the
performance of the GFMM neural network, a full similarity

matrix based agglomerative learning algorithm (AGGLO-SM)
was introduced in [19] using all input patterns to construct
hyperboxes in a bottom-up manner.

The algorithm begins with the initialization of minimum
points matrix V and maximum points matrix W to the lower
bounds X l and upper bounds Xu of all input data. A simi-
larity matrix among hyperboxes with the same class label is
then computed using one of three kinds of measures as the
following for each pair of hyperboxes Bi and Bh

• The first similarity measure is computed based on two
maximum points or two minimum points of hyperboxes.
To simplify in the presentation, this measure is called
“middle distance” in this work, although the similarity
measures are not distance measures:
sih = s(Bi, Bh) =

n
min
j=1

(min(1 − f(whj − wij , γj), 1 −
f(vij − vhj , γj)))
It is easy to see that sih 6= shi, so the similarity value
of Bi and Bh can be the minimum or maximum value
between sih and shi. If the minimum value is used, we
call “mid-min distance” measure; otherwise, “mid-max
distance” measure is deployed.

• The second similarity measure is calculated using the
smallest gap between two hyperboxes, called “shortest
distance” in this paper:
s̃ih = s̃(Bi, Bh) =

n
min
j=1

(min(1 − f(vhj − wij , γj), 1 −
f(vij − whj , γj)))

• The last similarity measure is computed from the
longest possible distance between two hyperboxes, called
“longest distance” in this work:
ŝih = ŝ(Bi, Bh) =

n
min
j=1

(min(1 − f(whj − vij , γj), 1 −
f(wij − vhj , γj)))
It is seen that both s̃ih and ŝih have the symmetrical
property.

Based on the similarity matrix, the hyperboxes would be
agglomerated sequentially by finding a pair of hyperboxes with
the maximum value of the similarity measure, assuming those
hyperboxes are Bi and Bh. Next, four following conditions
have to be satisfied:

(a) Overlap test. Hyperbox formed by aggregating Bi and
Bh does not overlap with any existing hyperboxes rep-
resenting other classes. If any overlapping regions occur,
another pair of hyperboxes is considered.

(b) Maximum hyperbox size test:
max(wij , whj)−min(vij , vhj) ≤ θ, ∀j ∈ [1, n]

(c) The minimum similarity threshold (σ): sih ≥ σ
(d) The class compatibility test. The hyperboxes Bi and Bh

represent the same class, or one or both are unlabelled.

If all four constraints above are satisfied, the aggregation is
performed as follows:

(a) Updating the coordinates of Bi using Eqs. 5 and 6 so
that Bi represents the aggregated hyperbox.

(b) Deleting Bh from the current set of hyperboxes and
updating the similarity matrix.

3



The above process is repeated until no hyperboxes can be
aggregated.

C. Accelerated agglomerative learning

Training time of the agglomerative algorithms based on the
full similarity matrix is long because their complexity is of
O(n3) [20]. The computational expense of the AGGLO-SM
algorithm is costly, especially for massive datasets, because
of computation and sorting of the similarity matrix for all
pairs of hyperboxes. To decrease the training time of the
agglomerative learning algorithm, Gabrys [19] proposed the
second agglomerative algorithm (AGGLO-2) without using
the full similarity matrix when choosing and aggregating
hyperboxes.

The algorithm traverses the current set of hyperboxes and
chooses hyperboxes, in turn, to carry out the process of ag-
gregation. For each hyperbox Bi chosen as the first candidate,
the similarity values of Bi and remaining m − 1 hyperboxes
are computed. The hyperbox Bh with the highest similarity
value against Bi is selected as the second candidate. The
aggregation process for hyperboxes Bi and Bh is the same
as in the algorithm using the full similarity matrix. If current
pair of selected hyperboxes does not meet the aggregation
constraints, the hyperbox with the second highest similarity
value against Bi is chosen, and the above agglomerative
procedure is repeated until the agglomeration occurs, or no
hyperboxes can be aggregated with the current hyperbox Bi.

After the first iteration, there are only m − 2 hyperboxes
for the next processing. The algorithm continues with the next
hyperbox chosen for aggregation, and the procedure mentioned
above is repeated. The training algorithm terminates when
going through a whole hyperboxes set, but no aggregation
operation is performed.

III. EXISTING PROBLEMS AND MOTIVATIONS

Fuzzy min-max neural networks are universal approxima-
tors, which can tackle both linear and non-linear classification
problems. However, these classifiers depend on the selection
of hyper-parameters, such as the maximum hyperbox size.
If the hyper-parameters are set well, the trained model will
achieve a good performance on unseen data. Nonetheless,
this is a challenging task because of the huge searching
space of parameters. This study is not to optimize the hyper-
parameters in an automatic manner. Instead, we assess the
impact of hyper-parameters on the performance of the models
for each dataset. Based on these evaluations, we can draw
conclusions related to the important role of the selection of
hyper-parameters with regard to predictive accuracy of models
on each training dataset. As a result, when comparing various
learning algorithms, we choose the best settings in the range of
potential parameters based on the performance of classifiers on
validation sets, which are formed by K-fold cross-validation
and the density-preserving sampling method.

To generate a hyperbox-based classifier with good gener-
alization error, besides independent learning schemes such as

Fig. 1: A hyperbox-based model is trained on the Iris dataset

cross-validation and resampling approaches [18], we also need
to integrate the explicit overfitting prevention mechanisms, i.e.,
pruning procedures, to learning algorithms. Taking decision
trees as an example, if the training process constructs a full
tree structure, the model will overfit the training set. Therefore,
to ensure a good generalization error, one usually applies early
stopping and pruning methods. Similarly, if the maximum
hyperbox size is set to a small value, there are many generated
hyperboxes for each hyperbox-based learner. These hyperbox
fuzzy sets are more likely to overfit the training data. An
example is shown in Fig. 1 for Iris dataset with 112 training
samples and two out of its four features. The model is trained
using a small value of maximum hyperbox size (θ = 0.06). It
can be seen that the model contains 79 hyperboxes, and many
hyperboxes include only one sample, which is unnecessarily
complex.

To cope with this problem, we can split the training dataset
into disjoint training and validation sets using the DPS method
(75 training samples and 37 validation patterns). The model
trained on the training set is shown in Fig. 2. The number
of generated hyperboxes is lower than in the previous case
because we used a smaller number of training samples, but
the accuracy is still the same. This result also confirms that
the DPS method can generate a representative training set from
the original data. After training, the validation set is employed
to remove low-quality hyperboxes, which have predictive
accuracy less than 50%. The final classifier is presented in Fig.
3. It can be easily observed that both the number of generated
hyperboxes and error rate have been significantly reduced.

The removal of hyperboxes can lead to loss of important
information because this operation is based on only the mis-
classification error on the validation set. If the selection of
hyper-parameters results in a nearly optimal decision boundary

4



Fig. 2: A hyperbox-based model is trained on the Iris dataset

Fig. 3: A hyperbox-based model is trained on the Iris dataset

after the training process, the pruning procedure may increase
the error rates since it will break the optimal structure of the
trained model. The experiments in the next section focus on
clarifying the role of the pruning process if the classifier has
been built using the best hyper-parameters. We also find the
answer to the question of whether the impact of noisy data can
be reduced through parameter settings rather than identifying
and removing them through pruning or data editing [21].

IV. EXPERIMENTS AND RESULTS

A. Datasets

Our experiments used 16 relatively small-sized datasets
from the UCI repository [22]. These benchmark datasets have

been widely used to evaluate machine learning algorithms
such as in [23], [24], [25], [26], [27], and [28]. The detailed
information of these datasets is shown in Table I. Each dataset
was separated into four folds using the density-persevering
sampling technique [17], which is a robust and efficient
method competitive to cross-validation for error estimation.
Three folds were used as training data, while the remaining
fold was selected as a testing set. In common, for each dataset,
experiments were repeated four times with each fold used as
testing data in turn and reported results were average of results
on each testing fold.

TABLE I: Datasets were used for experiments

ID Dataset No.
samples No. features No. classes

1 Circle 1000 3 2
2 Complex9 3031 2 9

3 Diagnostic
Breast Cancer 569 30 2

4 Glass 214 9 6
5 Ionosphere 351 34 2
6 Iris 150 4 3
7 Ringnorm 7400 20 2
8 Segmentation 2310 19 7
9 Spherical 5 2 250 2 5
10 Spiral 1000 2 2
11 Thyroid 215 5 3
12 Twonorm 7400 20 2
13 Waveform 5000 21 3
14 Wine 178 13 3
15 Yeast 1484 8 10

16 Zelnik6 (Toy
dataset) 238 2 3

B. The influence of the maximum hyperbox size on the per-
formance of online learning based GFMM

This experiment is to assess the impact of the maxi-
mum hyperbox size parameter, θ, on the performance of
the GFMM neural network using the incremental learning
algorithm. We used three out of four folds for training the
network and one remaining fold for the testing process.
We increased the value of θ from 0.01 to 0.99 with the
step being 0.01 and used the incremental learning with
the fixed hyperbox size for each dataset. Entire figures
showing the change in the number of hyperboxes, train-
ing time, and testing error of all considered datasets can
be found at https://github.com/UTS-AAi/comparative-gfmm/
blob/master/experiment/hyperbox-size-changing.pdf. A repre-
sentative example of changing trend in the number of gener-
ated hyperboxes, training time, and testing error is presented
in Fig. 4 for the Waveform dataset.

