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DESCRIPTION OF STABILITY FOR LINEAR TIME-INVARIANT SYSTEMS

BASED ON THE FIRST CURVATURE

YUXIN WANG 1, HUAFEI SUN 1,∗, SHOUDONG HUANG 2, AND YANG SONG 1

Abstract. This paper focuses on using the �rst curvature κ(t) of trajectory to describe the
stability of linear time-invariant system. We extend the results for two and three-dimensional
systems [Wang, Sun, Song et al., arXiv:1808.00290] to n-dimensional systems. We prove that
for a system ṙ(t) = Ar(t), (i) if there exists a measurable set whose Lebesgue measure is greater
than zero, such that lim

t→+∞
κ(t) ̸= 0 or lim

t→+∞
κ(t) does not exist for any initial value in this set,

then the zero solution of the system is stable; (ii) if the matrix A is invertible, and there exists
a measurable set whose Lebesgue measure is greater than zero, such that lim

t→+∞
κ(t) = +∞ for

any initial value in this set, then the zero solution of the system is asymptotically stable.

1. Introduction

It is well known that stability is an important subject in control theory. In 1892, Lyapunov [1]

laid the foundation for stability theory. Nowadays, control theory for linear systems has been

developed by many works, such as [2,3]. Stability is related to the normal operation of the system,

and it plays an important role in many �elds, such as dynamical systems [4] and discrete-time

systems [5]. On the other hand, unstable systems are also studied, such as [6].

As we know, curvature is the core concept of di�erential geometry. We wish to establish a

relationship between the curvatures of state trajectories and the stability of linear systems. In

fact, in [7] the authors gave a description of stability for two and three-dimensional linear time-

invariant systems ṙ(t) = Ar(t) based on the curvature and torsion of the curve r(t).

In this paper, we focus on higher dimensional systems and give a geometric description for the

stability. To achieve this goal, the de�nition of higher curvatures of curves in Rn by Gluck [8]

is used, where the �rst and second curvature are the generalization of curvature and torsion of

curves in R3, respectively. We will develop the methods arisen in [7], and use the �rst curvature

to describe the stability of the zero solution of linear time-invariant system ṙ(t) = Ar(t).

Our main results are as follows.

Theorem 1.1. Suppose that ṙ(t) = Ar(t) is a linear time-invariant system, where A is an n× n

real matrix, r(t) ∈ Rn, and ṙ(t) is the derivative of r(t). Denote by κ(t) the �rst curvature of

trajectory of a solution r(t). We have

(1) if there exists a measurable set E1 ⊆ Rn whose Lebesgue measure is greater than 0, such that

lim
t→+∞

κ(t) ̸= 0 or lim
t→+∞

κ(t) does not exist for any r(0) ∈ E1, then the zero solution of the system

is stable;
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(2) if A is invertible, and there exists a measurable set E2 ⊆ Rn whose Lebesgue measure is

greater than 0, such that lim
t→+∞

κ(t) = +∞ for any r(0) ∈ E2, then the zero solution of the system

is asymptotically stable.

The paper is organized as follows. In Section 2, we review some basic concepts and propositions.

In Section 3, we establish a relationship between the curvatures of trajectories of two equivalent

systems. In Section 4, we discuss four types of real Jordan blocks. In Section 5, we consider the

case of real Jordan canonical form, and complete the proof of Theorem 1.1. Several examples are

given in Section 6. Finally, Section 7 concludes the paper.

2. Preliminaries

In this paper, the norm ∥x∥ denotes the Euclidean norm of x = (x1, x2, · · · , xn)T ∈ Rn, namely,

∥x∥ =
√∑n

i=1 x
2
i . We shall denote by detA the determinant of matrix A. The eigenvalues of

matrix A are denoted by λi(A) (i = 1, 2, · · · , n), and the set of eigenvalues of matrix A is denoted

by σ(A).

The following concepts and results can be found in [8�13].

2.1. Linear Time-Invariant Systems and Stability.

De�nition 2.1 ([9]). The system of ordinary di�erential equations

ṙ(t) = Ar(t)(2.1)

is called a linear time-invariant system, where A is an n× n real constant matrix, r(t) ∈ Rn, and
ṙ(t) is the derivative of r(t).

Proposition 2.2 ([9]). Let A be an n× n real matrix. Then for a given r0 ∈ Rn, the initial value

problem {
ṙ(t) = Ar(t),

r(0) = r0
(2.2)

has a unique solution given by

r(t) = etAr0.(2.3)

The curve r(t) is called the trajectory of the system (2.2) with the initial value r0 ∈ Rn.

De�nition 2.3 ([10, 11]). The solution r(t) ≡ 0 of di�erential equations (2.1) is called the zero

solution of the linear time-invariant system. If for every constant ε > 0, there exists a δ = δ(ε) > 0,

such that ∥r(0)∥ < δ implies that ∥r(t)∥ < ε for all t ∈ [0,+∞), where r(t) = etAr(0) is a solution

of (2.1), and r(0) is the initial value of r(t), then we say that the zero solution of system (2.1) is

stable. If the zero solution is not stable, then we say that it is unstable.

Suppose that the zero solution of system (2.1) is stable, and there exists a δ1 (0 < δ1 6 δ), such

that ∥r(0)∥ < δ1 implies that lim
t→+∞

r(t) = 0, then we say that the zero solution of system (2.1) is

asymptotically stable.

Proposition 2.4 ([10]). The zero solution of system (2.1) is stable if and only if all eigenvalues

of matrix A have nonpositive real parts and those eigenvalues with zero real parts are simple roots

of the minimal polynomial of A.

The zero solution of system (2.1) is asymptotically stable if and only if all eigenvalues of matrix

A have negative real parts, namely,

Re{λi(A)} < 0 (i = 1, 2, · · · , n).
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Proposition 2.5 ([10]). Suppose that A and B are two n×n real matrices, and A is similar to B,

namely, there exists an n × n real invertible matrix P , such that A = P−1BP . For system (2.1),

let v(t) = Pr(t). Then the system after the transformation becomes

v̇(t) = Bv(t).(2.4)

System (2.4) is said to be equivalent to system (2.1), and v(t) = Pr(t) is called an equivalence

transformation.

Proposition 2.6 ([10]). Let A and B be two n×n real matrices, and A is similar to B. Then the

zero solution of the system ṙ(t) = Ar(t) is (asymptotically) stable if and only if the zero solution

of the system v̇(t) = Bv(t) is (asymptotically) stable.

2.2. Curvatures of Curves in Rn.

De�nition 2.7 ([12]). Let r : [0,+∞) → R3 be a smooth curve. The functions

κ(t) =
∥ṙ(t)× r̈(t)∥

∥ṙ(t)∥3
, τ(t) =

(ṙ(t), r̈(t),
...
r (t))

∥ṙ(t)× r̈(t)∥2

are called the curvature and torsion of the curve r(t), respectively.

Gluck [8] gave a de�nition of higher curvatures of curves in Rn, which is a generalization of

curvature and torsion. Here we brie�y review the results of [8].

Let r : [0,+∞) → Rn be a smooth curve, and ṙ(t) ̸= 0 for all t ∈ [0,+∞). Suppose that for

each t ∈ [0,+∞), the vectors

ṙ(t), r̈(t), · · · , r(m)(t) (m 6 n)(2.5)

are linearly independent, where r(m)(t) denotes the mth derivative of r(t). Applying the Gram-

Schmidt orthonormalization process to (2.5), we obtain the orthogonal vectors

E1(t), E2(t), · · · , Em(t),

and an orthonormal set whose elements are

Q1(t), Q2(t), · · · , Qm(t),

where

E1(t) = ṙ(t),(2.6)

E2(t) = r̈(t)− ⟨r̈(t), E1(t)⟩
⟨E1(t), E1(t)⟩

E1(t),

· · · · · ·

Em(t) = r(m)(t)−
m−1∑
i=1

〈
r(m)(t), Ei(t)

〉
⟨Ei(t), Ei(t)⟩

Ei(t),

and

Qi(t) =
Ei(t)

∥Ei(t)∥
(i = 1, 2, · · · ,m).

De�nition 2.8 ([8]). Let r(s) be a smooth curve in Rn, where s is the arc length parameter, namely,

∥ṙ(s)∥ ≡ 1 for all s ∈ [0,+∞). Suppose that ṙ(s), r̈(s), · · · , r(m)(s) are linearly independent, then
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we have



Q̇1(s)

Q̇2(s)

...

Q̇m−1(s)


=



0 κ1(s)

−κ1(s) 0 κ2(s)

−κ2(s) 0
. . .

. . .
. . . κm−2(s)

−κm−2(s) 0 κm−1(s)





Q1(s)

Q2(s)

...

Qm(s)


,

where κ1(s), κ2(s), · · · , κm−1(s) are called the �rst, second, · · · , (m− 1)th curvature of the curve

r(s), respectively.

