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In this paper, a novel multi-module neural network system named MMNNS is proposed to solve the im- 

balance problem in electrocardiogram (ECG) heartbeats classification. Four submodules are designed to 

construct the system: preprocessing, imbalance problem processing, feature extraction and classification. 

Imbalance problem processing module mainly introduces three methods: BLSM, CTFM and 2PT, which 

are proposed from three aspects of resampling, data feature and algorithm respectively. BLSM is used to 

synthesize virtual samples linearly around the minority samples. CTFM consists of DAE-based feature ex- 

traction part and QRS-based feature selection part, in which selected features and complete features are 

applied to determine the heartbeat class simultaneously. The processed data are fed into a convolutional 

neural network (CNN) by applying 2PT to train and fine-tune. MMNNS is trained on MIT-BIH Arrhyth- 

mia Database following AAMI standard, using intra-patient and inter-patient scheme, especially the latter 

which is strongly recommended. The comparisons with several state-of-the-art methods using standard 

criteria on three datasets demonstrate the superiority of MMNNS for improving detection of heartbeats 

and addressing imbalance in ECG heartbeats classification. 

© 2019 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Cardiovascular diseases (CVDs) are the leading cause of death

lobally. The number of people dying of CVD increases year by

ear, which resulted in 17.9 million deaths (32.1%) in 2015, up

rom 12.3 million (25.8%) in 1990 ( Wang, Naghavi, Allen, Barber,

 Bhutta, 2015 ). Cardiovascular diseases (CVDs) are disorders of

he heart and blood vessels, including coronary heart disease, cere-

rovascular disease, rheumatic heart disease and other conditions.

rrhythmia is one of the cardiovascular diseases during which the

eart can beat too fast, too slowly or with an irregular rhythm.

enerally speaking, arrhythmia can be mainly divided into two

ypes. One is life-threatening ventricular fibrillation and tachycar-

ia, requiring immediate treatment with a defibrillator. The other

s the arrhythmia studied in this paper, being not immediately life-

hreatening but requiring further treatment. 

Electrocardiogram (ECG) is a promising diagnostic tool for ex-

mining cardiac tissues and structures. It reflects the electrical ac-

ivity of the heart recorded by electrodes placed on the skin over

 period of time and consists of different waveforms representing
∗ Corresponding author. 
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he polarization or depolarization of the heart ( Šarlija, Juriši ́c, &

opovi ́c, 2017 ). ECG contains a large number of information on not

nly the structure of the heart but also the function of its electrical

onduction system. Moreover, it also provides data for diagnosis of

iseases, classification of heartbeat, etc. 

ECG widely applied in the fields of related disease classifica-

ion, heartbeat type detection, biometric identification and emo-

ion recognition ( Kaplan Berkaya et al., 2018 ). The study in this

aper aims to classify heartbeats, which is an important step

n diagnosing arrhythmia. Recommended by the Association for

he Advancement of Medical Instrumentation (AAMI), non-life-

hreatening arrhythmia can be divided into five subclasses ( Table 1

ists the detailed heartbeat types): normal (N), supraventricular

S/SVEB), ventricular (V/VEB), fusion (F) and unknown beats (Q).

ach type of beats has a great difference in morphology, and each

ype contains several subclasses with different shape, which brings

 great challenge for physicians to analyze manually. To compen-

ate for visual errors and manual interpretations, researchers have

egun to develop computer-aided diagnosis (CAD) systems to au-

omatically diagnose ECG. 

With the emergence of CAD system in clinical medicine, the

orkload of cardiologists has been reduced, and the computational

fficiency and accuracy of disease detection have been improved.
nder the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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Table 1 

ECG class description using AAMI standard. 

AAMI heartbeat class MIT-BIH heartbeat type 

Normal beats (N) Normal beat (N) 

Left bundle branch block (L) 

Right bundle branch block (R) 

Atrial escape beat (e) 

Nodal (junctional) escape beat (j) 

Supraventricular ectopic beats (S) Atrial premature contraction (A) 

Aberrated atrial premature beat (a) 

Nodal (junctional) premature beat (J) 

Supraventricular premature beat (S) 

Ventricular ectopic beats (V) Ventricular premature contraction (V) 

Ventricular escape Beat (E) 

Fusion beats (F) Fusion of ventricular and normal beat (F) 

Unknown beats (Q) Paced beat (/) 

Fusion of paced and normal beat (f) 

Unclassified beat (Q) 
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A CAD system automatically classifies heartbeats, which contains

four steps of ECG signal preprocessing, heartbeat segmentation,

feature extraction and learning/classification. Traditional methods

first extract features from the original data, such as P-QRS-T com-

plex features, statistical features, morphological features, wavelet

features, etc. ( Acharya et al., 2015; Khandoker, Palaniswami, & Kar-

makar, 2009 ; Li, Rajagopalan, & Clifford, 2014; Yücelba ̧s et al.,

2017 ), and then feed them into conventional machine learning

models, for instance, artificial neural networks, decision trees, sup-

port vector machine, linear discriminant analysis, k nearest neigh-

bor and Bayesian algorithm ( Chui, Tsang, Chi, Ling, & Wu, 2016;

De, O’Dwyer, & Reilly, 2004; Martis, Acharya, Prasad, Chua, & Lim,

2013; Pławiak, 2018 ; Raj & Ray, 2018 ) to realize heartbeats classi-

fication. However, such features extracted manually may not accu-

rately represent the optimal features in the signal and traditional

machine learning methods can easily lead to overfitting ( Acharya

et al., 2017; Rahhal et al., 2016 ). Therefore, more accurate and ef-

ficient feature extraction and classification methods are critical to

the overall diagnosis of the system. 