We can see that the larger value of θ, the fewer the
number of hyperboxes in the model is generated. Generally,
the training time also reduces when increasing the value of
θ, and the training time is usually fast and decreases in a
stable manner if the maximum hyperbox size is larger than 0.5.
Furthermore, training time frequently fluctuates and stands at
a high value when the value of θ is less than 0.2. Regarding
the testing error, there is no general rule for all datasets when

5

https://github.com/UTS-AAi/comparative-gfmm/blob/master/experiment/hyperbox-size-changing.pdf
https://github.com/UTS-AAi/comparative-gfmm/blob/master/experiment/hyperbox-size-changing.pdf


0 0.2 0.4 0.6 0.8 1
Maximum hyperbox size

0

2000

4000
Number of hyperboxes

0 0.2 0.4 0.6 0.8 1
Maximum hyperbox size

0

20

40
Training time (s)

0 0.2 0.4 0.6 0.8 1
Maximum hyperbox size

20
25
30

Testing error (%)

Fig. 4: The change in the number of hyperboxes, training time,
and testing error of the Waveform dataset

0 0.2 0.4 0.6 0.8 1
Maximum hyperbox size

20

25

30

35

40

45

50

55

60

65

A
ve

ra
ge

 R
an

k

Fig. 5: Average rank of performance on 16 datasets using
different values of θ

the value of θ gets larger, but the error rates are frequently
high if the θ thresholds are larger than 0.8, except Zelnik6,
Thyroid, Iris, and Wine datasets. It is easily observed from
the images that the prediction results of the GFMM using an
incremental learning algorithm are substantially influenced by
the selection of values of θ. It is not straightforward to choose
an optimal value of θ to gain the best performance for each
dataset. Several optimization algorithms can be deployed to
find the optimal value of θ in an automatic manner.

To remedy the impact of the maximum hyperbox size, the
incremental learning algorithm using the adaptive value of θ
was developed as described at the end of subsection II-A. To
compare the performance of GFMM using the adaptive values
of θ with the one using the fixed value of θ, we selected

0 0.2 0.4 0.6 0.8 1
Maximum hyperbox size

0

5000
Number of hyperboxes

0 0.2 0.4 0.6 0.8 1
Maximum hyperbox size

0

50

100
Training time (s)

0 0.2 0.4 0.6 0.8 1
Maximum hyperbox size

20

40
Testing error (%)

Fig. 6: The change in the number of hyperboxes, training time,
and testing error of the Ringnorm dataset

θ = 0.26 as the initial value, and the learning algorithm was
repeated until the minimum value of θ being 0.01 was reached
out (ϕ = 0.9) in the case of using the adaptive incremental
learning algorithm. The value θ = 0.26 was selected because
it gave the lowest average rank of prediction errors over 16
datasets in comparison to other fixed values of θ as shown in
the above experiment. The average rank of the performance
of general fuzzy min-max neural network using different fixed
values of θ over 16 datasets is given in Fig. 5.

In this experiment, each dataset was also split into four
folds, and each execution used a fold for testing and three
remaining folds were deployed for training. For each training
dataset, ten runs were performed, and each iteration shuffled
training data randomly. The obtained value for each testing
fold is an average of ten executions. Table II reports the
averaged experimental results concerning the number of gen-
erated hyperboxes, training time, and testing error rate for
two strategies of employing the value of θ on four folds over
different datasets.

In several datasets such as Circle, Complex 9, and Spiral,
the testing errors fell sharply when using the adaptive mech-
anism for θ. Meanwhile, the error rate in some datasets like
Glass, Ringnorm, and Yeast increased slightly in the case of
implementing adaptive values of θ. A reason for this fact is the
overfitting in the trained model. We can see this phenomenon
in Fig. 6 for the Ringnorm dataset, where a large number
of hyperboxes were generated and the testing errors at fixed
values of θ < 0.26 are relatively high. In the remaining cases,
the error rates of the GFMM using adaptive values of θ are
slightly lower or the same as those employing the fixed values
of the maximum hyperbox size. We can conclude that the
adaptive hyperbox size based GFMM has limited impact in
case of using the starting value of θ being the best value
for many datasets. To further evaluate the performance of the
GFMM using the adaptive values of hyperbox size, we chose
another starting value of θ away far from the optimal value.

6



TABLE II: Comparison of fixed and adaptive maximum hyperbox size parameters (θ = 0.26)

ID Dataset Fixed value Adaptive value (θmin = 0.01)
No. hyperboxes Training time (s) Testing error (%) No. hyperboxes Training time (s) Testing error (%)

1 Circle 29.950 0.092 5.240 71.175 3.092 3.530
2 Complex 9 28.275 0.272 1.755 38.350 10.913 0.267
3 Diagnostic Breast Cancer 113.550 0.302 4.586 118.400 0.740 4.516
4 Glass 42.675 0.060 39.286 75.425 1.220 40.597
5 ionosphere 144.675 0.178 12.229 144.675 0.230 12.229
6 Iris 16.775 0.016 4.683 18.975 0.393 4.491
7 Ringnorm 1411.525 31.666 26.468 2260.450 164.892 27.886
8 Segmentation 230.275 2.970 4.588 246.750 25.998 4.567
9 Spherical 5 2 13.600 0.020 1.274 13.600 0.040 1.274
10 Spiral 26.95 0.102 7.810 42.450 2.902 0.650
11 Thyroid 22.475 0.025 4.268 30.400 0.576 3.988
12 Twonorm 1862.950 44.715 4.932 1926.500 57.923 4.928
13 Waveform 1185.700 24.529 20.688 1622.375 55.546 20.638
14 Wine 75.375 0.056 4.229 75.375 0.074 4.229
15 Yeast 128.900 0.992 67.832 1456.750 137.667 72.062
16 Zelnik6 12.600 0.015 0.212 12.600 0.031 0.212

We selected θ = 0.56 because it leads to the large changing in
the average rank of GFMM as shown in Fig. 5. The outcomes
of GFMM using fixed value of θ = 0.56 and adaptive values
starting from θ = 0.56 are shown in Table III.

It is easily observed that in most of the datasets the testing
errors using adaptive values of θ are significantly enhanced
compared to the cases using the fixed values of θ. In several
datasets such as Yeast, Thyroid, Segmentation, and Ionosphere,
the accuracy of predictive results decreases slightly. In general,
the accuracy of GFMM using adaptive values of θ starting
from θ = 0.56 is superior to that employing the fixed value
θ = 0.56. However, the number of created hyperboxes and
training time of the algorithm using the adaptive values of
θ increased considerably, especially in large-sized datasets
such as Ringnorm, Twonorm, Waveform, and Yeast datasets. In
addition, the accuracy of GFMM in this experiment is lower
than that using adaptive values of the maximum hyperbox size
starting from θ = 0.26. In many datasets, it can be seen that the
error rates of GFMM using the adaptive values from θ = 0.56
are higher than those utilizing fixed value θ = 0.26. These
results indicate the impacts of choosing the suitable values of
maximum hyperbox size on the accuracy of predictive results.
They also confirm that the incremental learning algorithm
using the adaptive values of the maximum hyperbox size has
not yet been an effective method to tackle the dependence of
classification performance on the selection of the maximum
hyperbox size parameter. Hence, to compare the performance
of GFMM with other methods, we will use the fixed value of
θ that leads to the minimum error on the validation set in the
range of given values for each dataset rather than using the
same value of θ for all considered datasets.

C. The influence of the similarity threshold on the perfor-
mance of the agglomerative learning based GFMM using
different similarity measures

This experiment is to evaluate the influence of the sim-
ilarity threshold on the performance of AGGLO-2 and
AGGLO-SM algorithms using different similarity measures.
For each dataset, a fold was selected for testing data, while
three other folds were used as training data. The maxi-

mum hyperbox size θ = 0.26 was used in this experi-
ment. The minimum similarity threshold values (σ) were
moved from 0.02 to 0.98 with the step being 0.02. The
graphs showing the change in the number of hyperboxes
and the testing error through several typical datasets can
be found at https://github.com/UTS-AAi/comparative-gfmm/
blob/master/experiment/similarity-threshold-changing.pdf. An
example is presented in Fig. 7.

It can be seen from the figures that the numbers of
hyperboxes of both algorithms on all similarity measures
regularly increase when the similarity threshold moves to one.
Especially, they sharply rise when the threshold is larger than
0.8, and they oscillate a little if the similarity value is less
than 0.7. We can see that the number of generated hyperboxes
in the case of using the shortest distance measure to compute
the similarity degree is lowest, whereas the use of the longest
distance measure results in the highest number of generated
hyperboxes among four measures.

For the AGGLO-SM algorithm, the selection of the similar-
ity threshold considerably affects the testing error. Its testing
error rates oscillate not following a general rule. For the
AGGLO-2, the testing error fluctuates only if the value of the
similarity threshold is larger than 0.8. Therefore, experiments
in the rest of this paper employed a similarity threshold
σ ≤ 0.8 for the agglomerative learning algorithms. It can be
observed that the best performance of the AGGLO-2 algorithm
is frequently achieved in the case of using the shortest distance
measure. We can recognize that the classification performance
of the GFMM using the agglomerative learning algorithms
depends on the choice of the similarity measures for each
dataset. Of four similarity measures, there is no measure giving
the best results on all datasets. Hence, the similarity measure,
similarity threshold, and maximum hyperbox size are three
hyper-parameters that need to be optimized for each dataset
to achieve the best predictive accuracy.