Remark 2.1. κi(s) > 0 for i = 1, 2, · · · ,m− 1.

Remark 2.2. Let r(s) be a smooth curve in R3, where s is the arc length parameter. Suppose

that ṙ(s), r̈(s),
...
r (s) are linearly independent. Then we have Frenet-Serret formulas (cf. [12]), and

κ1(s) = κ(s), κ2(s) = |τ(s)|.

Remark 2.3. Gluck [8] gave a formula for each curvature of a curve r(t) in Rn. In fact, suppose

that t is the parameter of curve r(t), and ṙ(t) ̸= 0 for all t ∈ [0,+∞). Let

Vi(t) =

i∏
p=1

∥Ep(t)∥ ,

namely, Vi(t) denotes the i-dimensional volume of an i-dimensional parallelotope with vectors ṙ(t),

r̈(t), · · · , r(i)(t) as edges with the convention that V0(t) = 1. Then we have the following result.

Proposition 2.9 ([8]). The ith curvature of a curve r(t) is

κi(t) =
∥Ei+1(t)∥

∥E1(t)∥ ∥Ei(t)∥
=
Vi+1(t)Vi−1(t)

V1(t)V 2
i (t)

(i = 1, 2, · · · ,m− 1).

Now, we can give Vi(t) by the derivatives of r(t) with respect to t, and thus obtain the expression

of κi(t). Suppose that for each t ∈ [0,+∞), the vectors ṙ(t), r̈(t), · · · , r(k)(t) (k 6 n) are linearly

independent, and write r(i)(t) =
(
r
(i)
1 (t), r

(i)
2 (t), · · · , r(i)n (t)

)T
, then we have

V 2
1 (t) = ∥ṙ(t)∥2 =

n∑
i=1

ṙ2i (t),

V 2
2 (t) =

∑
16i<j6n

∣∣∣∣∣∣
ṙi(t) r̈i(t)

ṙj(t) r̈j(t)

∣∣∣∣∣∣
2

,(2.7)

· · · · · ·

V 2
k (t) =

∑
16i1<i2<···<ik6n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ṙi1(t) r̈i1(t) · · · r
(k)
i1

(t)

ṙi2(t) r̈i2(t) · · · r
(k)
i2

(t)

...
...

. . .
...

ṙik(t) r̈ik(t) · · · r
(k)
ik

(t)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2

.(2.8)
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In fact, by the QR factorization of the n× k matrix D(t) =
(
ṙ(t), r̈(t), · · · , r(k)(t)

)
, namely,

D(t) = Q(t)R(t) = (Q1(t), Q2(t), · · · , Qk(t))



s11(t) s12(t) · · · s1k(t)

s22(t) · · · s2k(t)

. . .
...

skk(t)


,

and the de�nition of Vk(t), we have

V 2
k (t) =

k∏
p=1

∥Ep(t)∥2 =

k∏
p=1

∥spp(t)Qp(t)∥2 =

k∏
p=1

s2pp(t)

= (detR(t))
2
= det

(
RT(t)R(t)

)
= det

(
DT(t)D(t)

)
.

Then by Cauchy-Binet formula (cf. [13]), the proof of (2.8) is complete. Of course, the expressions

of V 2
i (t) (i < k) are also proved.

Hence we obtain the expression of each curvature of curve r(t) in Rn by the coordinates of

derivatives of r(t). In particular, the �rst curvature of r(t) satis�es

κ1(t) =
∥E2(t)∥
∥E1(t)∥2

=
V2(t)

V 3
1 (t)

=

√√√√√√√√
∑

16i<j6n

∣∣∣∣∣∣
ṙi(t) r̈i(t)

ṙj(t) r̈j(t)

∣∣∣∣∣∣
2

(
∑n
k=1 ṙ

2
k(t))

3 .(2.9)

We denote as κ(t) instead of κ1(t) the �rst curvature of r(t), for simplicity.

2.3. Singular Value Decomposition.

De�nition 2.10 ([13]). Let A be an m × n complex matrix with rank r, and λ1, λ2, · · · , λr the

non-zero eigenvalues of AAH, where AH denotes the conjugate transpose of A. Then

δi =
√
λi (i = 1, 2, · · · , r)

are called the singular values of A.

Proposition 2.11 ([13]). Let A be an m× n real matrix with rank r, and δ1 > δ2 > · · · > δr the

singular values of A. Then there exists an m ×m orthogonal matrix U and an n × n orthogonal

matrix V , such that

A = UDV T = U

(
∆ 0

0 0

)
V T,

where ∆ = diag{δ1, δ2, · · · , δr}.

2.4. Real Jordan Canonical Form.

Proposition 2.12 ([13]). Let A be an n × n real matrix. Then A is similar to a block diagonal

real matrix

Cn1
(a1, b1)

Cn2
(a2, b2)

. . .

0

Cnp
(ap, bp)

0
Jnp+1(λp+1)

. . .

Jnr (λr)


,
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where

(1) for k ∈ {1, 2, · · · , p}, λk = ak +
√
−1bk and λ̄k = ak −

√
−1bk (ak, bk ∈ R, and bk > 0) are

eigenvalues, and

Cnk
(ak, bk) =



Λk I2

Λk I2

Λk
. . .

. . . I2

Λk


2nk×2nk

,

where Λk =

(
ak bk
−bk ak

)
, I2 =

(
1 0

0 1

)
;

(2) for j ∈ {p+ 1, p+ 2, · · · , r}, λj ∈ R is a real eigenvalue, and

Jnj (λj) =



λj 1

λj 1

λj
. . .

. . . 1

λj


nj×nj

.

3. Relationship Between the Curvatures of Two Equivalent Systems

In this section, we establish the relationship between curvatures of trajectories of two equivalent

systems.

Let a curve r(t) be the trajectory of system (2.2), and curve v(t) the trajectory of system

v̇(t) = Bv(t), v(0) = v0, where A = P−1BP , and v0 = Pr0. Suppose that for each t, the vectors

ṙ(t), r̈(t), · · · , r(m)(t)

are linearly independent. Since v(i)(t) = Pr(i)(t) (i = 1, 2, · · · ,m), we see that the vectors

v̇(t), v̈(t), · · · , v(m)(t)

are also linearly independent. Hence, we can de�ne curvatures κr,1(t), κr,2(t), · · · , κr,m−1(t) of the

curve r(t), and curvatures κv,1(t), κv,2(t), · · · , κv,m−1(t) of the curve v(t), respectively.

Now, we prove the following theorem.

Theorem 3.1. Suppose that a linear time-invariant system ṙ(t) = Ar(t) is equivalent to a system

v̇(t) = Bv(t), where A = P−1BP , and v(t) = Pr(t) is the equivalence transformation. Let κr,i(t)

and κv,i(t) be the ith (i = 1, 2, · · · ,m − 1) curvatures of trajectories r(t) and v(t), respectively.

Then we have

lim
t→+∞

κv,i(t) = 0 ⇐⇒ lim
t→+∞

κr,i(t) = 0,

lim
t→+∞

κv,i(t) = +∞ ⇐⇒ lim
t→+∞

κr,i(t) = +∞,

κv,i(t) is a bounded function ⇐⇒ κr,i(t) is a bounded function.

Proof. First, recall that A = P−1BP , where P is an n×n real invertible matrix. Using Proposition

2.11, we obtain a singular value decomposition of P , namely,

P = U∆V T,
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where U and V are two n×n orthogonal matrices, and∆ = diag{δ1, δ2, · · · , δn} (we assume that δ1 >
δ2 > · · · > δn > 0). Let

a(t) = V Tr(t), b(t) = ∆a(t) = ∆V Tr(t) = U−1v(t).

Then we obtain two new linear time-invariant systems

ȧ(t) = Na(t), ḃ(t) = Ñb(t),

where N = V TA(V T)−1, and Ñ = U−1BU .

Since U, V are n× n orthogonal matrices, we obtain

κr,i(t) = κa,i(t), κv,i(t) = κb,i(t) (i = 1, 2, · · · ,m− 1).(3.1)

In fact, because a(t) = V Tr(t), we have a(k)(t) = V Tr(k)(t) (k = 1, 2, · · · ,m). Let Ea,i(t)

and Er,i(t) denote the ith vector obtained by Gram-Schmidt orthogonalization (2.6) for vec-

tors ȧ(t), ä(t), · · · , a(m)(t) and vectors ṙ(t), r̈(t), · · · , r(m)(t), respectively. Then we have Ea,i(t) =

V TEr,i(t) (i = 1, 2, · · · ,m). Using Proposition 2.9, the ith curvature of curve a(t) satis�es

κa,i(t) =
∥Ea,i+1(t)∥

∥Ea,1(t)∥ ∥Ea,i(t)∥
=

∥∥V TEr,i+1(t)
∥∥

∥V TEr,1(t)∥ ∥V TEr,i(t)∥

=
∥Er,i+1(t)∥

∥Er,1(t)∥ ∥Er,i(t)∥
= κr,i(t) (i = 1, 2, · · · ,m− 1).