As the great success in image recognition, speech recogni-

tion, natural language processing and other fields, deep learning

model has been gradually applied to ECG analysis in recent years.

Taking convolutional neural network (CNN) as an example, CNN

integrates feature extraction and classification, classifying high-

level features automatically learned by itself from original data.

Li, Zhang, Zhang, and Wei (2017) feed the raw ECG signals directly

into a 5-layer CNN for feature extraction and training. The idea

of transfer learning is adopted in Isin and Ozdalili (2017) to take

pre-trained AlexNet as a feature extractor, and the extracted fea-

tures are then fed into a simple BP neural network to classify the

heartbeats. Rahhal et al. (2016) uses active learning technology to

improve the performance of the system. Zhai and Tin (2018) and

Golrizkhatami and Acan (2018) process the input of the final clas-

sifier respectively, the former transforms the beats into dual beat

couple matrix as 2-D inputs of CNN, and the latter fuses the 2D-

convolutional and handcrafted features extracted from each beat.

The accuracy of deep learning model is shown higher than that of

the traditional classifier combined with manual feature extraction. 

Although the aforementioned methods have achieved consider-

able classification accuracy, the evaluation metric of accuracy is in-

comprehensive when training data is skewed. Most of these papers

fail to pay attention to the adverse effects of imbalance problem

yet. As a result, solving the imbalance problem reasonably accord-

ing to the characteristics of ECG data is the key to improve the

classification performance of the model. 

To overcome the deficiencies mentioned above, this paper pro-

posed a novel multi-module neural network system for imbalanced
eartbeats classification, which is called MMNNS. The main contri-

utions of our proposed system are highlighted as follows: 

• Four submodules are designed to construct the whole system,

of which Imbalance Problem Processing Module, the core part,

introduces three methods to eliminate the negative effect of

imbalanced data distribution, named Borderline-SMOTE (BLSM),

Context-Feature Module (CTFM) and Two-Phase Training (2PT).

These methods are from the views of resampling, data feature

and algorithm respectively. To the best of our knowledge, this

is the first try to combine such three modules together to over-

come imbalance problem. 
• Denoising autoencoder (DAE) and convolutional neural network

(CNN) are used to extract high-level features in turn from ECG

signal automatically instead of manually extracting features,

thus simplifying the feature extraction process and improving

the accuracy of extracted features. 
• MMNNS is trained on two data division schemes of intra-

patient and inter-patient simultaneously, especially the latter

which is more convincing but has not been adopted by most

scholars. To validate the effectiveness of our model, extensive

experiments are carried out on three datasets using seven clas-

sification assessment metrics and two statistical measures. Be-

sides, a large number of comparisons have been made between

MMNNS and state-of-the-arts. 

The rest of paper is organized as follows. In Section 2 , a succinct

ackground of denoised autoencoder and convolutional neural net-

ork is introduced. Detailed descriptions of the proposed method

re demonstrated in Section 3 . Section 4 presents the experimental

onfiguration and reports the experimental results. Conclusion and

uture direction are drawn in Section 5 . 

. Preliminaries 

Denoising autoencoder and convolutional neural network, as

wo classical deep learning models, are adopted to extract high-

evel features from ECG heartbeats in this study. Detailed introduc-

ions are made in this section. 

.1. Denoising autoencoder 

Autoencoder is a neural network capable of learning effective

eatures from input data in an unsupervised manner ( Géron, 2017 ).

t can reconstruct ECG data by extracting the most useful sparse

igh-level features. To make the autoencoder learn more useful

eatures instead of simply copying the input data, we usually add

ome restrictions to the network and force the model to consider

hich parts of the input data need to be copied first. In this paper,

 denoising autoencoder (DAE) is used to predict the original data

y training corrupted data. 

A corruption process C( ̃  x | x ) is introduced in the model firstly

see Fig. 1 ). Then the corrupted data is fed into the network. The

etwork consists of two parts: one is the encoder represented by

he function h = f (x ) , which converts input into internal features;

he other is a decoder that generates reconfiguration, r = g(h ) ,

hich converts internal features into output. 

 = f ( ̃  x ) = f ( W 1 ̃  x + b 1 ) (1)

f (z) = max (0 , z) (2)

 = g(h ) = W 2 h + b 2 (3)

here ˜ x is the copy of the input x after adding the Additive white

aussian noise (AWGN). W 1 and W 2 are the weight matrices of en-

oder and decoder respectively. Because the autoencoder built here
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Fig. 1. DAE structure. 

i  

t  

h  

t  

o  

i  

l  

t

 

f  

s

L  

2

 

n  

n  

p  

i  

f  

f  

a  

w  

a  

v  

t  

s  

h

 

c  

c  

t  

d  

fi  

o

c

w

i  

o  

t  

w  

m  

a  

b  

w  

o  

p  

t

 

t  

c

c  

 

s  

t  

s  

p

 

c  

p

3

 

c  

p  

p  

h  

i  

c  

s  

t  

i  

a

3

 

n  

a  

a  

f  

d  

d  

n  

s  

a  

o

 

t  

b  

w  

c  

T  

n  

fi  

f

 

t  

l  

t  

w  

a  

g

s neatly symmetrical, we tie the weights of the decoder layers to

he weights of encoder layers, i.e. W 1 = W 

T 
2 

= W . This technique

alves the number of weights, speeding up training and limiting

he risk of overfitting. b 1 and b 2 are the bias vectors of input and

utput layers, respectively. Activation function ReLU is used in cod-

ng layer to get nonlinearization of the input, while the decoding

ayer is a linear process and does not require the activation func-

ion. 