D. Comparison of different versions of GFMM using agglom-
erative learning

This part compares the full similarity matrix based agglom-
erative learning and accelerated agglomerative learning algo-

7

https://github.com/UTS-AAi/comparative-gfmm/blob/master/experiment/similarity-threshold-changing.pdf
https://github.com/UTS-AAi/comparative-gfmm/blob/master/experiment/similarity-threshold-changing.pdf


TABLE III: Comparison of fixed and adaptive maximum hyperbox size parameters (θ = 0.56)

ID Dataset Fixed value Adaptive value (θmin = 0.01)
No. hyperboxes Training time (s) Testing error (%) No. hyperboxes Training time (s) Testing error (%)

1 Circle 9.65 0.059 15.22 73.275 3.937 3.48
2 Complex 9 11.775 0.234 11.943 37.65 13.256 0.432
3 Diagnostic Breast Cancer 22.35 0.065 5.733 84.85 1.571 4.994
4 Glass 17.225 0.04 47.983 105.375 1.793 46.062
5 ionosphere 80.825 0.112 13.62 81.625 2.38 13.733
6 Iris 6.875 0.008 6.01 13.125 0.587 3.558
7 Ringnorm 59.25 1.74 21.77 2151.5 593.817 4.768
8 Segmentation 47.725 0.486 17.349 442.9 34.322 17.882
9 Spherical 5 2 5 0.014 0.794 5 0.032 0.794
10 Spiral 8.975 0.084 41.94 52.225 4.068 1.38
11 Thyroid 8.05 0.015 5.196 30.875 0.84 5.206
12 Twonorm 51.55 1.874 13.205 3539.95 561.18 5.27
13 Waveform 47.95 1.508 23.054 3265.75 858.192 19.416
14 Wine 17.7 0.025 3.586 17.775 0.037 3.586
15 Yeast 34.775 0.704 92.507 1933.275 626.437 93.713
16 Zelnik6 7 0.012 6.895 8.475 0.394 1.013

Fig. 7: The influence of similarity threshold on the number of hyperboxes and testing errors for GFMM using agglomerative
learning on the Thyroid dataset

rithms. Each dataset was split into four folds using the density-
preserving sampling method [17]. Each fold was used in turn
as testing data, while the remaining folds were employed as
the training set. The obtained result of each model is the
average result of four testing folds. For a given training set,
experiments were repeated ten times to determine the average
training time. We established the similarity threshold σ = 0.8
and the maximum hyperbox size θ = 0.26 for both algorithms
on all datasets. Table IV shows the mean values of the number
of produced hyperboxes, training time, and testing error rate
of each algorithm through typical datasets.

As indicated in the table, the AGGLO-2 algorithm is from

one to two orders of magnitude faster than the AGGLO-
SM in almost all datasets. However, the average number of
hyperboxes generated in the AGGLO-2 is slightly higher than
that of hyperboxes created by the AGGLO-SM algorithm. The
average testing error values of the GFMM neural network
using the AGGLO-2 are slightly higher than those using
the AGGLO-SM algorithm on many datasets except Circle,
Complex 9, Glass, Ionosphere, and Yeast. In general, the
predictive results using the GFMM trained by the AGGLO-2
is relatively the same as those implementing the AGGLO-SM
while the training time is much faster. As a result, the AGGLO-
2 algorithm significantly improves the performance of the full

8



TABLE IV: The comparison of the full similarity matrix based agglomerative learning and accelerated agglomerative learning,
θ = 0.26, σ = 0.8

ID Dataset AGGLO-2 AGGLO-SM
No. Hyperboxes Training time (s) Testing Error (%) No. Hyperboxes Training time (s) Testing error (%)

1 Circle 40.750 0.196 3.200 41 21.998 3.300
2 Complex 9 31.750 0.932 0.165 30.500 229.952 0.231
3 Diagnostic Breast Cancer 133.500 0.579 5.6252 133.250 20.515 5.622
4 Glass 47.500 0.043 35.500 47.750 0.564 41.125
5 ionosphere 151.750 0.179 11.406 152.250 3.164 11.974
6 Iris 18.250 0.023 4.623 17.500 0.173 4.623
7 Segmentation 243.750 2.237 4.285 240.750 171.512 3.982
8 Spherical 5 2 13.750 0.029 1.197 12.750 0.639 0.397
9 Spiral 28.500 0.169 0.100 24.500 12.132 0
10 Thyroid 26 0.037 5.573 24.500 0.599 4.167
11 Wine 89.250 0.061 5.076 91 0.391 5.076
12 Yeast 144.250 1.295 68.661 139.750 97.463 70.348
13 Zelnik6 12.750 0.031 0.424 12.500 0.681 0

similarity matrix based agglomerative learning algorithm. It
is noted that the training time of the AGGLO-SM algorithm
for large-sized training datasets such as ringnorm, twonorm,
and waveform is extremely long (more than two days for each
iteration), so they were not reported in this paper. The com-
putational expense of the AGGLO-SM is costly because its
time complexity is O(n3). This fact prevents the applicability
of the AGGLO-SM in tackling large-sized datasets. In the rest
of this paper, the AGGLO-2 was implemented for the next
experiments to compare to other classification algorithms.

E. The influence of data presentation order on the perfor-
mance of GFMM classifiers

This experiment is to assess the impact of data presentation
order to the classification performance of incremental learning
and agglomerative learning algorithms of the GFMM network.
For each dataset, one fold was chosen as the testing set, and
three remaining folds were training data. Each experiment
was executed ten times, and each time randomly shuffled
the order of samples in the same training set, and three
learning algorithms were trained on the same dataset. We set
the similarity threshold σ = 0.8 using the shortest distance
measure for the similarity computation and the maximum
hyperbox size parameter θ = 0.26. Table V reports the
standard deviation (std) of the number of hyperboxes and
testing errors of different algorithms applied to 13 datasets.

It is seen that the standard deviation values of the testing
errors of the GFMM trained by the AGGLO-SM algorithm
are zero on almost all datasets, except Yeast, Diagnostic Breast
Cancer, and Thyroid. Even on these three datasets, the standard
deviation of testing error values is very small (< 0.9%). These
figures indicate that the full similarity matrix based learning
algorithm is almost unaffected by the input data presentation
order. In contrast, of three learning algorithms, the incremental
learning version is most affected by the data presentation
order since hyperboxes are adjusted for each input pattern.
The AGGLO-2 is also influenced by the data presentation
order because it selects, in turn, each hyperbox to calculate the
similarity value with the other ones, but the standard deviation
values of testing errors are quite tiny. This experiment confirms

that agglomerative learning algorithms are stable against the
change of presentation order within training data.

F. Comparison of GFMM and other types of fuzzy min-max
neural networks

This experiment aims to compare the performance of the
GFMM networks to other types of fuzzy min-max neural
networks using the expansion and contraction phases in the
learning algorithm such as the original fuzzy min-max neural
network [6], the enhanced fuzzy min-max neural network [14],
and the enhanced fuzzy min-max neural network with the K-
nearest hyperbox selection rule [15].

Through experimental results mentioned above, we have ob-
served that the performance of fuzzy min-max neural networks
depends on the value of maximum hyperbox size for each
dataset. Therefore, we used the grid search method and 3-fold
cross-validation for tuning the maximum hyperbox size of the
classification model on validation sets among values within
the list of θ ∈ {0.06, 0.1, 0.16, 0.2, 0.26, . . . , 0.8}. In addition
to the maximum hyperbox size, the KNEFMNN model also
depends on the number of selected hyperboxes (K) for the
hyperbox expansion process. We set the searching range of K
in the range of [2, 10]. As for the AGGLO-2 version, we used
the longest-distance measure and set the similarity threshold
σ = 0 so that the GFMM model using this agglomerative
learning algorithm is only dependent on the value of θ. It is
not feasible to exhaustively explore all the possible values for
the maximum hyperbox size value, and the purpose of this
paper is to compare the performance of the fuzzy min-max
classifiers, not on the fine-tuning approaches, so we limited
the number of values for each parameter.

Each dataset was split into four folds using the density-
preserving sampling method [17]. Each fold was selected as
testing set in turn, while three remaining folds were employed
as the training and validation data. Assuming that F1, F2,
and F3 are three folds used for parameter-tuned process, we
employed F1 and F2 as training data to construct the fuzzy
min-max classifiers for each value of θ. Then, the error rate on
the validation fold F3 is computed. This process is repeated for
F1 and F2 used as the validation set. The value of θ leading to

9



TABLE V: Standard deviation on results of diffirent versions of GFMMs due to the impact of presentation order

ID Dataset Online AGGLO-2 AGGLO-SM
No. hyperboxes Testing Error (%) No. hyperboxes Testing Error (%) No hyperboxes Testing Error (%)

1 Circle 1.687 0.844 1.059 0.627 0 0
2 Complex 9 1.287 0.377 0.994 0.056 0 0
3 Diagnostic Breast Cancer 3.011 1.188 2.944 0.996 1.054 0.371
4 Glass 1.059 5.031 0.667 3.334 0 0
5 ionosphere 1.430 1.290 1.265 0.804 0 0
6 Iris 0.632 1.140 1.370 1.396 0.949 0
7 Segmentation 5.446 0.364 3.736 0.390 0.516 0
8 Spherical 5 2 1.174 0.502 0.707 0.837 0 0
9 Spiral 1.764 2.892 1.491 0 0 0
10 Thyroid 1.197 1.991 0.816 1.295 0 0.895
11 Wine 1.829 1.174 1.633 0 0 0
12 Yeast 2.058 2.107 2.406 1.222 1.337 0.475
13 Zelnik6 0.667 0 0.422 0 0 0

the lowest averaged prediction error on three folds is selected
to build the final fuzzy min-max classifier on the training set
containing all F1, F2 and F3 folds.