Similarly, we have κb,i(t) = κv,i(t) (i = 1, 2, · · · ,m− 1).

The task is now to �nd the relationship between curvatures κa,i(t) and κb,i(t).

Noting that b(t) = ∆a(t), we have bi(t) = δiai(t), and derivatives b
(k)
i (t) = δia

(k)
i (t) (k =

1, 2, · · · ,m). Thus, the square of the k-dimensional volume of a k-dimensional parallelotope with

vectors ḃ(t), b̈(t), · · · , b(k)(t) as edges is

V 2
b,k(t) =

∑
16i1<i2<···<ik6n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ḃi1(t) b̈i1(t) · · · b
(k)
i1

(t)

ḃi2(t) b̈i2(t) · · · b
(k)
i2

(t)

...
...

. . .
...

ḃik(t) b̈ik(t) · · · b
(k)
ik

(t)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2

=
∑

16i1<i2<···<ik6n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

δi1 ȧi1(t) δi1 äi1(t) · · · δi1a
(k)
i1

(t)

δi2 ȧi2(t) δi2 äi2(t) · · · δi2a
(k)
i2

(t)

...
...

. . .
...

δik ȧik(t) δik äik(t) · · · δika
(k)
ik

(t)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2

=
∑

16i1<i2<···<ik6n



(
k∏
p=1

δip

)
∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ȧi1(t) äi1(t) · · · a
(k)
i1

(t)

ȧi2(t) äi2(t) · · · a
(k)
i2

(t)

...
...

. . .
...

ȧik(t) äik(t) · · · a
(k)
ik

(t)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣



2
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6 δ2k1
∑

16i1<i2<···<ik6n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ȧi1(t) äi1(t) · · · a
(k)
i1

(t)

ȧi2(t) äi2(t) · · · a
(k)
i2

(t)

...
...

. . .
...

ȧik(t) äik(t) · · · a
(k)
ik

(t)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2

= δ2k1 V 2
a,k(t).

Similarly, we have V 2
b,k(t) > δ2kn V

2
a,k(t). Hence

δkn 6 Vb,k(t)

Va,k(t)
6 δk1 (k = 1, 2, · · · ,m).(3.2)

Due to the convention that Va,0(t) = Vb,0(t) = 1, inequality (3.2) also holds for k = 0.

Finally, using Proposition 2.9 and equality (3.1), we have

κv,i(t)

κr,i(t)
=
κb,i(t)

κa,i(t)
=
Vb,i+1(t)

Va,i+1(t)

Vb,i−1(t)

Va,i−1(t)

Va,1(t)

Vb,1(t)

(
Va,i(t)

Vb,i(t)

)2

∈
[
δi+1
n δi−1

n

δ1δ2i1
,
δi+1
1 δi−1

1

δnδ2in

]
=

[
δ2in
δ2i+1
1

,
δ2i1
δ2i+1
n

]
,

namely,

δ2in
δ2i+1
1

κr,i(t) 6 κv,i(t) 6
δ2i1
δ2i+1
n

κr,i(t) (i = 1, 2, · · · ,m− 1).

It follows that

lim
t→+∞

κv,i(t) = 0 ⇐⇒ lim
t→+∞

κr,i(t) = 0,

lim
t→+∞

κv,i(t) = +∞ ⇐⇒ lim
t→+∞

κr,i(t) = +∞,

κv,i(t) is a bounded function ⇐⇒ κr,i(t) is a bounded function.

This completes the proof of Theorem 3.1. �

4. Real Jordan Blocks

In order to prove Theorem 1.1, we can transform A to its real Jordan canonical form by using

Proposition 2.12 and Theorem 3.1, and focus on the case of real Jordan canonical form.

Assume that A is a matrix in real Jordan canonical form, then A is a block diagonal matrix

with the following four types of real Jordan blocks:

(1) 1× 1 block with real eigenvalue (
λ
)
1×1

(λ ∈ R),

(2) p× p (p > 1) block with real eigenvalue

λ 1

λ 1

λ
. . .
. . . 1

λ


p×p

(λ ∈ R),(4.1)

(3) 2× 2 block with complex eigenvalues(
a b

−b a

)
(a, b ∈ R, b > 0),(4.2)
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(4) 2m× 2m (m > 1) block with complex eigenvalues

Λ I2

Λ I2

Λ
. . .
. . . I2

Λ


2m×2m

,(4.3)

where Λ =

(
a b

−b a

)
, I2 =

(
1 0

0 1

)
(a, b ∈ R, and b > 0).

Remark 4.1. In the remainder of this paper, we call these four types of real Jordan blocks R1, RH,

C2 and CH block for short, respectively.

We examine these four types of blocks in the following subsections.

4.1. R1 Block and Real Diagonal Matrix.

The case of R1 block is trivial. To study the general case, assume that the matrix A is a real

diagonal matrix, namely,

A = diag{λ1, λ2, · · · , λn} (λ1, λ2, · · · , λn ∈ R).

Write r(0) = (r10, r20, · · · , rn0)T, where ri0 ̸= 0 for i = 1, 2, · · · , n. Noting that

A2 = diag{λ21, λ22, · · · , λ2n}, etA = diag{eλ1t, eλ2t, · · · , eλnt},

we have

r(t) = etAr(0) =
(
eλ1tr10, e

λ2tr20, · · · , eλntrn0
)T
,

ṙ(t) = Ar(t) =
(
λ1e

λ1tr10, λ2e
λ2tr20, · · · , λneλntrn0

)T
,

r̈(t) = A2r(t) =
(
λ21e

λ1tr10, λ
2
2e
λ2tr20, · · · , λ2neλntrn0

)T
,

and

ṙi(t) = λie
λitri0, r̈i(t) = λ2i e

λitri0 (i = 1, 2, · · · , n).

By formula (2.9), the square of the �rst curvature κ(t) of r(t) is

κ2(t) =
V 2
2 (t)

V 6
1 (t)

=

∑
16i<j6n {λiλj(λj − λi)ri0rj0}2 e2(λi+λj)t

{
∑n
k=1(λkrk0)

2e2λkt}3
(n > 2).(4.4)

Set

λI = max{σ(A)\ {0}}, λII = max{σ(A)\ {0, λI}}.

Remark 4.2. (1) If A = 0n×n, then every trajectory r(t) = etAr(0) = r(0) is a constant point, and

we have κ(t) ≡ 0.

(2) By (4.4), if the eigenvalues of A are only λI and 0, then κ(t) ≡ 0.

The above two cases do not a�ect the proof of Theorem 1.1.

We examine the limit of κ(t) as t → +∞ by comparing the exponents of e in the numerator

V 2
2 (t) and denominator V 6

1 (t) of κ
2(t). Let η and θ denote the maximum values of µ in the terms

of the form eµt in V 2
2 (t) and V

6
1 (t), respectively. Then by (4.4), we have

η = 2 (λI + λII) , θ = 6λI.
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It follows that

lim
t→+∞

κ(t) = 0 ⇐⇒ η < θ ⇐⇒ 2λI > λII,

lim
t→+∞

κ(t) = C ⇐⇒ η = θ ⇐⇒ 2λI = λII,

lim
t→+∞

κ(t) = +∞ ⇐⇒ η > θ ⇐⇒ 2λI < λII,

where C > 0 is a constant depending on the initial value r(0) = r0 (ri0 ̸= 0 for i = 1, 2, · · · , n).

Remark 4.3. We know that the eigenvalues of diagonal matrix A correspond only to the 1 × 1

Jordan blocks. By Proposition 2.4, if A is a diagonal matrix, then the zero solution of the system

(2.1) is stable if and only if Re{λi(A)} 6 0 (i = 1, 2, · · · , n).

Remark 4.4. We notice that the initial value r(0) = (r10, r20, · · · , rn0)T may a�ect the �rst cur-

vature κ(t) of curve r(t). For simplicity, in the calculations below, we always assume that ri0 ̸= 0

for i = 1, 2, · · · , n. It will be seen later (see subsection 5.6 of Section 5) that this assumption does

not a�ect the proof of Theorem 1.1.

Remark 4.5. By (4.4), for any given real diagonal matrix A, if for some initial value r(0) ∈ Rn

that satis�es
∏n
i=1 ri0 ̸= 0, we have lim

t→+∞
κ(t) = 0 (or +∞, or a constant C > 0, respectively),

then for an arbitrary r(0) ∈ Rn satisfying
∏n
i=1 ri0 ̸= 0, we still have lim

t→+∞
κ(t) = 0 (or +∞, or a

constant C̃ > 0, respectively).