We usually adjust the hyperparameters by minimizing the cost

unction of Eq. (4) , so that the DAE can well represent the input

ignal. 

 (w, b 1 , b 2 ) = 

∑ ‖ 

r − x ‖ 

2 
2 (4)

.2. Convolutional neural network 

Convolutional neural networks (CNNs) refer to the neural

etworks that use convolution operations at least one layer of the

etwork instead of general matrix multiplication, specifically for

rocessing data with grid-like topology ( Ian Goodfellow, 2016 ). It

ntegrates feature extraction and classification together, different

rom the traditional classifier which needs to input pre-extracted

eatures. A typical layer in a CNN consists of a convolutional layer

nd a pooling layer. Feature maps of previous layer are computed

ith several convolutions in parallel to generate a set of linear

ctivation responses. Then, they passed through a nonlinear acti-

ation function to generate a feature map for next layer. Finally,

he pooling function is used to further adjust the output. CNNs are

tacked with several typical layers, which can be used to extract

igh-level features. 

Each unit in the convolutional layer is connected to a local re-

eptive field of the previous layer’s feature map by a set of weights

alled filters (convolution kernels) and each convolution kernel ob-

ains a mapping of a class of features. Different feature maps use

ifferent filters, while all neurons in same feature map share same

lters ( Lecun, Bengio, & Hinton, 2015 ). The formula for the output

f a neuron in a convolutional layer is 

 i, j,k = σ

(
b k + 

f h ∑ 

u = 1 

f w ∑ 

v = 1 

f n ′ ∑ 

k ′ = 1 

x i ′ , j ′ ,k ′ · w u, v ,k,k ′ 

)
with 

{ 

i ′ = u ·s h + f h −1 

j ′ = v ·s w + f w −1 

(5) 

here c i, j,k is the output of the neuron located in row i column j

n feature map k of the convolutional layer (layer l). x i ′ , j ′ ,k ′ is the

utput of the neuron located in layer l − 1 , row i ′ , column j ′ , fea-

ure map k ′ (or channel k ′ if the previous layer is the input layer).

 u, v ,k,k ′ is the connection weight between any neuron in feature

ap k of the layer l and its input located at row u , column v (rel-

tive to the neuron’s receptive field), and feature map k ′ . b k is the

ias for feature map k (in layer l) and σ is the activation function

hich produce non-linearity. f and f w 

are the height and width
h 
f the receptive field, and f n ′ is the number of feature maps in the

revious layer (layer l − 1 ). s h and s w 

are the vertical and horizon-

al strides respectively ( Géron, 2017 ). 

In this study, the input heartbeat data is one-dimensional vec-

ors with one channel, so we modify the output of a neuron in a

onvolutional layer as Eq. (6) . 

 j,k = σ

(
b k + 

f w ∑ 

v =1 

f n ′ ∑ 

k ′ =1 

x j ′ ,k ′ w v ,k,k ′ 

)
with j ′ = v · s w 

+ f w 

− 1 (6)

Pooling layer, also called subsampling layer, is aimed to sub-

ample the input data in order to reduce computational load and

he memory usage. Max pooling is used in this paper to pre-

erve the most prominent features by offering the maximum out-

ut within a rectangular neighborhood ( Ian Goodfellow, 2016 ). 

The training of CNN is similar to that of traditional fully-

onnected neural network, which is usually trained through back

ropagation algorithm to minimize the loss function. 

. Multi-module neural network system 

This section introduces the whole system structure, mainly in-

luding four modules: signal preprocessing, imbalance problem

rocessing, feature extraction and classification. In the process of

reprocessing, the original data is denoised and segmented into

eartbeat segment of equal length. Imbalance problem processing

s the main emphasis of the Algorithm . This part combines the

haracteristic of both ECG data and classification model, taking a

eries of measures to process the imbalanced data after segmenta-

ion based on data level and algorithm level. Then, the processed

mbalanced data are fed into the CNN model for feature extraction

nd classification. 

The flow chart is described in Fig. 2 . 

.1. Preprocessing 

ECG recordings are usually contaminated by different types of

oises and artifacts, which will affect the subsequent experiments

nd the final classification results. It is essential to adopt reason-

ble method to pre-process the original signal without losing use-

ul information. Although the ECG signals obtained from public

atasets do not contain as much noise as the ECG data obtained

irectly from the patient, there are still some noises in the sig-

al spectrum that overlap with useful information. Given that ECG

ignal is the raw data of almost all cardiac disease diagnosis and

nalysis, we should utilize a reasonable method to preprocess the

riginal signal without losing useful information. 

It is pointed out in Haritha, Ganesan, and Sumesh (2016) that

he low-frequency noise, mainly coming from baseline wander, can

e removed by median filter effectively. As in De et al. (2004) ,

e use a 200 ms width median filter to remove P wave and QRS

omplex wave, then use a 600 ms width median filter to remove

 wave, and afterwards subtract the filtered signal from the origi-

al signal to get the baseline correction signal. The 12-tap low-pass

lter is used to remove high-frequency noise and power-line inter-

erence. 