Table VI shows the mean values of the number of generated
hyperboxes, training time, parameter-tuned time, and testing
error for each learning algorithm on four testing folds using
different datasets. Table VIII reports the ranks of algorithms
in terms of training time, parameter-tuned time, and testing
errors.

Regarding training time, it is seen that Simpson’s learning
algorithm in the FMNN is fastest, while the AGGLO-2 is
slowest. The online version of the GFMM executes more
rapidly compared to improved versions of the FMNN such as
the EFMNN or KNEFMNN. It can be seen that the EFMNN
using the K-nearest hyperbox selection runs faster than the
EFMNN in some cases, but in general it is slower than the
EFMNN with optimized parameters. In terms of parameter-
tuned time, the KNEFMNN is slowest in most cases, but
on medium-sized datasets such as Ringnorm, Twonorm, and
Waveform, the time to find the best parameters of AGGLO-2 is
longest. Therefore, the current version of AGGLO-2 algorithm
should not be used for tuning parameters in an automatic
manner in cases of large-sized training datasets.

The number of hyperboxes generated by the learning algo-
rithms of the GFMM is fewest in general, while the EFMNNN
and the original FMNN produce the largest number of hy-
perboxes. The use of K-nearest hyperbox selection rule in
the KNEFMNN also helps considerably reduce the number
of hyperboxes created by the EFMNN. We can observe that
the GFMM and KNEFMNN generate quite fewer hyperboxes
compared to the FMNN or EFMNN since they consider
many current hyperboxes for the expansion conditions before
creating new hyperboxes. K hyperboxes are taken into account
in the KNEFMNN, and as many hyperboxes as possible are
considered in the GFMM network, whereas the FMNN and
EFMNN produce a new hyperbox when the winner hyperbox
does not meet the expansion constraints.

Generally, the KNEFMNN reduces the number of generated
hyperboxes and increases the accuracy of the EFMNN on
the considered datasets. The best classification performance
belongs to the KNEFMNN, and the online version of GFMM

and the EFMNN achieve the worst classification results. We
can observe that, on average, only AGGLO-2 and KNEFMNN
refine the accuracy of the original FMNN using optimal
parameter configurations, but their training time increases
substantially. Althout the AGGLO-2 is a promising learning
algorithm, its running time is still long on the large datasets.
Therefore, many research efforts should be put on improving
this algorithm.

It can be easily observed that the number of generated
hyperboxes in fuzzy min-max classifiers is large because the
best performance of models is achieved for a small value
of θ. As shown in the example in Section III, small values
of the maximum hyperbox size result in complex models,
which are more likely to overfit the training data. Therefore,
to assess the efficiency of hyper-parameters selected using
density-preserving and cross-validation methods, we trained
the models using the same best parameters returned by grid-
search procedure on only two DPS folds instead of three DPS
folds as in the above experiments. The remaining fold was
used as a validation set to conduct the hyperbox pruning.
The hyperboxes with the predictive accuracy on the validation
set less than a user-defined threshold (0.5 in this work) were
removed. It is noted that there are several hyperboxes that
do not take part in the pruning process as they have not
been used to classify any validation samples (i.e., they have
not been the “winners”). Therefore, there is no information
about their potential predictive accuracy, and they can be
pruned or retained. The decision of removing or keeping such
hyperboxes depends on the misclassification error of the final
model on the validation set. If the removal of these hyperboxes
leads to the lower error rates on the validation set, they will
be pruned, and vice versa.

10



TABLE VI: Average performance of different variants of fuzzy min-max neural networks

ID Dataset Measure Online GFMM AGGLO-2 FMNN EFMNN KNEFMNN

1 Circle

No. of hyperboxes 172 126.25 209.75 282.75 116.5
Training time (s) 1.2473 3.5819 1.682 3.6704 1.6951
Testing error (%) 3.4 3.6 4.3 3.1 3.7
Parameter-tuned time (s) 9.913 29.0167 18.08 23.6851 155.4245

2 Complex 9

No. of hyperboxes 198.75 213 450.25 458.5 257.25
Training time (s) 4.1982 3.613 7.2618 11.6016 7.1803
Testing error (%) 0 0 0.033 0 0
Parameter-tuned time (s) 36.7573 40.6123 57.938 75.0684 424.9958

3 Diagnostic Breast Cancer

No. of hyperboxes 62.25 80.75 383 381.25 257.75
Training time (s) 0.3179 2.6611 0.4174 0.3406 1.2007
Testing error (%) 4.7463 2.987 3.1668 4.3955 4.0443
Parameter-tuned time (s) 10.0033 147.3405 6.2507 12.1373 130.3236

4 Glass

No. of hyperboxes 107.25 106.25 109 110.5 101.5
Training time (s) 0.1327 1.06 0.1203 0.172 0.1922
Testing error (%) 30.3985 30.3895 27.1225 27.5943 25.7338
Parameter-tuned time (s) 2.3779 6.7931 1.8835 3.0415 27.5698

5 Ionosphere

No. of hyperboxes 191.75 113 208.5 229 226
Training time (s) 0.3292 5.3567 0.2457 0.3203 0.3514
Testing error (%) 12.2585 14.2435 10.828 8.8328 8.8328
Parameter-tuned time (s) 7.5723 131.0173 5.6189 9.4672 95.3095

6 Iris

No. of hyperboxes 52.25 51.75 37.5 47.75 27.5
Training time (s) 0.05 0.4249 0.0205 0.071 0.0515
Testing error (%) 5.299 5.299 3.983 5.3165 5.3165
Parameter-tuned time (s) 0.9627 2.9324 0.8019 1.0995 10.1352

7 Ringnorm

No. of hyperboxes 507.25 1,415.25 1,899.75 2,263.25 1,217.50
Training time (s) 15.0971 1,276.87 15.4478 25.4722 25.0148
Testing error (%) 13.0405 9.311 16.027 25.4188 18.2705
Parameter-tuned time (s) 621.682 117,532.42 412.5195 555.8019 5013.0365

8 Segmentation

No. of hyperboxes 803.5 809.75 906 1205.25 994.5
Training time (s) 14.8696 192.1328 11.7049 17.0457 19.5409
Testing error (%) 4.1558 3.9825 3.506 2.2075 2.2508
Parameter-tuned time (s) 130.2684 736.4805 64.8881 261.9439 1691.2003

9 Spherical 5 2

No. of hyperboxes 22 23.25 21.25 24.5 14.75
Training time (s) 0.0593 0.1074 0.038 0.0688 0.059
Testing error (%) 1.2033 0.8 1.1905 1.197 1.197
Parameter-tuned time (s) 1.771 2.4714 1.6866 2.1349 18.0612

10 Spiral

No. of hyperboxes 121.5 115.75 102.75 137.5 121.5
Training time (s) 0.4895 1.851 0.4994 0.9892 0.9478
Testing error (%) 0 0 0 0 0
Parameter-tuned time (s) 7.7798 16.4694 8.3901 13.0277 99.7823

11 Thyroid

No. of hyperboxes 68.5 48 95.25 96.5 108.5
Training time (s) 0.0863 0.4432 0.1249 0.1393 0.1866
Testing error (%) 2.315 3.7215 3.2408 3.7125 2.778
Parameter-tuned time (s) 1.4175 5.2984 1.2786 1.885 16.3993

12 Twonorm

No. of hyperboxes 823.75 1,134.75 5,448.50 5,531.75 5,384.25
Training time (s) 27.9473 463.9801 13.87 7.2354 13.8077
Testing error (%) 4.527 4.3378 5.1213 5.3108 4.1623
Parameter-tuned time (s) 615.0026 109,086.28 371.7325 549.3722 4,787.5467

13 Waveform

No. of hyperboxes 322.75 838 3220 3749.75 2757.25
Training time (s) 11.1249 177.3769 5.6624 1.8178 31.3935
Testing error (%) 17.88 17.76 22.52 21.36 19.88
Parameter-tuned time (s) 305.3155 28,641.43 160.9124 312.5685 2,867.3944

14 Wine

No. of hyperboxes 46.25 25.75 39.25 74.5 27
Training time (s) 0.0457 0.141 0.0368 0.0732 0.0824
Testing error (%) 3.952 4.5073 2.8155 5.6313 2.8283
Parameter-tuned time (s) 1.8072 9.3405 1.2843 1.8737 19.5112