There are similar results for the following cases in Section 4 and 5. In fact, we have Theorem

5.7 and Corollary 5.8 in Section 5.

Therefore, we have the following results.

(1) The zero solution of the system is unstable

⇐⇒ λI > 0 =⇒ 2λI > λII ⇐⇒ lim
t→+∞

κ(t) = 0.

Hence, if lim
t→+∞

κ(t) ̸= 0 or lim
t→+∞

κ(t) does not exist, then the zero solution of the system is stable.

(2) The zero solution of the system is not asymptotically stable

⇐⇒ ∃λi = 0 or ∃λi > 0 (i ∈ {1, 2, · · · , n})
⇐⇒ detA = 0 or λI > 0

=⇒ detA = 0 or lim
t→+∞

κ(t) = 0.

Hence, if detA ̸= 0, and lim
t→+∞

κ(t) ̸= 0 (or lim
t→+∞

κ(t) does not exist), then the zero solution of

the system is asymptotically stable.

Thus, for the case of A is a real diagonal matrix, we obtain the following result.

Proposition 4.1. Under the assumptions of Theorem 1.1, together with the assumption that A is

a real diagonal matrix, for any given initial value r(0) ∈ Rn, s.t.,
∏n
i=1 ri0 ̸= 0, we have

(1) if lim
t→+∞

κ(t) ̸= 0 or lim
t→+∞

κ(t) does not exist, then the zero solution of the system is stable;

(2) if A is invertible, and lim
t→+∞

κ(t) ̸= 0 or lim
t→+∞

κ(t) does not exist, then the zero solution of

the system is asymptotically stable.

4.2. RH Block.
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Let A be p× p matrix (4.1). Then

A2 =



λ2 2λ 1

λ2 2λ
. . .

λ2
. . . 1
. . . 2λ

λ2


p×p

, etA = eλt



1 t t2

2!
t3

3! · · · tp−1

(p−1)!

1 t t2

2! · · · tp−2

(p−2)!

1 t · · · tp−3

(p−3)!

. . .
. . .

...

1 t

1


.(4.5)

By (2.3) and the expression of etA in (4.5), we have

rk(t) = eλt
p−k∑
l=0

rk+l,0
l!

tl = eλtPk(t) (k = 1, 2, · · · , p),

where rk(t) denotes the kth coordinate of r(t), rk0 denotes the kth coordinate of r(0), and

Pk(t) =

p−k∑
l=0

rk+l,0
l!

tl

is a polynomial in t, and deg(Pk(t)) = p− k.

For convenience, we have conventions that rp+1(t) = rp+2(t) = 0, and Pp+1(t) = Pp+2(t) = 0.

Since ṙ(t) = Ar(t), we have

ṙk(t) = λrk(t) + rk+1(t) = eλt (λPk(t) + Pk+1(t)) (k = 1, 2, · · · , p).(4.6)

Hence
p∑
k=1

ṙ2k(t) = e2λth(t),

where h(t) =
∑p
k=1 (λPk(t) + Pk+1(t))

2
is a polynomial in t, and deg(h(t)) =

{
2(p− 1), λ ̸= 0,

2(p− 2), λ = 0.

Therefore, the denominator of κ2(t) is

V 6
1 (t) =

(
p∑
k=1

ṙ2k(t)

)3

= e6λtg(t),(4.7)

where g(t) = h3(t), and

deg(g(t)) = 3 deg(h(t)) =

{
6(p− 1), λ ̸= 0,

6(p− 2), λ = 0.
(4.8)

From r̈(t) = A2r(t) and (4.5), we have

r̈k(t) = λ2rk(t) + 2λrk+1(t) + rk+2(t) = eλt
(
λ2Pk(t) + 2λPk+1(t) + Pk+2(t)

)
(4.9)

for k = 1, 2, · · · , p.
By substituting (4.6) and (4.9) into (2.7), we obtain the numerator of κ2(t)

V 2
2 (t) =

∑
16i<j6p

∣∣∣∣∣∣
ṙi(t) r̈i(t)

ṙj(t) r̈j(t)

∣∣∣∣∣∣
2

= e4λtf(t),(4.10)

where f(t) =
∑

16i<j6p

λ2
∣∣∣∣∣∣
Pi(t) Pi+1(t)

Pj(t) Pj+1(t)

∣∣∣∣∣∣+ λ

∣∣∣∣∣∣
Pi(t) Pi+2(t)

Pj(t) Pj+2(t)

∣∣∣∣∣∣+
∣∣∣∣∣∣
Pi+1(t) Pi+2(t)

Pj+1(t) Pj+2(t)

∣∣∣∣∣∣
2

is a poly-

nomial in t, whose degree is shown in the following remark.
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Remark 4.6. (1) For p = 2,

V 2
2 (t) =

∣∣∣∣∣∣
ṙ1(t) r̈1(t)

ṙ2(t) r̈2(t)

∣∣∣∣∣∣
2

= λ4r42(t) = e4λtλ4r420.

(2) For p > 3, if λ ̸= 0, then

deg(f(t)) = deg


λ2

∣∣∣∣∣∣
P1(t) P2(t)

P2(t) P3(t)

∣∣∣∣∣∣
2
 = 2deg

∣∣∣∣∣∣
P1(t) P2(t)

P2(t) P3(t)

∣∣∣∣∣∣
 = 4(p− 2);

if λ = 0, then

deg(f(t)) = deg


∣∣∣∣∣∣
P2(t) P3(t)

P3(t) P4(t)

∣∣∣∣∣∣
2
 = 2deg

∣∣∣∣∣∣
P2(t) P3(t)

P3(t) P4(t)

∣∣∣∣∣∣
 = 4(p− 3).

(If p = 3 and λ = 0, then r4(t) = P4(t) = 0, but this does not a�ect the above results.)

By (4.7) and (4.10), the square of the �rst curvature is

κ2(t) =
V 2
2 (t)

V 6
1 (t)

=
e4λtf(t)

e6λtg(t)
=

f(t)

e2λtg(t)
,

where the degrees of polynomials f(t) and g(t) are given in Remark 4.6 and (4.8), respectively.

(1) If λ ̸= 0, then

lim
t→+∞

κ2(t) = lim
t→+∞

f(t)

e2λtg(t)
=

{
0, λ > 0,

+∞, λ < 0.

(2) If λ = 0 and p = 2, then κ(t) ≡ 0; if λ = 0 and p > 3, then

deg(f(t)) = 4(p− 3) < 6(p− 2) = deg(g(t)),

thus

lim
t→+∞

κ2(t) = lim
t→+∞

f(t)

g(t)
= 0.

In summary,

lim
t→+∞

κ(t) =

{
0, λ > 0,

+∞, λ < 0.

By Proposition 2.4, we obtain the following proposition.

Proposition 4.2. Under the assumptions of Theorem 1.1, together with the assumption that A is

a p × p RH block with eigenvalue λ, for any given initial value r(0) ∈ Rn, s.t.,
∏p
i=1 ri0 ̸= 0, we

have

lim
t→+∞

κ(t) = +∞ ⇐⇒ λ < 0 ⇐⇒ the zero solution of the system is stable

⇐⇒ the zero solution of the system is asymptotically stable;

on the other hand,

lim
t→+∞

κ(t) = 0 ⇐⇒ λ > 0 ⇐⇒ the zero solution of the system is unstable

⇐⇒ the zero solution of the system is not asymptotically stable.
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4.3. C2 Block.

Let A be matrix (4.2). Then

A2 =

a2 − b2 2ab

−2ab a2 − b2

 , etA = eat

 cos bt sin bt

− sin bt cos bt

 .(4.11)

By (2.3) and the expression of etA in (4.11), we have

r1(t) = eatT1(t), r2(t) = eatT2(t),

where T1(t) = r10 cos bt+ r20 sin bt, and T2(t) = −r10 sin bt+ r20 cos bt.

Since ṙ(t) = Ar(t), we have

ṙ1(t) = ar1(t) + br2(t) = eat(aT1(t) + bT2(t)),(4.12)

ṙ2(t) = −br1(t) + ar2(t) = eat(−bT1(t) + aT2(t)).

Hence

ṙ21(t) + ṙ22(t) = e2at
(
a2 + b2

) (
r210 + r220

)
.

From r̈(t) = A2r(t) and (4.11), we have

r̈1(t) =
(
a2 − b2

)
r1(t) + 2abr2(t) = eat

[(
a2 − b2

)
T1(t) + 2abT2(t)

]
,(4.13)

r̈2(t) = −2abr1(t) +
(
a2 − b2

)
r2(t) = eat

[
−2abT1(t) +

(
a2 − b2

)
T2(t)

]
.

For C2 block, Wang et al. [7] has given the relationship between the curvature and stability.