Then Pan-Tompkins algorithm ( Pan & Tompkins, 2007 ) is used

o detect R-peak. The signal is segmented into pieces with the

ength of 300 sampling points by taking the first 130 samples and

he last 170 points including R-peak as fiducial point. Subsequently,

e apply Z-score normalization to eliminate the effects of offset

nd amplitude scaling and group the segmented pieces by cate-

ories, after which is easy to facilitate the following operations. 
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Algorithm: BLSM(T, M, r, k, s). 

Input: T -Training set 

M-Minority examples set 

r, k -Number of nearest neighbors 

s -Number of synthetic examples that account for the number of original examples in the given class 

Output: Synthetic minority samples set: M 

′ 
1. D = � // D is a set containing borderline samples 

2. for all m i in M do 

3. N m i ← r nearest neighbors of m i in T 

4. n ← the number of samples in N m i and not in M

5. if r/ 2 ≤ n < r then // m i is a borderline sample 

6. add m i to D 

7. end if 

8. end for 

9. M 

′ = � // M 

′ is a set containing synthetic samples 

10. for all d i in D do 

11. N d i ← k nearest neighbors of d i in M

12. for i = 1 to s do 

13. m ← choose a random sample from N d i 
14. d ′ 

i 
← d i + p ∗ ( d i − m ) // p is a random number in (0 , 1) , d ′ 

i 
is a synthetic sample 

15. add d ′ 
i 

to M 

′ 
16. end for 

17. end for 

18. M 

′ = M 

′ ∪ M // M 

′ is the union of minority samples and synthetic samples 

19. return M 

′ 

Fig. 2. Schematic overview of MMNNS. 
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3.2. Imbalance problem processing 

Data imbalance refers to the phenomenon that the number of

certain class in training set is overrepresented compared to other

classes. The class with too many numbers is called majority class,

while others are called minority class. Most real-world datasets

are imbalanced. For example, the number of N-type heartbeats

in MIT-BIH Arrhythmia Database is more than 80 0 0 times that of

Q-type and 100 times that of F-type. In medical diagnosis, the cost

of erroneously misclassifying the minority (i.e. abnormal samples),

which will delay the best treatment time, is much higher than

that of majority classes (i.e. normal samples). In addition, most

machine learning algorithms are designed under the assumption

that the underlying training set is balanced. Such highly skewed

distribution of training data will be prone to force the learning

algorithm biased towards majority class. This not only limits

the convergence during the training phase, but also affects the

generalization of the model and the accuracy on testing set. As a

result, the importance of minority class should not be neglected

and it is the key to solve the imbalanced problem in this study. 

Methods for solving class imbalance can be divided into three

main categories ( Buda, Maki, & Mazurowski, 2017 ; Guo, Li, Shang,

Gu, Huang, & Gong, 2017 ). 

Data level methods mainly change the distribution of train-

ing data by oversampling or undersampling. The basic way of

oversampling is to simply replicates the samples selected from

minority class randomly, which is called random oversampling.
owever, random oversampling is prone to cause overfitting. As

 result, more advanced techniques are proposed, such as SMOTE,

luster-based oversampling, DataBoost-IM, Class-aware sampling

nd other adjusted SMOTE strategies ( Chawla, Bowyer, Hall, &

egelmeyer, 2002 ; Guo & Viktor, 2004; Jo & Japkowicz, 2004;

aldonado, López, & Vairetti, 2019; Shen, Lin, & Huang, 2016 ).

ndersampling, in contrast to oversampling, randomly removes

amples from majority until the distribution gets balanced. More

ttention must be paid to avoid losing useful information in data

election when using undersampling. 

Algorithm level methods overcome class imbalance by adjust-

ng algorithm with training data distribution unchanged, includ-

ng Thresholding, Cost-sensitive learning, Ensemble methods and

ne-class classification ( Elkan, 2001; Lee & Cho, 2006; Sun, Kamel,

ong, & Wang, 20 07; Zhou & Liu, 20 06 ). Although Cost-sensitive

earning can significantly improve the classification performance,

hey are only applicable to the cases where misclassification costs

re known. Unfortunately, it is quite challenging and even impos-

ible to determine the cost of misclassification in some particular

omains ( Wang et al., 2016 ). As for ensemble methods, requiring

onsiderable time to train multiple classifiers, it is not practical

hen we use deep neural network as the base classifier. Thus new

ethods such as second order cone programing SVM ( Maldonado

 López, 2014 ) have been proposed. 

Hybrid methods combine methods in data level and algorithm

evel, such as EasyEnsemble, BalanceCasecade, SMOTEBoost, Two-

hase Training, etc. ( Chawla, Lazarevic, Hall, & Bowyer, 2003;
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Fig. 3. Examples of synthetic signal (a) Example synthesized by same class S (b) 

Example synthesized by same class V (c) Example synthesized by same class F. 
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n  
avaei et al., 2017; Liu, Wu, & Zhou, 2009 ). Compared with data

evel or algorithm level methods only, it is shown that hybrid

ethods are more effective in imbalanced learning. 

Besides, performance measures are essential for effectiveness

valuations and guidance of learning. As stated at the beginning

f this section, accuracy, a commonly used metric, favors majority

lass and easily leads to misleading assessment. Metrics like preci-

ion, specificity, sensitivity, G-mean, F-measure are introduced into

mbalanced learning field. Some works even focus on novel eval-

ation metrics, such as Adjusted F-measure ( Maratea, Petrosino, &

anzo, 2014 ). 