15 Yeast

No. of hyperboxes 738.75 537.75 859.5 913.5 663
Training time (s) 5.4222 54.0145 4.613 5.1744 8.0922
Testing error (%) 49.3938 49.2588 49.7978 47.17 46.2265
Parameter-tuned time (s) 44.0484 386.3297 33.0291 63.2031 580.8328

16 Zelnik6

No. of hyperboxes 26 40.75 59 45.25 34.5
Training time (s) 0.0426 0.3498 0.0933 0.0976 0.0789
Testing error (%) 0.4238 0.4238 0.4238 0.4238 0.4238
Parameter-tuned time (s) 1.156 3.4367 1.1349 1.2665 10.8995

11



TABLE VII: Average performance of different variants of fuzzy min-max neural networks with a pruning procedure

ID Dataset Measure Online GFMM AGGLO-2 FMNN EFMNN KNEFMNN

1 Circle

No. of hyperboxes before pruning 146.75 106.75 164 226.5 99.75
No. of hyperboxes after pruning 124.75 90 87.75 184.75 78.25
Training time 0.7504 2.3950 0.9043 1.8106 1.0028
Testing error before pruning (%) 3.3 3.2 3.9 3 3.6
Testing error after pruning (%) 3.3 3.8 4.1 3.3 3.8

2 Complex 9

No. of hyperboxes before pruning 183 196 320.75 345.5 221.5
No. of hyperboxes after pruning 156 195.25 160.5 191.75 156.75
Training time 2.9040 2.4693 4.3682 6.7983 4.5382
Testing error before pruning (%) 0 0 0.033 0 0
Testing error after pruning (%) 0 0 0.033 0 0

3 DiagnosticBreastCancer

No. of hyperboxes before pruning 48.5 57.75 254 254 173.5
No. of hyperboxes after pruning 24 35.75 43.5 56 32.5
Training time 0.2235 1.3171 0.2754 0.2481 0.5979
Testing error before pruning (%) 5.273 5.8013 4.2215 4.5735 4.3965
Testing error after pruning (%) 5.2718 5.9760 4.223 5.4528 4.3965

4 Glass

No. of hyperboxes before pruning 78.25 77.75 72.5 79.75 73.75
No. of hyperboxes after pruning 42.5 41.75 32.75 63.25 47.5
Training time 0.0718 0.5802 0.0707 0.0806 0.091
Testing error before pruning (%) 30.407 30.3985 27.1318 26.66 28.066
Testing error after pruning (%) 35.045 34.5735 30.381 25.725 29.446

5 ionosphere

No. of hyperboxes before pruning 131.75 78.75 141.25 159 156.25
No. of hyperboxes after pruning 35 26.75 33.5 73 72
Training time 0.1991 2.2911 0.1522 0.1646 0.1818
Testing error before pruning (%) 14.5343 14.2373 11.9645 9.401 9.117
Testing error after pruning (%) 14.8185 14.2373 14.2405 11.3898 11.1055

6 Iris

No. of hyperboxes before pruning 39.5 38.25 23.75 37 21
No. of hyperboxes after pruning 21.25 22 6.5 15.25 11.75
Training time 0.0373 0.2035 0.0219 0.0449 0.0361
Testing error before pruning (%) 5.9745 4.6585 3.983 5.9745 3.9833
Testing error after pruning (%) 5.3165 4.641 3.983 5.9745 4.6588

7 Ringnorm

No. of hyperboxes before pruning 372.75 976.25 1132 1482.25 789.5
No. of hyperboxes after pruning 207.25 716 2 855.5 10
Training time 14.0247 488.1716 9.71927 18.79225 19.04846739
Testing error before pruning (%) 12.6758 9.9595 18.0135 26.2163 17.4188
Testing error after pruning (%) 12.6215 9.811 18.0135 25.7028 17.2568

8 Segmentation

No. of hyperboxes before pruning 624.75 631.75 635.25 885.25 744.5
No. of hyperboxes after pruning 530.75 545.5 190.5 506.25 447.5
Training time 7.0460 84.3958 5.6199 7.3270 8.4242
Testing error before pruning (%) 4.8918 4.935 3.723 2.857 3.073
Testing error after pruning (%) 5.7575 5.6278 4.632 3.7663 3.8528

9 Spherical 5 2

No. of hyperboxes before pruning 19.75 19.5 15.25 18.75 13.25
No. of hyperboxes after pruning 17.25 15.25 9.5 11.25 10.75
Training time 0.0567 0.0934 0.0358 0.0546 0.0485
Testing error before pruning (%) 1.197 1.6003 1.5875 2.0035 2.4068
Testing error after pruning (%) 1.197 1.197 1.58725 2.4003 2.4068

10 Spiral

No. of hyperboxes before pruning 103 105 81.5 109.25 103
No. of hyperboxes after pruning 92 105 69.75 95.25 94.5
Training time 0.3895 1.3104 0.3818 0.6423 0.6513
Testing error before pruning (%) 0 0 0 0 0
Testing error after pruning (%) 0 0 0 0 0

11 Thyroid

No. of hyperboxes before pruning 53 35 65.25 68.75 77.75
No. of hyperboxes after pruning 36 21.25 18.75 24.75 31.5
Training time 0.0547 0.2263 0.0694 0.0627 0.0838
Testing error before pruning (%) 3.241 4.6475 5.5643 2.7868 2.315
Testing error after pruning (%) 3.2408 6.036 6.0273 4.6475 3.7128

12 Twonorm

No. of hyperboxes before pruning 609.75 776.25 3655 3694.5 3563.75
No. of hyperboxes after pruning 315.25 610.25 2864.25 3048 27
Training time 23.5492 215.1739 13.3195 10.2797 15.0206
Testing error before pruning (%) 4.7703 4.108 5.297 5.3648 4.4865
Testing error after pruning (%) 4.8378 4.2973 5.4728 5.189 4.4865

13 Waveform

No. of hyperboxes before pruning 247.25 565.75 2153.75 2500 1751.5
No. of hyperboxes after pruning 208.25 402.25 603 2354.75 46.25
Training time 10.0276 85.5954 6.3840 4.4676 23.4186
Testing error before pruning (%) 19.48 18.84 22.82 20.48 20
Testing error after pruning (%) 19.36 18.4 22.6 19.7 19.66

14 Wine

No. of hyperboxes before pruning 31.5 20.5 28 51 20
No. of hyperboxes after pruning 28 13.75 5.25 8.25 6.75
Training time 0.0373 0.1165 0.0312 0.0480 0.0483
Testing error before pruning (%) 3.9268 3.9268 2.8155 5.0883 3.9268
Testing error after pruning (%) 3.9268 3.9268 2.8155 5.0883 3.9268

15 Yeast

No. of hyperboxes before pruning 522 387 582.5 618 461.25
No. of hyperboxes after pruning 267.25 220.25 416.5 443.25 350.25
Training time 2.3044 21.8444 1.9543 2.1734 3.3138
Testing error before pruning (%) 49.7305 49.8655 51.1455 47.6415 46.5633
Testing error after pruning (%) 49.5283 47.5068 47.9783 44.6765 45.3505

16 Zelnik6

No. of hyperboxes before pruning 23 35.25 42 36.25 29.75
No. of hyperboxes after pruning 16.5 24.25 23 25.25 20
Training time 0.0417 0.2616 0.0565 0.0557 0.0539
Testing error before pruning (%) 0.8475 1.2643 0.8475 0.8475 0.8475
Testing error after pruning (%) 1.695 3.3618 2.1045 2.0975 1.688

12



Table VII shows results before and after applying the
pruning procedure. The model trained on two DPS folds was
verified on the same testing sets as in the previous experiment.
It can be seen that the number of hyperboxes after performing
the pruning operation is significantly reduced. The pruning
procedure contributes to small reduction of the classification
errors on four datasets, keeping the same errors on four
datasets, and slightly increasing error rates (< 2%) on eight
datasets. These outcomes show that the learning algorithms
using best hyper-parameters and training sets generated by the
density-preserving sampling method produced the nearly op-
timal decision boundaries. In such cases, it has been observed
that the pruning process can have a small negative effect and
can lead to the increase of the testing errors. However, the
validation set is also representative of the underlying data
distribution, so the error only grows a little. Only for the Glass
dataset, the error rate increases by around 5% after conducting
the pruning operation. This case can be explained by the
unrepresentative of the validation set. This dataset has a small
number of patterns, while it has a high number of features
and classes. Therefore, the samples are sparsely distributed
in the input space, and the DPS method may not find the
representative subsets. In general, the error rates of models
trained on two DPS folds are slightly higher than those of
classifiers trained on three DPS folds. These results confirm
that the DPS method generated representative subsets for small
datasets to assist the learning algorithms. The obtained results
also indicate that the overfitting phenomenon on the training
set does not always result in the bad predictive performance
on unseen data if the training data are representative patterns
of the underlying data distribution.