Proposition 4.3 ([7]). Under the assumptions of Theorem 1.1, additionally assuming that A is

the C2 block (4.2), for any given r(0) ∈ R2\{0}, we have

lim
t→+∞

κ(t) = 0 ⇐⇒ a > 0 ⇐⇒ the zero solution is unstable,

lim
t→+∞

κ(t) = C ⇐⇒ a = 0 ⇐⇒ the zero solution is stable, but not asymptotically stable,

lim
t→+∞

κ(t) = +∞ ⇐⇒ a < 0 ⇐⇒ the zero solution is asymptotically stable,

where C > 0 is a constant depending on the initial value r(0).

4.4. CH Block.

Let A be 2m× 2m matrix (4.3). Then

A2 =



Λ2 2Λ I2

Λ2 2Λ
. . .

Λ2 . . . I2
. . . 2Λ

Λ2


2m×2m

, etA = eat



R tR t2

2!R
t3

3!R · · · tm−1

(m−1)!R

R tR t2

2!R · · · tm−2

(m−2)!R

R tR · · · tm−3

(m−3)!R

. . .
. . .

...

R tR

R


,

(4.14)

where Λ2 =

a2 − b2 2ab

−2ab a2 − b2

 , and the rotation matrix R =

 cos bt sin bt

− sin bt cos bt

 .

Remark 4.7. detA =
(
a2 + b2

)m
> 0.
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Remark 4.8. The matrix A is similar to

Jm(a+ b
√
−1) 0

0 Jm(a− b
√
−1)

 , where Jm(λ) denotes

the m×m Jordan block with eigenvalue λ ∈ C. By Proposition 2.4, if a = 0, then the zero solution

of the system (2.1) is unstable. Thus, the zero solution of the system is stable if and only if a < 0.

Write

r(t) = (r1(t), r2(t), r3(t), · · · , r2m−1(t), r2m(t))
T

= (r11(t), r12(t), r21(t), r22(t), · · · , rm1(t), rm2(t))
T
,

and r(0) = (r11,0, r12,0, r21,0, r22,0, · · · , rm1,0, rm2,0)
T
which satis�es

∏m
i=1

∏2
j=1 rij,0 ̸= 0.

By (2.3) and the expression of etA in (4.14), we have

rij(t) = eatTij(t) (i = 1, 2, · · · ,m; j = 1, 2),

where

Ti1(t) =

m−i∑
k=0

tk

k!
(r2i+2k−1,0 cos bt+ r2i+2k,0 sin bt) ,

Ti2(t) =

m−i∑
k=0

tk

k!
(−r2i+2k−1,0 sin bt+ r2i+2k,0 cos bt) ,

and we have a convention that if i > m, then rij(t) = 0 (j = 1, 2). Hence

r2i1(t) + r2i2(t) = e2at
(
T 2
i1(t) + T 2

i2(t)
)
= e2at

Ĉt2(m−i) +

2(m−i)−1∑
φ=0

B̂φ(t)t
φ

 ,(4.15)

where Ĉ =
r2m1,0+r

2
m2,0

[(m−1)!]2
> 0 is a constant.

By (2.1), we have

ṙi1(t) = ari1(t) + bri2(t) + ri+1,1(t) = eat (aTi1(t) + bTi2(t) + Ti+1,1(t)) ,(4.16)

ṙi2(t) = −bri1(t) + ari2(t) + ri+1,2(t) = eat (−bTi1(t) + aTi2(t) + Ti+1,2(t))

for i = 1, 2, · · · ,m. Hence

V 2
1 (t) =

2m∑
k=1

ṙ2k(t) =

m∑
i=1

(
ṙ2i1(t) + ṙ2i2(t)

)
= e2at

m∑
i=1

{
(aTi1(t) + bTi2(t) + Ti+1,1(t))

2
+ (−bTi1(t) + aTi2(t) + Ti+1,2(t))

2
}

= e2at

{
(a2 + b2)

(
T 2
11(t) + T 2

12(t)
)
+

m∑
i=2

(a2 + b2 + 1)
(
T 2
i1(t) + T 2

i2(t)
)

+

m−1∑
i=1

[
2a (Ti1(t)Ti+1,1(t) + Ti2(t)Ti+1,2(t)) + 2b (Ti2(t)Ti+1,1(t)− Ti1(t)Ti+1,2(t))

]}
.

Noting that

Tij(t) =

m−i∑
ψ=0

Bij,ψ(t)t
ψ (i = 1, 2, · · · ,m; j = 1, 2),

where Bij,ψ(t) (i = 1, 2, · · · ,m; j = 1, 2) are bounded trigonometric functions, we have

V 2
1 (t) = e2at

Ct2m−2 +

2m−3∑
ψ=0

Bψ(t)t
ψ

 ,(4.17)
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where C =
(a2+b2)(r2m1,0+r

2
m2,0)

[(m−1)!]2
> 0 is a constant, and Bψ(t) (ψ = 0, 1, · · · , 2m − 3) are bounded

functions.

From r̈(t) = A2r(t) and (4.14), we have

r̈i1(t) =
(
a2 − b2

)
ri1(t) + 2abri2(t) + 2ari+1,1(t) + 2bri+1,2(t) + ri+2,1(t)(4.18)

= eat
[(
a2 − b2

)
Ti1(t) + 2abTi2(t) + 2aTi+1,1(t) + 2bTi+1,2(t) + Ti+2,1(t)

]
,

r̈i2(t) = −2abri1(t) +
(
a2 − b2

)
ri2(t)− 2bri+1,1(t) + 2ari+1,2(t) + ri+2,2(t)

= eat
[
−2abTi1(t) +

(
a2 − b2

)
Ti2(t)− 2bTi+1,1(t) + 2aTi+1,2(t) + Ti+2,2(t)

]
for i = 1, 2, · · · ,m. Noticing the expressions of (4.16) and (4.18), write

ṙij(t) = eatT
(I)
ij (t), r̈ij(t) = eatT

(II)
ij (t)

for i = 1, 2, · · · ,m and j = 1, 2, where both T
(I)
ij (t) and T

(II)
ij (t) are linear combinations of functions

Tkl (k = 1, 2, · · · ,m; l = 1, 2). Thus

V 2
2 (t) =

∑
16k<l6m

2∑
p=1

2∑
q=1

∣∣∣∣∣∣
ṙkp(t) r̈kp(t)

ṙlq(t) r̈lq(t)

∣∣∣∣∣∣
2

+

m∑
i=1

∣∣∣∣∣∣
ṙi1(t) r̈i1(t)

ṙi2(t) r̈i2(t)

∣∣∣∣∣∣
2

= e4atf(t),(4.19)

where f(t) =
∑

16k<l6m
∑2
p=1

∑2
q=1

∣∣∣∣∣∣
T

(I)
kp (t) T

(II)
kp (t)

T
(I)
lq (t) T

(II)
lq (t)

∣∣∣∣∣∣
2

+
∑m
i=1

∣∣∣∣∣∣
T

(I)
i1 (t) T

(II)
i1 (t)

T
(I)
i2 (t) T

(II)
i2 (t)

∣∣∣∣∣∣
2

.

Remark 4.9. The function f(t) can be expressed in the form of

f(t) = C̃t4m−4 +

4m−5∑
φ=0

B̃φ(t)t
φ,(4.20)

where C̃ =
b2(a2+b2)

2
(r2m1,0+r

2
m2,0)

2

[(m−1)!]4
> 0 is a constant, and B̃φ(t) (φ = 0, 1, · · · , 4m−5) are bounded

functions.

Proof. By (4.15),

r21(t) + r22(t) = e2at

{
r2m1,0 + r2m2,0

[(m− 1)!]
2 t2m−2 +

2m−3∑
φ=0

B̂φ(t)t
φ

}
.

In (2.7), we can reach the highest power t4m−4 in the expression of f(t) by taking i = 1 and j = 2.

In fact, ∣∣∣∣∣∣
ṙ1(t) r̈1(t)

ṙ2(t) r̈2(t)

∣∣∣∣∣∣(4.21)

=

∣∣∣∣∣∣
ar1(t) + br2(t) + r3(t)

(
a2 − b2

)
r1(t) + 2abr2(t) + 2ar3(t) + 2br4(t) + r5(t)

−br1(t) + ar2(t) + r4(t) −2abr1(t) +
(
a2 − b2

)
r2(t)− 2br3(t) + 2ar4(t) + r6(t)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
ar1(t) + br2(t)

(
a2 − b2

)
r1(t) + 2abr2(t)

−br1(t) + ar2(t) −2abr1(t) +
(
a2 − b2

)
r2(t)

∣∣∣∣∣∣+ e2at
2m−3∑
φ=0

Dφ(t)t
φ

= e2at

{
−b
(
a2 + b2

) (
r21(t) + r22(t)

)
+

2m−3∑
φ=0

Dφ(t)t
φ

}

= e2at

{
−b
(
a2 + b2

) (
r2m1,0 + r2m2,0

)
[(m− 1)!]