Neural networks and deep learning have gained lots of inter-

sts recently, also facing the imbalance problem. In standard back

ropagation algorithm, weights are updated by minimizing over-

ll error, which are contributed mainly from majority class. Thus,

e achieve biased classification results. To tackle this problem,

wo novel loss functions named MFE and MSFE are proposed in

ang et al. (2016) . A stacked denoising autoencoder neural net-

orks algorithm based on cost-sensitive oversampling is designed

n Zhang, Gao, Song, and Jiang (2016) . Khan, Hayat, Bennamoun,

ohel, and Togneri (2018) present a cost sensitive deep neural

etwork which can automatically learn robust feature representa-

ions for both of the majority and minority classes. Raj, Magg, and

ermter (2016) integrate different methods into a novel approach

sing cost sensitive neural networks to improve the performance

n imbalanced datasets. 

We design a structure to deal with imbalanced training data

ombining both data and algorithm level. Above all, from data

oint of view, we apply Borderline-SMOTE (BLSM) algorithm to

ne-dimensional ECG time series data, and oversample minority

amples by linear synthesis. Secondly, considering the features ex-

racted from skewed data are biased towards majority class, a

ovel context-feature module (CTFM) is introduced in this paper.

TFM integrates feature extraction and feature selection, feeding

rominent feature of each heartbeat segmentation and the features

n the larger region of its context to the classifier simultaneously.

TFM doubles the number of minority samples, and enhances both

he accuracy of model recognition and reliability for feature extrac-

ion. Finally, we adopt Two-Phase Training, referred to as 2PT. In

he first training stage, the convolutional neural network (CNN) is

rained with balanced data, and in second stage, the model is fine-

uned with original skewed data. 

In order to make the test results closer to the real results and

onvenient to compare with other literature, we only balance the

raining samples and keeps the test samples as the original sam-

le distribution in this paper. Considering that the accuracy is only

ore convincing when the data distribution is relatively balanced,

e also introduce other metrics to measure the efficacy of the

odel. In the following chapters, we will give a detailed descrip-

ion of these contents. 

.2.1. Borderline-SMOTE (BLSM) 

Given that deep learning models need large quantities of train-

ng data, we balance our training data by oversampling the mi-

ority class rather than undersampling the majority class. Also,

o avoid overfitting caused by simple random oversampling, we

hoose BLSM algorithm to synthesize a series of linear interpola-

ion samples. 

Data augmentation can be regarded as expanding data by

dding similar but different samples in the original training set

 Zhang, Cisse, Dauphin, & Lopezpaz, 2018 ). On the basis of this

efinition, overcoming the imbalance problem in the number of

raining data can be regarded as local augmentation of minority

lass in training data. When realizing images classification, we usu-

lly obtained augmented data with horizontal reflection, rotation

nd scaling. Inspired by this idea, we plan to add virtual samples
round the minority class. By learning a linear interpolation func-

ion in the ‘blank area’ around it, distribution of minority class in

raining data set will be enlarged, and complexity of space with-

ut data coverage will be reduced. This linear modeling reduces

he inadaptability of predicting data beyond training samples, and

akes the final model more stable in predicting data between

raining data. It is exactly consistent with the main idea of SMOTE

 Chawla et al., 2002 ), i.e., filling the ‘blank area’ between origi-

al samples by linearly synthesizing minority sample with its k
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Table 2 

The changing number of training set in two grouping schemes. 

Data div. scheme Method N S V F Total 

Intra-patient scheme Original 44,800 1345 3412 396 49,953 

BDSM 44,800 22,740 23,102 22,173 112,815 

CTFM 44,800 45,480 46,204 44,346 180,830 

Inter-patient scheme Original 45,492 865 3664 410 50,431 

BDSM 45,492 23,265 23,024 22,410 114,191 

CTFM 45,492 46,530 46,048 44,820 182,890 

Fig. 4. CTFM DAE structure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

The details for CNN structure with input length N of 180. 

Layer name No. of neurons Kernel size for each feature map Stride 

Input Layer 180 × 1 – –

Conv1 180 × 16 2 1 

MaxPool1 180 × 16 2 2 

Conv2 180 × 32 4 1 

MaxPool2 180 × 32 2 2 

Conv3 180 × 64 5 1 

MaxPool3 180 × 64 2 2 

Fully-Connected 50 – –
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nearest neighbors in feature space instead of data space. This en-

larges the decision region and reduces the pertinence of classifier

learning. 

SMOTE resamples the training data by synthesizing each mi-

nority sample and its random selected neighbor. Since the num-

ber of original samples in each class located at the boundaries is

small, the newly synthetic samples are mainly distributed in the

non-boundary regions. However, the samples near the borderline,

also referred as dangerous samples, are more likely to be misclas-

sified than those far away from borderline, and are of more signifi-

cance to classification tasks. Therefore, BLSM, an improved version

of SMOTE, only oversamples the minority examples near the bor-

derline, which is more in line with our expectations. 

In BLSM, minority class examples which are easily misclassi-

fied will get more training. Minority examples on the borderline

are first found, and then synthesized with their selected k near-

est neighbors. BLSM algorithm is modified slightly and adapted to

one-dimensional ECG time series data in this paper. The detailed

process is shown as follows. 