To better understand the performance of fuzzy min-max
neural networks, a rigorous statistical significance test pro-
cedure will be employed to interpret the obtained results on
the considered datasets. We only perform statistical testing for
results of classifiers trained on whole training sets. Our null
hypothesis is:
H0: There is no difference in the performance of different

types of fuzzy min-max neural networks on 16 different exper-
imental datasets

To reject this hypothesis, we will use a “multiple testing”
procedure. Two methods regularly used to test the significant
differences among multiple samples are a parametric analysis

of variance (ANOVA) and its non-parametric counterparts
such as the Friedman test. In a survey on the theoretical
work of statistical tests, Demsar [29] recommended that the
Friedman test with a relevant posthoc test should be utilized
in the case of the comparisons conducted on more than two
objects. This paper employs the Friedman rank-sum test [30] to
evaluate the classification performance statistically because the
testing error values of predictors do not follow any symmetric
distribution. Firstly, the Friedman rank-sum test ranks the
performance of classification algorithms with the best classifier
assigned the first rank, and the second best ranked two,
etc. Then, the Friedman test performs comparisons on the
average ranks of classifiers. Table VIII shows ranks over five
learning algorithms of different types of fuzzy min-max neural
networks as well as the average rank on 16 datasets.

Let rji be the rank of the jth model in k models on the ith

dataset of N datasets, where k is equal to 5 and N is 16 in
this experiment. A null hypothesis as mentioned above states
that all algorithms perform similarly, so their average ranks
Rj should be equal, and the Friedman statistic

χ2
F =

12 ·N
k · (k + 1)

∑
j

R2
j −

k · (k + 1)2

4

 (7)

is distributed according to χ2
F with k− 1 degrees of freedom

when N and k are big enough, i.e., N ≥ 10 and k ≥ 5.
Nonetheless, Iman and Davenport [31] claimed that Fried-
man’s χ2

F is undesirably conservative, and they introduced a
better new statistic:

FF =
(N − 1) · χ2

F

N · (k − 1)− χ2
F

(8)

This metric is distributed according to the F-distribution with
k − 1 and (k − 1) · (N − 1) degrees of freedom. If the null
hypothesis is rejected, i.e., the performances of fuzzy min-
max neural networks are statistically different, a posthoc test
needs to be carried out to find the critical difference among
the average ranks of those models.

This paper uses the 95% confidence interval (α = 0.05) as
a threshold to identify the statistic significance of fuzzy min-
max neural networks. Firstly, the Friedman test calculates the
F-distribution:

χ2
F =

12 · 16
5 · (5 + 1)

[
(3.252 + 2.81252 + 3.1252 + 3.252 + 2.56252)− 5 · (5 + 1)2

4

]
= 2.35

FF =
(16− 1) · χ2

F

16 · (5− 1)− χ2
F

=
(16− 1) · 2.35

16 · (5− 1)− 2.35
= 0.5718

With 16 datasets and five classifiers, FF is distributed
according to the F-distribution with 5−1 = 4 and (5−1)·(16−
1) = 60 degrees of freedom. The critical value of F (4, 60)
for the significance level α = 0.05 is 2.5252. It is observed

that FF < F (4, 60), so the null hypothesis is not rejected.
It means that there is no statically significant difference in
the performance between the general fuzzy min-max neural
network and other types of fuzzy min-max neural networks

13



TABLE VIII: Ranking of the different FMNN variants

ID Dataset Online GFMM AGGLO-2 FMNN EFMNN KNEFMNN
Training
time

Para-
tuned
time

Testing
error

Training
time

Para-
tuned
time

Testing
error

Training
time

Para-
tuned
time

Testing
error

Training
time

Para-
tuned
time

Testing
error

Training
time

Para-
tuned
time

Testing
error

1 Circle 1 1 2 4 4 3 2 2 5 5 3 1 3 5 4
2 Complex9 2 1 2.5 1 2 2.5 4 3 5 5 4 2.5 3 5 2.5
3 Diagnostic

Breast Cancer
1 2 5 5 5 1 3 1 2 2 3 4 4 4 3

4 Glass 2 2 5 5 4 4 1 1 2 3 3 3 4 5 1
5 Ionsphere 3 2 4 5 5 5 1 1 3 2 3 1.5 4 4 1.5
6 Iris 2 2 2.5 5 4 2.5 1 1 1 4 3 4.5 3 5 4.5
7 Ringnorm 2 3 2 5 5 1 3 1 3 5 2 5 4 4 4
8 Segmentation 2 2 5 5 4 4 1 1 3 3 3 1 4 5 2
9 Spherical 5 2 3 2 5 5 4 1 1 1 2 4 3 3.5 2 5 3.5
10 Spiral 1 1 3 5 4 3 2 2 3 4 3 3 3 5 3
11 Thyroid 1 2 1 5 4 5 2 1 3 3 3 4 4 5 2
12 Twonorm 4 3 3 5 5 2 3 1 4 1 2 5 2 4 1
13 Waveform 3 2 2 5 5 1 2 1 5 1 3 4 4 4 3
14 Wine 2 2 3 5 4 4 1 1 1 3 3 5 4 5 2
15 Yeast 3 2 4 5 4 3 1 1 5 2 3 2 4 5 1
16 Zelnik6 1 2 3 5 4 3 3 1 3 4 3 3 2 5 3
Average rank 2.0625 1.9375 3.25 4.6875 4.1875 2.8125 1.9375 1.25 3.125 3.1875 2.9375 3.25 3.375 4.6875 2.5625

on the considered datasets.

G. Comparison of GFMM and other machine learning algo-
rithms

This experiment is to compare the classification perfor-
mance of the GFMM with other prevalent machine algo-
rithms such as Naive Bayes, K-Nearest neighbors, Support
vector machines, and Decision trees. These algorithms were
implemented by using the scikit-learn toolbox [32] in Python.
Similarly to the above experiments, each dataset was also split
into four folds using the density-preserving sample technique.
Experiments were conducted on each fold as the testing set
in turn and three training and validation folds. The valida-
tion fold was used to select the parameters leading to the
best performance among a range of setting values for each
dataset. This process was mentioned in subsection IV-F. The
configuration parameters for GFMM using incremental and
AGGLO-2 learning algorithms were remained unchanged as
shown in subsection IV-F. As for the value K of the KNN
classifier, we attempted to find the best value in the range
of [3, 30]. In terms of decision tree models, we adjusted the
tree depth parameter (max depth) ranging from 3 to 30 and
unlimited values. For support vector machines, we used a
Radial Basis function (RBF) kernel. There are two parameters
needing to adjust for RBF kernel ,i.e., the penalty parameter
(C) and the parameter gamma (γ). As shown in [33], we set
C ∈ {2−5, 2−3, . . . , 215} and γ ∈ {2−15, 2−13, . . . , 23}. The
Gaussian Naive Bayes model has no hyperparameters, so we
used its default settings in the scikit-learn library.

Table IX shows the average values of the testing error
of different algorithms on four testing folds using the best
parameter configurations for each learning model, while Table
X reports the ranks among algorithms.

As indicated in Table X, the best algorithm is SVM,
followed by KNN. The highest testing error values belong
to the decision trees. The AGGLO-2 algorithm outperforms
Gaussian Naive Bayes, decision trees, and the incremental
learning algorithm, but it cannot overcome the performances
of KNN and SVM in general. These results show that the
GFMM neural network is competitive to other popular learn-
ing models. However, the training and parameter-tuned time
of the online and agglomerative learning algorithms of the
GFMM classifier is costly compared to other machine learning
algorithms. Therefore, the learning algorithms of the GFMM
model need to be enhanced in many aspects to deal with the
massive datasets.

Although the average performance ranks of the AGGLO-
2 and incremental learning algorithms are not the best ones
among learning models, we need to assess the level of
differences among obtained results in terms of statistical
significance. Similarly to statistical hypothesis tests mentioned
above, we have a null hypothesis in this experiment:
H0: There is no difference in the performance of the general

fuzzy min-max neural network and popular machine learning
algorithms on 16 different experimental datasets

We compute the value of F-distribution as follows:

χ2
F =

12 · 16
6 · (6 + 1)

[
(3.81252 + 3.6252 + 3.31252 + 1.65632 + 4.56252 + 4.03132)− 6 · (6 + 1)2

4

]
= 22.6722

FF =
(16− 1) · χ2

F

16 · (6− 1)− χ2
F

=
(16− 1) · 22.6722

16 · (6− 1)− 22.6722
= 5.9323

14



TABLE IX: Comparison of the average testing errors of the GFMM with other machine learning algorithms

ID Dataset Online GFMM AGGLO-2 KNN SVM Decision tree Naive Bayes
1 Circle 3.4 3.6 2.8 1.1 4.1 5.7
2 Complex9 0 0 0 0 0.5613 5.279
3 DiagnosticBreastCancer 4.7463 2.987 2.2848 2.11025 8.6083 6.5018
4 Glass 30.3985 30.3895 28.5028 24.7643 31.3068 52.3933
5 Ionsphere 12.2585 14.2435 12.2485 4.271 10.8088 11.1025
6 Iris 5.299 5.299 3.325 2.6495 5.3343 4.641
7 Ringnorm 13.0405 9.311 23.2298 1.2703 11.2298 1.3378
8 Segmentation 4.1558 3.9825 3.4628 2.4675 3.3768 20.173
9 Spherical 5 2 1.2033 0.8 2.0033 1.6003 0.3968 1.5875

10 Spiral 0 0 0 0 0.1 34.6
11 Thyroid 2.315 3.7215 4.1758 3.7128 5.1103 2.7868
12 Twonorm 4.527 4.33775 2.3918 2.189 15.1215 2.108
13 Waveform 17.88 17.76 13.9 12.74 23.24 18.96
14 Wine 3.952 4.50725 3.38375 1.12375 10.07575 1.69175
15 Yeast 49.3938 49.25875 40.027 37.938 43.8005 88.342
16 Zelnik6 0.4238 0.4238 1.688 0 0.8405 0