2 t2m−2 +

2m−3∑
φ=0

D̃φ(t)t
φ

}
,
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where both Dφ(t) and D̃φ(t) (φ = 0, 1, · · · , 2m− 3) are bounded functions. By substituting (4.21)

into (2.7), we obtain (4.20). �

By (4.17), (4.19) and (4.20), we obtain

κ2(t) =
V 2
2 (t)

V 6
1 (t)

=
e4at

(
C̃t4m−4 +

∑4m−5
φ=0 B̃φ(t)t

φ
)

e6at
(
Ct2m−2 +

∑2m−3
ψ=0 Bψ(t)tψ

)3 =
C̃t4m−4 +

∑4m−5
φ=0 B̃φ(t)t

φ

e2at
(
C̄t6m−6 +

∑6m−7
ψ=0 B̄ψ(t)tψ

) ,
where C̃ > 0 and C̄ = C3 > 0 are constants, B̃φ(t) (φ = 0, 1, · · · , 4m − 5) and B̄ψ(t) (ψ =

0, 1, · · · , 6m− 7) are bounded functions.

Therefore, we have the following results.

(1) For a > 0, we have lim
t→+∞

κ(t) = 0.

(2) For a = 0, we have

lim
t→+∞

κ2(t) =
C̃t4m−4 +

∑4m−5
φ=0 B̃φ(t)t

φ

C̄t6m−6 +
∑6m−7
ψ=0 B̄ψ(t)tψ

= 0,

hence lim
t→+∞

κ(t) = 0.

(3) For a < 0, we have lim
t→+∞

κ(t) = +∞.

In summary, we obtain the following proposition.

Proposition 4.4. Under the assumptions of Theorem 1.1, additionally assuming that A is a

2m × 2m CH block with eigenvalues a ± b
√
−1, for any given r(0) ∈ Rn, s.t.,

∏2m
i=1 ri0 ̸= 0, we

have

lim
t→+∞

κ(t) = +∞ ⇐⇒ a < 0 ⇐⇒ the zero solution of the system is stable

⇐⇒ the zero solution of the system is asymptotically stable;

on the other hand,

lim
t→+∞

κ(t) = 0 ⇐⇒ a > 0 ⇐⇒ the zero solution of the system is unstable

⇐⇒ the zero solution of the system is not asymptotically stable.

5. General Case

In this section, we consider the general case, namely, A is an n× n matrix, and prove Theorem

1.1. Since A is similar to its real Jordan canonical form, we only need to focus on the case of real

Jordan canonical form, and prove the following theorem.

Theorem 5.1. Take the assumptions of Theorem 1.1, and additionally assume that A is a matrix

in real Jordan canonical form. For any given initial value r(0) ∈
{
(r10, r20, · · · , rn0)T ∈ Rn

∣∣∣∏n
i=1 ri0 ̸= 0

}
,

we have

(1) if lim
t→+∞

κ(t) ̸= 0 or lim
t→+∞

κ(t) does not exist, then the zero solution of the system is stable;

(2) if A is invertible, and lim
t→+∞

κ(t) = +∞, then the zero solution of the system is asymptotically

stable.

5.1. Review of Calculation Results.

Let A be an n× n matrix in real Jordan canonical form, then A is a block diagonal real matrix

whose diagonal consists of R1, RH, C2 and CH blocks. Through the analysis of Section 4, we have

the following results.

(1) For R1 block
(
λ
)
1×1

(λ ∈ R), we have

r(t) = eλtr0, ṙ(t) = eλtλr0, r̈(t) = eλtλ2r0, ṙ2(t) = e2λtλ2r20.(5.1)
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(2) For p× p (p > 1) RH block (4.1), we have

rk(t) = eλtPk(t) (k = 1, 2, · · · , p),

where Pk(t) =
∑p−k
l=0

rk+l,0

l! tl, and we have a convention that rp+1(t) = rp+2(t) = 0. If 1 6 k 6 p,

then deg(Pk(t)) = p− k; if k > p, then Pk(t) = 0. Hence

ṙk(t) = λrk(t) + rk+1(t) = eλt (λPk(t) + Pk+1(t)) ,

p∑
k=1

ṙ2k(t) = e2λt
p∑
k=1

(λPk(t) + Pk+1(t))
2
= e2λth(t),(5.2)

where deg(h(t)) =

{
2(p− 1), λ ̸= 0,

2(p− 2), λ = 0,
and we have

r̈k(t) = λ2rk(t) + 2λrk+1(t) + rk+2(t) = eλt
(
λ2Pk(t) + 2λPk+1(t) + Pk+2(t)

)
.

(3) For C2 block (4.2), we have

r1(t) = eatT1(t), r2(t) = eatT2(t),

where T1(t) = r10 cos bt+ r20 sin bt, and T2(t) = −r10 sin bt+ r20 cos bt. Hence

ṙ1(t) = ar1(t) + br2(t) = eat (aT1(t) + bT2(t)) ,

ṙ2(t) = −br1(t) + ar2(t) = eat (−bT1(t) + aT2(t)) ,

ṙ21(t) + ṙ22(t) = e2at
(
a2 + b2

) (
r210 + r220

)
,(5.3)

r̈1(t) =
(
a2 − b2

)
r1(t) + 2abr2(t) = eat

[(
a2 − b2

)
T1(t) + 2abT2(t)

]
,

r̈2(t) = −2abr1(t) +
(
a2 − b2

)
r2(t) = eat

[
−2abT1(t) +

(
a2 − b2

)
T2(t)

]
.

(4) For 2m× 2m (m > 1) CH block (4.3), write

r(t) = (r11(t), r12(t), r21(t), r22(t), · · · , rm1(t), rm2(t))
T
,

then

ri1(t) = eatTi1(t), ri2(t) = eatTi2(t) (i = 1, 2, · · · ,m),

where Ti1(t) =
∑m−i
k=0

tk

k! (r2i+2k−1,0 cos bt + r2i+2k,0 sin bt), Ti2(t) =
∑m−i
k=0

tk

k! (−r2i+2k−1,0 sin bt +

r2i+2k,0 cos bt), and we have a convention that if i > m, then rij(t) = 0 (j = 1, 2). Hence

ṙi1(t) = ari1(t) + bri2(t) + ri+1,1(t) = eat (aTi1(t) + bTi2(t) + Ti+1,1(t)) ,

ṙi2(t) = −bri1(t) + ari2(t) + ri+1,2(t) = eat (−bTi1(t) + aTi2(t) + Ti+1,2(t))

for i = 1, 2, · · · ,m, and

2m∑
k=1

ṙ2k(t) = e2at

Ct2m−2 +

2m−3∑
ψ=0

Bψ(t)t
ψ

 ,(5.4)

where C =
(a2+b2)(r2m1,0+r

2
m2,0)

[(m−1)!]2
> 0 is a constant, and Bψ(t) (ψ = 0, 1, · · · , 2m − 3) are bounded

functions. Moreover,

r̈i1(t) =
(
a2 − b2

)
ri1(t) + 2abri2(t) + 2ari+1,1(t) + 2bri+1,2(t) + ri+2,1(t)

= eat
[(
a2 − b2

)
Ti1(t) + 2abTi2(t) + 2aTi+1,1(t) + 2bTi+1,2(t) + Ti+2,1(t)

]
,

r̈i2(t) = −2abri1(t) +
(
a2 − b2

)
ri2(t)− 2bri+1,1(t) + 2ari+1,2(t) + ri+2,2(t)

= eat
[
−2abTi1(t) +

(
a2 − b2

)
Ti2(t)− 2bTi+1,1(t) + 2aTi+1,2(t) + Ti+2,2(t)

]
for i = 1, 2, · · · ,m.
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5.2. Denominator of κ2(t).

We examine V 6
1 (t), the denominator of κ2(t), in this subsection.

Let A be a matrix in real Jordan canonical form whose diagonal consists of q real Jordan blocks,

where the ith block is an ni × ni matrix. Then

V 2
1 (t) =

q∑
i=1

ni∑
k=1

ṙ2ik(t),

where ṙik(t) denotes the coordinate of ṙ(t) corresponding to the kth row of the ith real Jordan

block. By (5.1), (5.2), (5.3) and (5.4), we have

ni∑
k=1

ṙ2ik(t) = e2Re(λi)tgi(t),

where λi is an eigenvalue of the ith block, and the expression of gi(t) depends on the type of the

ith real Jordan block. In fact, we have the following results.

(1) For R1 block,

gi(t) = λ2i r
2
i1,0 =

{
C, λi ̸= 0,

0, λi = 0,

where C > 0 is a constant.