After oversampling with BLSM, the number of samples in mi-

nority class has increased significantly. Assuming that the amount

of original samples in minority class is num and the number of

samples in borderline samples set D is dnum , then the number of

samples in M 

′ reaches (num + s × dnum ) in the end. In this algo-

rithm, the values of s and m are determined by the amounts of

samples that we need to synthesize. The values of s in S, V, F class

with two grouping schemes are (11, 14), (11, 11), (17, 40) respec-

tively, and the values of m are (30, 30), (50, 50), (60, 60). The value

of k is set to 5 ( Chawla et al., 2002; Han, Wang, & Mao, 2005 ). The

synthetic ECG heartbeat patterns are shown in Fig. 3 . 

What needs to be stressed is that the number of samples varies

greatly from one class to another. If a complete balance is achieved

by BLSM, it may cause the boundary between different classes to

become blurred, which makes it easier to misclassify. Therefore, we

synthesize the minority class to make they reach only half of the

number of majority class. 
.2.2. Context-feature module (CTFM) 

After finishing oversampling using BLSM, a Context-Feature

odule (CTFM) is proposed in this section to expand the samples

btained previously. The number of samples in minority class can

e increased from N to 2 N by CTFM and all classes will reach bal-

nce then. 

Compared with resampling methods in data level, few papers

onsidered feature selection, which is known to select a subset of

he original features. In classification problems, samples of differ-

nt classes may overlap, which makes it difficult for classifiers to

dentify the boundaries between classes. When the distribution of

raining data is skewed, minority samples can be easily regarded as

oise because of the small number. However, if irrelevant features

re removed, boundaries between classes will be less ambiguous

o some extent. Li, Guo, Liu, Li, and Li (2016) focus on feature se-

ection and then combine it with resampling and ensemble lean-

ng into an adaptive multiple classifiers system, finally solving the

mbalance problem. A novel feature learning method using partial

east square analysis is proposed in Bae and Yoon (2015 ) to learn

nbiased results from imbalanced datasets. 

Feature extraction, as another way to deal with dimensionality,

onverts the original features into new feature set. When solving

mbalance problem, extracted features are often biased to predict

he majority class samples that lead to poor performance on classi-

cation. Taking principal component analysis (PCA) as an example,

 Braytee, Liu, & Kennedy, 2016 ) point out that PCA algorithm seeks

he orthogonal feature extractors that maximize the total variance.

s a result, the extracted features favor majority class because their

umber is larger than the minority class. Moreover, other feature

xtraction methods will encounter the same problem. Accordingly,

mproved feature extraction algorithms are proposed recently to

dapt to imbalanced training data ( Moepya, Akhoury, & Nelwa-

ondo, 2015; Ng, Zeng, Zhang, Yeung, & Pedrycz, 2016 ). 

Similarly, if we feed imbalanced data directly into DAE or CNN

n this study, it is easy to mislead extractors to produce biased fea-

ures. However, if we keep the ratio between majority and minor-

ty classes not that high, which is 2:1 here, the bias will be greatly

educed. 

In the present study, we construct a CTFM module consist-

ng of two parts: DAE-based feature extraction part (PART I) and

RS-based feature selection part (PART II). In PART I, we choose

AE as our extractor to extract sparse high-level features from all

he heartbeats obtained in Section 3.2.1 . On the one hand, the
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Fig. 5. The architecture of proposed CNN and training schematic diagram. 

Table 4 

The number of ECG beats used for training, validating and testing in 

the experiments. 

Data div. scheme Training set Validation set Testing set 

Intra-patient 120,544 60,286 49,945 

Inter-patient 121,927 60,963 49,467 

Table 5 

Confusion matrix of ECG heartbeat classification re- 

sults for testing set with the inter-patient scheme. 

Ground truth Classification results 

N S V F 

N 43,465 639 167 241 

S 480 1173 134 35 

V 163 25 2875 97 

F 67 4 18 293 
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xtracted features will not be heavily biased towards majority

lass, because the number of different classes is in a wide differ-

nce. On the other hand, dimensionality of the samples is reduced

y DAE to the same size of N as the other part. In PART II, we fo-

us on the selection of important features from minority samples

btained in the previous section, which can be regarded as adding

nother batch of samples in minority class. QRS complex, the most

rominent part in a heartbeat, provides most significant informa-

ion and reflects ventricular contraction ( Šarlija et al., 2017 ). There-

ore, the function of PART II is to intercept the feature area around

RS complex with the length of N from each heartbeat. The sam-

les obtained by CTFM through aforementioned two parts are the

amples finally fed to the classifier. 

The DAE in PART I is showed in Fig. 4 . DAE corrupts the

nput by randomly dropping-out some input values of randomly

elected samples to enhance the robustness of the autoencoder

 Wang, Zeng, Ng, & Li, 2017 ). The hyperparameters are set as

ollows: the learning rate, coefficient of Gauss noise is set at 0.001

nd 0.01 respectively. Training is done in 10 0 0 epochs with batch

ize of 200. The main purpose of this stage is to convert the

riginal input signal into a shorter segment which can efficiently

epresent the original signal. Over-complete representation is more

onducive to the subsequent operation, thus we only pre-train

he DAE in a supervised manner. We do not need to reuse the
re-trained lower layers to create a network for the practical

ask, and we train it using labeled data. When the loss function

ets stable, the features represented by encoder at this time are

egarded as the input of the next stage. 

In addition, in order to ensure the input of classifier with the

ame length of N, testing samples should also pass through a same

AE structure. 

So far, we have used two methods in data level to balance

he training data, and the numbers of different heartbeat types on

IT-BIH Arrhythmia Database are shown in Table 2 . 