TABLE X: Ranking of GFMM and other machine learning algorithms

ID Dataset Online GFMM AGGLO-2 KNN SVM Decision tree Naive Bayes
1 Circle 3 4 2 1 5 6
2 Complex9 2.5 2.5 2.5 2.5 5 6
3 DiagnosticBreastCancer 4 3 2 1 6 5
4 Glass 4 3 2 1 5 6
5 Ionsphere 5 6 4 1 2 3
6 Iris 4.5 4.5 2 1 6 3
7 Ringnorm 5 3 6 1 4 2
8 Segmentation 5 4 3 1 2 6
9 Spherical 5 2 3 2 6 5 1 4
10 Spiral 2.5 2.5 2.5 2.5 5 6
11 Thyroid 1 4 5 3 6 2
12 Twonorm 5 4 3 2 6 1
13 Waveform 4 3 2 1 6 5
14 Wine 4 5 3 1 6 2
15 Yeast 5 4 2 1 3 6
16 Zelnik6 3.5 3.5 6 1.5 5 1.5
Average rank 3.8125 3.625 3.3125 1.6563 4.5625 4.0313

With 16 datasets and six classification algorithms, FF is
distributed according to the F-distribution with 6− 1 = 5 and
(6− 1) · (16− 1) = 75 degrees of freedom. The critical value
of F (5, 75) for the significance level α = 0.05 is 2.3366.
It is observed that FF > F (5, 75), so the null hypothesis
is rejected at a high level of significance. Based on these
outcomes, we may state that there are statistical differences in
the performance of the general fuzzy min-max neural network
and popular machine learning algorithms.

A post-hoc test is implemented to verify the significant
differences of the incremental and agglomerative learning
algorithms and other machine learning models. The post-hoc
test used in this study is a step down Holm procedure [34].
The Holm procedure tunes the value of significance level
(α) according to a step-down method. Let p1, p2, ..., pk−1

be the ordered p-values such that p1 ≤ p2 ≤ ... ≤ pk−1

and H1, H2, ...,Hk−1 be the respective null hypotheses, the
Holm procedure rejects null hypotheses H1 to Hi−1 if i is the
smallest integer such that pi > α

k−i (α = 0.05 in this paper).
To find the value of pi for each pair of predictors, we have to
identify the values of zi in Eq. 9.

zi =
Ri −Rj√
k·(k+1)

6·N

(9)

where i is the control classifier (AGGLO-2 or online GFMM),
and j is the another classifier used in the comparisons, Ri and
Rj are the average ranks of learners i and j respectively. The
probability value of pi is computed from the corresponding
value of zi following the normal distribution N(0, 1). The
calculating outcomes of the Holm procedure are shown in
Table XI for AGGLO-2 and in Table XII for incremental
learning based GFMM.

TABLE XI: Outcomes of Holm post-hoc test for AGGLO-2

i AGGLO-2 vs. zi pi
α

k − i
1 SVM 2.9764 0.0029 0.01
2 Decision tree -1.4174 0.1564 0.0125
3 Naive Bayes -0.6143 0.5390 0.0167
4 KNN 0.4725 0.6366 0.025
5 Online GFMM -0.2835 0.7768 0.05

From Tables XI and XII, it can be observed that i = 2
is the smallest integer such that pi > α

k−i . Therefore, H1

15



TABLE XII: Outcomes of Holm post-hoc test for incremental
learning based GFMM

i Online GFMM vs. zi pi
α

k − i
1 SVM 3.2599 0.0011 0.01
2 Decision tree -1.1339 0.2568 0.0125
3 KNN 0.7559 0.4497 0.0167
4 Naive Bayes -0.3308 0.7408 0.025
5 AGGLO-2 0.2835 0.7768 0.05

is rejected, while null hypotheses H2, H3, H4, and H5 are
retained. Therefore, AGGLO-2 and incremental learning based
GFMM are significantly different from SVM, but there are no
statistically significant differences among AGGLO-2, decision
tree, Naive Bayes, KNN, and the online version of GFMM at
an alpha level of 0.05. These outcomes also indicate that SVM
using optimal parameter settings is the best model among
considered classifiers. Apart from SVM, learning algorithms of
GFMM are competitive to popular machine learning models.

V. DISCUSSION AND RESEARCH DIRECTIONS

A. Discussion

In this part, we highlight several notable issues when
conducting a comparative study as follows:

• The impact of hyper-parameters: Similarly to other
machine learning algorithms, the performance of the
hyperbox-based classifiers is also dependent on the selec-
tion of hyper-parameters, e.g., maximum hyperbox size,
etc. Each training dataset needs specific parameters, and
we should not use a fixed setting for all datasets. The se-
lection of suitable hyper-parameters should be conducted
by combining k-fold cross-validation and sampling meth-
ods. The quality of selected hyper-parameters depends
mainly on the quality of the training and validation sets.
In general, the DPS method helps to preserve the data
density and the classes shapes, so the performance of
the model trained on small number of DPS folds is not
significantly different in comparison to one trained on all
DPS folds.

• Selection of training and validation sets: Experimental
results confirm the crucial roles of the choice of training
and validation data. If we can build a training set which
is representative of the overall data distribution for a
given problem, a model which overfits on the training
sets still performs well on the testing set. The use of
the density-preserving sampling method contributes to
forming such representative training samples with nearly
the same distribution as the whole dataset. The average
testing error rates through different density-preserving
sampling folds can be used as the generalization error of
the model. Therefore, the hyper-parameters which lead to
the lowest error rates on different DPS validation folds
may form a trained hyperbox-based classifier with nearly
optimal decision boundaries. It is also noted that a model
trained on many representative patterns usually achieves

higher accuracy than the model trained on a lower number
of representative samples. However, if the training sets do
not reflect the data density distribution accurately or the
constructed model is too complicated, one needs to use
overfitting prevention methods.

• Overfitting prevention mechanisms: Training model
with more relevant and clean data is one of the approaches
to restrict the negative impact of overfitting. In practice,
however, it is difficult to gather many clean training
samples. For a small number of training patterns such
as datasets in this paper, cross-validation and density-
preserving sampling, which are the most appropriate
methods, allow us to select the best set of hyper-
parameters. In some cases, the best hyper-parameters
can lead to complex models and make generalization
error increase because of its overfitting on the training
set. Therefore, several overfitting prevention techniques
such as pruning should be used to eliminate low-quality
hyperboxes. However, this method does not always work
for all cases. If the training set is representative of
underlying data distribution and the best-selected hyper-
parameters form a nearly optimal decision boundary, the
pruning operation is more likely to cause the loss of some
critical information and increase testing error. In addition,
the efficiency of the pruning procedure mainly depends
on the quality of validation sets. In the case of sparse data
with high dimensionality, a high number of classes, and
a low number of samples, the DPS method cannot return
the representative datasets, so the pruning operation can
result in considerable increase of the testing error rates.

B. Research directions

Through experimental results, it can be easily observed that
the performance of the incremental learning version of the
GFMM neural network depends considerably on the value
of maximum hyperbox size threshold. For the agglomerative
learning algorithms, apart from the maximum hyperbox size
threshold, they also depend on the similarity measures and the
minimum similarity threshold. Another parameter also makes
an impact on the performance of learning algorithms, but
it is not yet considered in this paper. It is parameter γ in
the membership function. To find the best values of hyper-
parameters for each algorithm, therefore, automatic methods
need to be deployed.

In terms of statistical significance, the agglomerative learn-
ing algorithm has not shown the significant difference in the
predictive accuracy over considered datasets in comparison
to the improved incremental learning variants of the fuzzy
min-max neural network. In contrast, the training time of the
agglomerative learning algorithms, especially the full similar
matrix-based algorithm (AGGLO-SM), is much slower than
the incremental learning algorithms. The high computational
expense will interfere with the applicability of the agglomera-
tive learning algorithms to pattern recognition problems using
big data. Furthermore, the performance of the agglomerative
learning versions has not outperformed the popular machine

16



learning algorithms, especially SVM. Hence, we need to
enhance the efficiency of agglomerative learning algorithms
in terms of running time and accuracy or using them for
appropriate parts of the learning process. One of the direc-
tions to accelerate the training time is the use of distributed
and parallel mechanisms or the computational ability of the
graphics processing unit (GPU). Parallel solutions should be
implemented for incremental learning versions as well because
their running time is still much slower than other popular
machine learning algorithms such as Naive Bayes and decision
trees. Another solution is to apply an approximate nearest
neighbor graph to the agglomerative learning algorithm to
rapidly find the candidate hyperboxes for aggregation and
reduce the number of similarity value computations. Regarding
the accuracy, we can consider the multiple values of similarity
threshold in the aggregation process rather than only one value
as the existing agglomerative learning algorithms.

We can also see that the data presentation orders influence
the incremental learning algorithms of the fuzzy min-max
neural networks. Therefore, several optimization solutions can
be implemented to tackle this problem.