(2) For p× p RH block, gi(t) is a polynomial

gi(t) =

p∑
k=1

(λiPk(t) + Pk+1(t))
2
,

and deg(gi(t)) =

{
2(p− 1), λi ̸= 0,

2(p− 2), λi = 0.

(3) For C2 block, gi(t) is the constant

gi(t) =
(
a2 + b2

) (
r2i1,0 + r2i2,0

)
> 0.

(4) For 2m× 2m CH block,

gi(t) = Ct2m−2 +

2m−3∑
ψ=0

Bψ(t)t
ψ,

where C > 0 is a constant, and Bψ(t) (ψ = 0, 1, · · · , 2m− 3) are bounded functions.

Hence the denominator of κ2(t) is

V 6
1 (t) =

(
q∑
i=1

e2Re(λi)tgi(t)

)3

.

We see that gi(t) = 0 if and only if the ith block is an R1 block with λ = 0, namely, the ith block is

01×1, which causes e2Re(λi)t of the block to vanish in V 6
1 (t). Let σ̃(A) denote the set of eigenvalues

of A which excluding the zero eigenvalues in R1 blocks, and

M = max{Re(λ)|λ ∈ σ(A)}, M̃ = max{Re(λ)|λ ∈ σ̃(A)}.(5.5)

Then

V 6
1 (t) = e6M̃t

C̄tξ + ξ−1∑
ψ=0

B̄ψ(t)t
ψ

+R(t),(5.6)

where C̄ > 0 is a constant, B̄ψ(t) (ψ = 0, 1, · · · , ξ − 1) are bounded functions, and R(t) is a linear

combination of terms in the form of eµttνBω(t), here µ < 6M̃ , and Bω(t) is a bounded function.
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Hence we have

θ = 6M̃,(5.7)

where θ denotes the maximum value of µ in the terms of the form eµttνBω(t) in V
6
1 (t).

Remark 5.1. In (5.6), the integer ξ > 0, and

ξ = max{ξR, ξC}.

(1) If M̃ ̸= 0, then ξR = 6(p − 1), and ξC = 6(m − 1), where p denotes the maximum order of

R1 or RH blocks with M̃ as eigenvalue, and m denotes half of the maximum order of C2 or CH

blocks with M̃ ± b
√
−1 (b ∈ R) as eigenvalues.

(2) If M̃ = 0, then the de�nition of ξC is the same as (1), however, ξR = 6(p − 2), where p

denotes the maximum order of RH blocks with eigenvalue 0.

Remark 5.2. Suppose that A is a matrix in real Jordan canonical form. By (5.5) and Proposition

2.4, we obtain the following results.

(1) The zero solution of system (2.1) is stable if and only if M 6 0 and the real Jordan blocks

whose eigenvalues have zero real parts in the diagonal of A are either R1 or C2.

(2) The zero solution of system (2.1) is asymptotically stable if and only if M < 0.

5.3. Numerator of κ2(t).

Now, we examine the numerator V 2
2 (t) of κ

2(t).

By subsection 5.1, we see that all coordinates of ṙ(t) and r̈(t) of R1, RH, C2 and CH blocks can

be expressed in the form of

ṙik(t) = eRe(λi)tfik(t),

r̈ik(t) = eRe(λi)tf̃ik(t),

thus ∣∣∣∣∣∣
ṙik(t) r̈ik(t)

ṙjl(t) r̈jl(t)

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
eRe(λi)tfik(t) eRe(λi)tf̃ik(t)

eRe(λj)tfjl(t) eRe(λj)tf̃jl(t)

∣∣∣∣∣∣
2

= e2{Re(λi)+Re(λj)}tF (t),(5.8)

where F (t) =

∣∣∣∣∣∣
fik(t) f̃ik(t)

fjl(t) f̃jl(t)

∣∣∣∣∣∣
2

is a linear combination of terms in the form of Bφ(t)t
φ, here Bφ(t)

is a bounded function. By substituting (5.8) into (2.7), we obtain

η 6 4M,(5.9)

where η denotes the maximum value of µ in the terms of the form eµttνBω(t) in V
2
2 (t).

5.4. Proof of Theorem 5.1(1).

In this subsection, we prove Theorem 5.1(1).

Lemma 5.2. Under the assumptions above, if M > 0, then lim
t→+∞

κ(t) = 0.

Proof. Suppose M > 0 in (5.5), then M̃ =M . By (5.7) and (5.9), we have

η 6 4M < 6M̃ = θ.

It follows that lim
t→+∞

κ(t) = 0. �

Lemma 5.3. Under the assumptions of Theorem 5.1, if M = 0, and there exist RH or CH blocks

whose eigenvalues have zero real parts in the diagonal of A, then lim
t→+∞

κ(t) = 0.
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Proof. Suppose M = 0. By the assumption that there exist RH or CH blocks whose eigenvalues

have zero real parts in the diagonal of A, we obtain σ̃(A) = σ(A), and M̃ =M . Thus we have

η 6 4M = 0, θ = 6M̃ = 0.

(1) If η < 0, then η < θ, hence lim
t→+∞

κ(t) = 0.

(2) If η = 0, then we compare the highest power of t of terms in the form of e0ttνBω(t) in the

expression of κ2(t), where Bω(t) is a bounded function. In fact, by Remark 5.1, we have

ξ = max{6(p− 2), 6(m− 1)}(5.10)

in V 6
1 (t), where p denotes the maximum order of RH blocks with eigenvalue 0, and m denotes half

of the maximum order of C2 or CH blocks with ±b
√
−1 (b ∈ R) as eigenvalues.

In V 2
2 (t), the highest power of t of terms in the form of e0ttνBω(t) depends on the orders of RH

or CH blocks whose eigenvalues have zero real parts.

For a p× p RH block with λ = 0, the �rst coordinates of ṙ(t) and r̈(t)

ṙ1(t) = r2(t) = P2(t), r̈1(t) = r3(t) = P3(t)

reach the highest power of t of this block, where

deg(P2(t)) = p− 2, deg(P3(t)) =

{
p− 3, p > 3,

−∞, p = 2.
(5.11)

Here we have a convention that deg(0) = −∞.

For a 2m× 2m CH block with a = Re(λ) = 0, we have

ṙ1(t) = br2(t) + r3(t), r̈1(t) = −b2r1(t) + 2br4(t) + r5(t),(5.12)

ṙ2(t) = −br1(t) + r4(t), r̈2(t) = −b2r2(t)− 2br3(t) + r6(t).

Note that

r1(t) =
r2m−1,0 cos bt+ r2m,0 sin bt

(m− 1)!
tm−1 +

m−2∑
φ=0

Gφ(t)t
φ,(5.13)

r2(t) =
−r2m−1,0 sin bt+ r2m,0 cos bt

(m− 1)!
tm−1 +

m−2∑
φ=0

G̃φ(t)t
φ

reach the highest power of t of this block, where Gφ(t) and G̃φ(t) are bounded functions. By

(5.12), we conclude that ṙ1(t), r̈1(t), ṙ2(t), r̈2(t) can all reach the highest power tm−1.

Let χ denote the maximum value of ν in the terms of the form e0ttνBω(t) in the numerator of

κ2(t), then by (2.7), (5.11) and (5.13), we obtain

χ 6 max{4(p− 2), 4(m− 1)},(5.14)

where the de�nitions of p and m are the same as (5.10). From (5.10) and (5.14), we have χ < ξ,

it follows that lim
t→+∞

κ(t) = 0. �

By Lemma 5.2, 5.3, and Remark 5.2, if the zero solution of the system is unstable, then

lim
t→+∞

κ(t) = 0. Consequently, Theorem 5.1(1) is proved.

5.5. Proof of Theorem 5.1(2).

Now, we prove Theorem 5.1(2).

By Lemma 5.2, we only need to prove the following result.

Lemma 5.4. Under the assumptions of Theorem 5.1, if detA ̸= 0, and M = 0, then there exists

t0 > 0, such that κ(t) de�ned for t ∈ [t0,+∞) is bounded.
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Proof. Assume that detA ̸= 0, and M = 0. Then A has no eigenvalue 0, and M̃ =M = 0. Thus,

there exist C2 or CH blocks whose eigenvalues have zero real parts in the diagonal of A, and

η 6 4M = 0, θ = 6M̃ = 0.

(1) If η < 0, then lim
t→+∞

κ(t) = 0.

(2) If η = 0, then we compare the highest power of t of terms in the form of e0ttνBω(t) in the

numerator and denominator of κ2(t), namely, χ and ξ, where Bω(t) is a bounded function. In fact,

by Remark 5.1, we have

ξ = 6(m− 1),

in V 6
1 (t), where m denotes half of the maximum order of C2 or CH blocks with ±b

√
−1 (b ∈ R) as

eigenvalues.

For V 2
2 (t), in a C2 or CH block whose eigenvalues have zero real parts, ṙ1(t), r̈1(t), ṙ2(t), r̈2(t)

can all reach the highest power tm−1 in the block.