.2.3. Two-phase training (2PT) 

Two-Phase Training (2PT), first proposed in Havaei et al. (2017) ,

s a hybrid method of data and algorithm level to deal with

lass imbalance problem, which has been shown the efficacy in

uda et al. (2017) . In the first stage, we input the balanced data

nto CNN for training, then the neural network has the ability to

istinguish different classes at the level of balanced data. In the

econd stage, we replace the input data with original unbalanced

ata, only fine-tuning output layer parameters while keeping those

n previous layers unchanged. This way makes the final classifica-

ion result more convincing. 

.3. Feature extraction and classification 

CNN is commonly used for 2-D image classification. In this pa-

er, we modify the traditional structure and design a CNN suit-

ble for processing 1-D ECG signal ( Fig. 5 ). It consists of an input

ayer, three convolutional layers, three max-pooling layers, a fully-

onnected layer and an output layer. Each pooling layer follows the

orresponding convolutional layer. The input layer, MaxPool1, Max-

ool2 are convolved through Eq. (5) with kernels size of 2, 4, 5 and

trides of 1, 1, 1 respectively. The kernels size and strides for layers

onv1, Conv2, Conv3 are all set at 2 and outputs of each layer fol-

ows Eq. (6) in Section 2.2 . These layer in the model use full zero-

adding to ensure input and output with the same size. Hence

here will be no limitation on the number of convolutional layers

hat the network is able to contain. Finally, the extracted features

re connected with 50 neurons in the fully-connected layer, and

hen a softmax function is used to classify the beats of N, S, V and

. The parameters above are all obtained through brute force tech-

ique. Table 3 gives the details of CNN. 
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Fig. 6. Example of two parts of input in different length. 
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Table 6 

Classification results in terms of SVEB and VEB using 22 testing records of MIT-BIH Arrhythmia Database with the 

inter-patient scheme. 

N Size SVEB VEB MAUC 

Acc Sen Spe Ppr F m GM Acc Sen Spe Ppr F m GM 

100 94.7 44.3 97.1 51.8 47.8 65.6 97.9 72.6 97.2 81.2 76.6 84.0 92.2 

130 95.2 56.7 97.4 64.0 60.1 74.3 98.4 87.9 98.6 89.3 88.6 93.1 93.7 

150 96.8 61.2 99.2 64.6 62.9 78.0 98.8 90.4 99.4 88.6 89.5 94.8 95.3 

180 97.3 64.4 98.6 63.7 64.0 80.0 98.8 91.0 99.3 90.0 90.1 95.1 97.8 

200 97.1 64.8 98.5 62.1 63.4 80.0 99.0 90.8 98.9 88.9 89.8 94.8 94.1 

The values in the table multiply the original values by 100. 

Best two results are highlighted. 

Table 7 

With the intra-patient scheme, classification results in terms of SVEB and VEB obtained 

by different methods on the MIT-BIH. 

Method Features Classifier Accuracy 

Gutiérrez-Gnecchi et al. (2017) Wavelet PNN 92.7 

Tang and Shu (2014) WT QNN 92.8 

Martis et al. (2013) Pan-Tompkin + PCA NN + LS-SVM 93.0 

Acharya et al. (2017) 1D-CNN Softmax 94.0 

Li and Zhou (2016) WPE + RR Random Forest 94.6 

Zadeh and Khazaee (2011) CWT SVM + GA 97.2 

Li et al. (2017) 1D-CNN Softmax 97.5 

Proposed 1 DAE + 1D-CNN Softmax 98.4 

Proposed 1 are based on intra-patient scheme for SVEB and VEB detection. 

Table 8 

With the inter-patient scheme, classification results in terms of SVEB and VEB obtained by different 

methods on the MIT-BIH. 

Method SVEB VEB Overall 

Accuracy 
Acc Sen Spe Ppr Acc Sen Spe Ppr 

De et al. (2004) 94.6 75.9 / 38.5 97.4 77.7 / 81.9 85.9 

Zhang et al. (2014) 93.3 79.1 93.9 36.0 98.6 85.5 99.5 92.7 86.6 

Kiranyaz et al. (2016) 96.4 64.6 98.6 62.1 98.6 95 98.1 89.5 96.6 

Jiang and Kong (2007) 96.6 50.6 98.8 67.9 98.1 86.6 99.3 93.3 94.5 

Ince et al. (2009) 96.1 62.1 98.5 56.7 97.6 83.4 98.1 87.4 93.6 

Proposed 2 (MMNNS) 97.3 64.4 98.6 63.7 98.8 91.0 99.3 90.0 96.6 

Proposed 2 are based on inter-patient scheme for SVEB and VEB detection. 

Table 9 

Different strategies for addressing imbal- 

ance with CNN. 

Algorithm Strategy 

PCNN Pure CNN 

SMCNN SMOTE + CNN 

BSCNN BLSM + CNN 

BSDC BLSM + DAE-CNN 

BSCP BLSM + CNN + 2PT 

MMNNS BLSM + CTFM + CNN + 2PT 
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Previous operations dealt with imbalanced data also greatly ex-

anded the amount of training data, which causes pressure on the

ccelerated convergence of the model. We use the following tricks

o speed up the training and solve vanishing/exploding gradients

roblems. Xavier Initialization ( Glorot & Bengio, 2010 ) is exploited

o initialize the connection weights. Leaky ReLU, a variant of the

eLU function is used as the activation function of convolutional

ayers and fully-connected layers to avoid dying ReLUs. Referring to

éron (2017) , setting α = 0 . 2 in leaky ReLU results in better perfor-

ance than α = 0 . 1 that we commonly use. These two tricks can

ignificantly overcome the vanishing/exploding gradients problems

t the beginning of training. We then use a faster optimizer named

dam Optimizer instead of the regular Gradient Descent Optimizer

nd we adopt Exponential Decay Learning Rate to optimize the
lassification error with the base learning rate and learning rate

ecay rate set to 0.001 and 0.99 respectively. 