VI. CONCLUSION AND FUTURE WORK

This paper assessed the advantages and drawbacks of the
GFMM neural network through empirical results in many
benchmark datasets. The impact of setting parameters on
the classification problems was also presented. Experimental
results indicated the competitive performance of the GFMM
neural network compared to other fuzzy min-max systems
as well as popular machine learning algorithms using the
best parameter settings for each algorithm. Nevertheless, the
training time of the GFMM network is a factor preventing the
applicability of this type of neural network for the massive
datasets in real-world applications.

In future work, we intend to build a novel mechanism to
execute the GFMM in parallel for handling massive data. The
drawbacks concerning the training time in the agglomerative
algorithm will also be enhanced so that we can take advantage
of the efficiency of this algorithm for the classification prob-
lems in big data. Another potential research direction is the
combination of many general fuzzy min-max neural networks
at the model level [35], in which base learners are executed
on different clusters in parallel. The automatic manner will be
deployed to optimize the hyper-parameters and parameters of
learning algorithms aiming at minimizing the generalization
errors for each dataset.

ACKNOWLEDGMENT

Thanh Tung Khuat would like to acknowledge the FEIT-
UTS for awarding him a Ph.D. scholarship.

REFERENCES

[1] E. S. Olivas, J. D. M. Guerrero, M. Martinez-Sober, J. R. Magdalena-
Benedito, and A. J. S. Lopez, Handbook of Research on Machine Learn-
ing Applications and Trends: Algorithms, Methods, and Techniques,
1st ed. IGI Global, 2009.

[2] C. Burger, R. Redlich, D. Grotegerd, S. Meinert, K. Dohm, I. Schneider,
D. Zaremba, K. Frster, J. Alferink, J. Blte, W. Heindel, H. Kugel,
V. Arolt, and U. Dannlowski, “Differential abnormal pattern of anterior
cingulate gyrus activation in unipolar and bipolar depression: an fmri
and pattern classification approach,” Neuropsychopharmacology, Nature,
vol. 42, p. 1399, 2017.

[3] F. Alibart, E. Zamanidoost, and D. B. Strukov, “Pattern classification by
memristive crossbar circuits using ex situ and in situ training,” Nature
Communications, vol. 4, p. 2072, 2013.

[4] G. Li, R. Law, H. Q. Vu, J. Rong, and X. Zhao, “Identifying emerging
hotel preferences using emerging pattern mining technique,” Tourism
Management, vol. 46, pp. 311–321, 2015.

[5] P. Jokar, N. Arianpoo, and V. C. M. Leung, “Electricity theft detection
in ami using customers consumption patterns,” IEEE Transactions on
Smart Grid, vol. 7, no. 1, pp. 216–226, 2016.

[6] P. K. Simpson, “Fuzzy min-max neural networks. i. classification,” IEEE
Transactions on Neural Networks, vol. 3, no. 5, pp. 776–786, 1992.

[7] ——, “Fuzzy min-max neural networks - part 2: Clustering,” IEEE
Transactions on Fuzzy Systems, vol. 1, no. 1, p. 32, 1993.

[8] O. N. Sayaydeh, M. F. Mohammed, and C. P. Lim, “A survey of
fuzzy min max neural networks for pattern classification: variants and
applications,” IEEE Transactions on Fuzzy Systems, vol. Online first,
2018.

[9] T. T. Khuat, D. Ruta, and B. Gabrys, “Hyperbox based machine learning
algorithms: A comprehensive survey,” CoRR, vol. abs/1901.11303, 2019.

[10] A. Bargiela, W. Pedrycz, and M. Tanaka, “An inclusion/exclusion fuzzy
hyperbox classifier,” International Journal of Knowledge-based and
Intelligent Engineering Systems, vol. 8, no. 2, pp. 91–98, 2004.

[11] A. Nandedkar and P. Biswas, “A fuzzy min-max neural network classifier
with compensatory neuron architecture,” IEEE Transactions on Neural
Networks, vol. 18, no. 1, pp. 42–54, 2007.

[12] H. Zhang, J. Liu, D. Ma, and Z. Wang, “Data-core-based fuzzy min-max
neural network for pattern classification,” IEEE Transactions on Neural
Networks, vol. 22, no. 12, pp. 2339–2352, 2011.

[13] R. Davtalab, M. H. Dezfoulian, and M. Mansoorizadeh, “Multi-level
fuzzy min-max neural network classifier,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 25, no. 3, pp. 470–482, 2014.

[14] M. F. Mohammed and C. P. Lim, “An enhanced fuzzy minmax neural
network for pattern classification,” IEEE Transactions on Neural Net-
works and Learning Systems, vol. 26, no. 3, pp. 417–429, 2015.

[15] ——, “Improving the fuzzy min-max neural network with a k-nearest
hyperbox expansion rule for pattern classification,” Applied Soft Com-
puting, vol. 52, pp. 135 – 145, 2017.

[16] B. Gabrys and A. Bargiela, “General fuzzy min-max neural network for
clustering and classification,” IEEE Transactions on Neural Networks,
vol. 11, no. 3, pp. 769–783, 2000.

[17] M. Budka and B. Gabrys, “Density-preserving sampling: robust and
efficient alternative to cross-validation for error estimation,” IEEE Trans-
actions on Neural Networks and Learning Systems, vol. 24, no. 1, pp.
22–34, 2013.

[18] B. Gabrys, “Learning hybrid neuro-fuzzy classifier models from data: to
combine or not to combine?” Fuzzy Sets and Systems, vol. 147, no. 1,
pp. 39 – 56, 2004.

[19] ——, “Agglomerative learning algorithms for general fuzzy min-max
neural network,” Journal of VLSI signal processing systems for signal,
image and video technology, vol. 32, no. 1, pp. 67–82, 2002.

[20] S. Theodoridis and K. Koutroumbas, Pattern Recognition, fourth edi-
tion ed. Academic Press, 2009.

[21] B. Gabrys, “Data editing for neural fuzzy classifier,” in Proceedings of
the SOCO/ISFI’2001 Conference, 2001, Conference Proceedings, p. 77.

[22] K. Bache and M. Lichman, “UCI machine learning repository,” 2013.
[Online]. Available: http://archive.ics.uci.edu/ml

[23] S. Salvador and P. Chan, “Determining the number of clusters/segments
in hierarchical clustering/segmentation algorithms,” in Proceedings of
the 16th IEEE International Conference on Tools with Artificial Intelli-
gence, 2004, pp. 576–584.

[24] L. Zelnik-Manor and P. Perona, “Self-tuning spectral clustering,” in
Proceedings of the 17th International Conference on Neural Information
Processing Systems, 2004, pp. 1601–1608.

[25] I. Kononenko, E. Simec, and M. Robnik-Sikonja, “Overcoming the
myopia of inductive learning algorithms with relieff,” Appl. Intell, vol. 7,
p. 39, 1997.

17

http://archive.ics.uci.edu/ml


[26] S. Kaski and J. Peltonen, “Informative discriminant analysis,” in Pro-
ceedings of the Twentieth International Conference on Machine Learn-
ing, 2003, pp. 329–336.

[27] A. K. H. Tung, X. Xu, and B. C. Ooi, “Curler: Finding and visualizing
nonlinear correlated clusters,” in Proceedings of the ACM SIGMOD
International Conference, 2005, pp. 467–478.

[28] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp.
5–32, 2001.

[29] J. Demsar, “Statistical comparisons of classifiers over multiple data sets,”
J. Mach. Learn. Res., vol. 7, pp. 1–30, 2006.

[30] R. Eisinga, T. Heskes, B. Pelzer, and M. Te Grotenhuis, “Exact p-values
for pairwise comparison of friedman rank sums, with application to
comparing classifiers,” BMC Bioinformatics, vol. 18, no. 1, p. 68, 2017.

[31] R. L. Iman and J. M. Davenport, “Approximations of the critical region
of the fbietkan statistic,” Communications in Statistics - Theory and
Methods, vol. 9, no. 6, pp. 571–595, 1980.

[32] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duches-
nay, “Scikit-learn: Machine learning in python,” The Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[33] C. Hsu, C. Chang, and C. Lin, “A practical guide to support vector
classification,” Department of Computer Science, National Taiwan Uni-
versity, Tech. Rep., 2003.

[34] S. Holm, “A simple sequentially rejective multiple test procedure,”
Scandinavian Journal of Statistics, vol. 6, no. 2, pp. 65–70, 1979.

[35] B. Gabrys, “Combining neuro-fuzzy classifiers for improved generali-
sation and reliability,” in Proceedings of the 2002 International Joint
Conference on Neural Networks, vol. 3, 2002, Conference Proceedings,
pp. 2410–2415.

18


	I Introduction
	II General fuzzy min-max neural network
	II-A Incremental learning
	II-B Agglomerative learning based on full similarity matrix
	II-C Accelerated agglomerative learning

	III Existing Problems and motivations
	IV Experiments and Results
	IV-A Datasets
	IV-B The influence of the maximum hyperbox size on the performance of online learning based GFMM
	IV-C The influence of the similarity threshold on the performance of the agglomerative learning based GFMM using different similarity measures
	IV-D Comparison of different versions of GFMM using agglomerative learning
	IV-E The influence of data presentation order on the performance of GFMM classifiers
	IV-F Comparison of GFMM and other types of fuzzy min-max neural networks
	IV-G Comparison of GFMM and other machine learning algorithms

	V Discussion and research directions
	V-A Discussion
	V-B Research directions

	VI Conclusion and Future work
	References