By (2.7), we see that the maximum value χ of ν in the terms of the form e0ttνBω(t) in the

numerator of κ2(t) satis�es

χ 6 4(m− 1).

Therefore,

(A) for m > 1, we have χ < ξ, hence lim
t→+∞

κ(t) = 0;

(B) for m = 1, we have χ = ξ = 0, thus the real Jordan blocks whose eigenvalues have zero real

parts are all C2 blocks. From (4.12) and (4.13), we see that for i, j that satisfy Re(λi) = Re(λj) = 0,

the function F (t) in (5.8) is bounded. It follows that κ(t) is a bounded function.

In summary, ∃t0 > 0, such that κ(t) de�ned for t ∈ [t0,+∞) is bounded. �

By Lemma 5.2, 5.4, and Remark 5.2, if detA ̸= 0, and the zero solution of the system is not

asymptotically stable, then there exists t0 > 0, such that κ(t) de�ned for t ∈ [t0,+∞) is bounded,

which completes the proof of Theorem 5.1(2), and therefore Theorem 5.1 is proved.

5.6. Proof of Theorem 1.1.

We prove Theorem 1.1 and give several remarks in this subsection.

In what follows, we de�nd two subsets of Rn that

S =

{
r(0)

∣∣∣∣∣r(0) = (r10, r20, · · · , rn0)T ∈ Rn, s.t.,
n∏
i=1

ri0 ̸= 0

}
,

and

S̃ =

{
P−1v(0)

∣∣∣∣∣v(0) = (v10, v20, · · · , vn0)T ∈ Rn, s.t.,
n∏
i=1

vi0 ̸= 0

}
.

We proved Theorem 5.1 in the previous subsections. Combined with Theorem 3.1, we have the

following proposition.

Proposition 5.5. Take the assumptions of Theorem 3.1, and additionally assume that B is a

matrix in real Jordan canonical form. Denote by κ(t) the �rst curvature of trajectory of a solution

r(t). For an arbitrary initial value r(0) ∈ S̃, we have

(1) if lim
t→+∞

κ(t) ̸= 0 or lim
t→+∞

κ(t) does not exist, then the zero solution of the system is stable;

(2) if A is invertible and lim
t→+∞

κ(t) = +∞, then the zero solution of the system is asymptotically

stable.

Noting that the Lebesgue measure of Rn\S̃ is zero, we complete the proof of Theorem 1.1.

Remark 5.3. If all eigenvalues of A are real numbers, we can obtain the following proposition.
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Proposition 5.6. Take the assumptions of Theorem 1.1, and additionally assume that A is in-

vertible and all eigenvalues of A are real numbers. If there exists a measurable set E ⊆ Rn whose

Lebesgue measure is greater than 0, such that lim
t→+∞

κ(t) ̸= 0 or lim
t→+∞

κ(t) does not exist for any

r(0) ∈ E, then the zero solution of the system is asymptotically stable.

Proof. Under the assumptions of Theorem 5.1, additionally assuming that all eigenvalues of A are

real numbers, if detA ̸= 0, and the zero solution of the system is not asymptotically stable, then

∃λ ∈ σ(A) ⊆ R, s.t., λ > 0, namely, M > 0. By Lemma 5.2, we have lim
t→+∞

κ(t) = 0.

Combined with Theorem 3.1, we complete the proof. �

Remark 5.4. From the expressions of κ(t) in all cases, we see that the initial value r(0) ∈ S does

not a�ect the trend of the �rst curvature. In fact, a detailed calculation establishes the following

theorem.

Theorem 5.7. Under the assumptions of Theorem 5.1, if for some initial value r(0) ∈ S, we have

lim
t→+∞

κ(t) = 0 (or +∞, or a constant C > 0, or κ(t) is a bounded function, respectively), then

for an arbitrary r(0) ∈ S, we still have lim
t→+∞

κ(t) = 0 (or +∞, or a constant C̃ > 0, or κ(t) is a

bounded function, respectively).

Combined with Theorem 3.1, we have the following corollary.

Corollary 5.8. Under the assumptions of Proposition 5.5, if for some initial value r(0) ∈ S̃, we

have lim
t→+∞

κ(t) = 0 (or +∞, or κ(t) is a bounded function, respectively), then for an arbitrary

r(0) ∈ S̃, we still have lim
t→+∞

κ(t) = 0 (or +∞, or κ(t) is a bounded function, respectively).

Moreover, we note that if A is a matrix in real Jordan canonical form whose all eigenvalues are

real numbers, then for any given r(0) ∈ Rn, we have lim
t→+∞

κ(t) = 0 or C or +∞, where C > 0 is

a constant.

6. Examples

In this section, we give two examples, which correspond to each case of Theorem 1.1, respectively.

Example 1 (Theorem 1.1(1)).

Let r(t) = (r1(t), r2(t), r3(t), r4(t))
T ∈ R4, and

A =


10 −20 20 −15

−35 20 −45 15

−23 26 −33 21

36 −32 46 −27

 .

Then (2.1) becomes a four-dimensional linear time-invariant system. If the initial value r(0) =

(r10, r20, r30, r40)
T ∈ R4 satis�es v20v30v40 ̸= 0, where v20 = −r10 + 2r20 + r30 + 3r40, v30 =

r10 + 3r20 + r30 + 3r40, and v40 = r10 − 2r20 + r30 − 2r40, then the square of the �rst curvature

κ(t) of the trajectory r(t) is

κ2(t) =
5e40t(59e20tv220v

2
30+396e15tv220v30v40+756e10tv220v

2
40−384e10tv20v

2
30v40−1188e5tv20v30v

2
40+666v230v

2
40)

2(10e20tv220+22e15tv20v30+102e10tv20v40+18e10tv230+132e5tv30v40+279v240)
3 ,

and we have

lim
t→+∞

κ(t) =

√
59 |v30|
20v220

=

√
59 |r10 + 3r20 + r30 + 3r40|

20 (−r10 + 2r20 + r30 + 3r40)
2 > 0.

By Theorem 1.1(1), the zero solution of the system is stable.

The graph of function κ(t) is shown in Figure 6.1, where r(0) = (1, 1, 1, 2)
T
.
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Figure 6.1. Example 1
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Figure 6.2. Example 2

In another way, the eigenvalues of A are −15, −10, −5 and 0, thus by Proposition 2.4, the zero

solution of the system is stable.

Example 2 (Theorem 1.1(2)).

Let r(t) = (r1(t), r2(t), · · · , r5(t))T ∈ R5, and

A =



0 4 5 4 1

−2 −2 1 −2 −1

−2 −4 −3 4 3

2 4 1 −2 1

−2 −4 −5 −4 −3


.

Then (2.1) becomes a �ve-dimensional linear time-invariant system, and detA = −800 ̸= 0. If

r(0) = (r10, r20, · · · , r50)T ∈ R5 satis�es (r30 + r40) (r40 + r50) ̸= 0, then the square of the �rst

curvature κ(t) of the trajectory r(t) is

κ2(t) =
e4t
(
C̃t4 +

∑3
φ=0 B̃φ(t)t

φ
)

C̄(t)t6 +
∑5
ψ=0 B̄ψ(t)t

ψ
,

where C̃ = 102 400 C2 > 0 is a constant, B̃φ(t) (φ = 0, 1, 2, 3), B̄ψ(t) (ψ = 0, 1, · · · , 5) and

C̄(t) = {20C (5− 3 sin(8t+ ρ))}3 ∈
[
64 000C3, 4 096 000C3

]
are bounded functions, where C =

(r30 + r40)
2
+ (r40 + r50)

2
> 0 and ρ ∈ R are constants. Hence

lim
t→+∞

κ(t) = +∞.

By Theorem 1.1(2), the zero solution of the system is asymptotically stable.

The graph of function κ(t) is shown in Figure 6.2, where r(0) = (1, 1, 1, 1, 1)
T
.

In another way, the eigenvalues of A are λ1 = λ2 = −2 + 4
√
−1, λ3 = λ4 = −2 − 4

√
−1 and

λ5 = −2, thus by Proposition 2.4, the zero solution of the system is asymptotically stable.

7. Conclusion

The main result of this paper, Theorem 1.1, is proved. First, through the analysis of higher

curvatures of trajectories of systems, we give a relationship between curvatures of trajectories of

two equivalent linear time-invariant systems. Second, for each type of real Jordan blocks, we

analyze the relationship between the �rst curvature and stability. Finally, we prove a result for

any matrix in real Jordan canonical form, which completes the proof of the main theorem.

As Theorem 1.1 shows, two su�cient conditions for stability of the zero solution of linear time-

invariant systems, based on the �rst curvature, are given. For each case of the theorem, we give

an example to illustrate the result.

Further, we will investigate nonlinear control for the stability by using geometric description.
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