In this paper, training of the algorithm is done in 800 epochs

ith a mini batch size of 200. Validation set is used to validate

he model each 100 rounds of training. After training CNN with

rocessed balanced data, the model is fine-tuned according to the

ethod described in 3.2.3. The final performance of the testing set

s measured by eight metrics defined below. 

. Experiments setup 

.1. Datasets 

.1.1. MIT-BIH arrhythmia database 

MIT-BIH arrhythmia database consists of 48 records slightly

onger than 30 min of two-channel ECG recordings with digitiza-

ion rate of 360 Hz. The signals of the two channels were recorded

y placing the electrodes at different angles on the chest. The up-

er signal is a modified limb lead II (MLII), and the lower signal

s a modified lead V1, V2, or V5 ( Moody & Mark, 2002 ). ECG data

ere collected from 47 subjects, including 25 men aged 32-89 and

2 women aged 23-89 (Records 201 and 202 are from the same

ale subject). More than 10 0,90 0 heart beats in the database have

een annotated. Only one channel (channel MLII) for each record-

ng is used for the classification task, excluding four records with

oor quality (102,104,107,217). 
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Fig. 7. Acc, Sen, Spe, Ppr, F m and GM in different length of input for (a) SVEB and 

(b) VEB. 
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MIT-BIH Arrhythmia Database is the main database used in

the experiment, including determining parameters of each mod-

ules in the system, selecting the appropriate data grouping scheme,

and training and testing the model. Recommended by ANSI/AAMI

EC57:1998/(R) 2008 standard, we should classify all samples into

five classes: N, S, V, F, Q. However, considering that the number of

samples of Q is too small after removing 4 paced records, which is

only 12, we choose to realize classification on other 4 classes. 

Two heartbeats grouping schemes are adopted on this database,

called intra-patient and inter-patient. Intra-patient is a used by

majority of scholars, in which training samples and testing set is

randomly selected from all heartbeats. In this grouping method,

heartbeats in training set and testing set are likely from the same

patient. This may easily lead to biased results due to the heart-

beats from same patient have strong correlation and dependence.

In the inter-patient scheme, all records are divided into two groups

with similar number and similar proportions of each class. Heart-

beats in DS1 are all from records: 101, 106, 108, 109, 112, 114, 115,

116, 118, 119, 122, 124, 201, 203, 205, 207, 208, 209, 215, 220, 223

and 230 .Heartbeats in DS2 are all from records: 100, 103, 105,

111, 113, 117, 121, 123, 200, 202, 210, 212, 213, 214, 219, 221, 222,

228, 231, 232, 233 and 234. The heartbeats of two groups will not

come from the same subjects. In the intra-patient scheme, 49,953

heartbeats (N44800, S1345, V3412, F396) are selected from the to-

tal heartbeats as the training set and the rest as the testing set. In
he inter-patient scheme, we use DS1 as the training set and DS2

s the testing set. Processed training set is divided into training set

nd validation set in proportion of 2:1. The specific data partition

s shown in the Table 4 . 

.1.2. European ST-T database 

European ST-T database ( Taddei et al., 1992 ) consists of 90 an-

otated excerpts of ambulatory ECG recordings from 79 subjects.

he subjects are 70 men aged 30 to 64, and 8 women aged 55 to

1. Each record lasts for two hours, and two signals contained are

oth sampled at 250 samples per second. Two cardiologists anno-

ated each record beat by beat and for changes in ST segment and

-wave morphology, rhythm and signal quality. 

.1.3. MIT-BIH ST change database 

MIT-BIH ST change database ( Goldberger et al., 20 0 0 ) includes

8 ECG recordings with different lengths. The annotation files con-

ain only beat labels; they do not include ST change annotations,

s in the European ST-T Database. 

Only one channel of both two datasets is selected to conduct

he experiments. The heartbeats obtained from these two datasets

re fed into the model which we have already trained before. Test

esults are used for further comparison and evaluation from differ-

nt aspects. 

.2. Evaluation metrics 

To evaluate the classification performance, seven classification

ssessment metrics and two statistical measures are adopted in

his study. The first seven metrics are defined by four represen-

ations of TP , TN , FP , FN , meaning true positive, true negative, false

ositive and false negative respectively. 

(1) Accuracy 

Accuracy ( Acc ) is a standard performance measure for clas-

sification, representing the proportion of test examples clas-

sified correctly. In learning imbalanced data, it will lead to

highly misleading assessment if we regard it as the only

evaluation metric, since majority class is overrepresented. 

Acc = 

T P + T N 

T P + T N + F P + F N 

(7)

(2) Sensitivity 

Sensitivity ( Sen ), also called Recall, measures the integrity of

positive samples being correctly classified. 

Sen = 

T P 

T P + F N 

(8)

(3) Specificity 

Specificity ( Spe ) means the percentage of correctly classified

negative tuples. 

Spe = 

T N 

T N + F P 
(9)

(4) Positive predictive rate 

Positive predictive rate ( Ppr ), also called Precision, means

the proportion of positive samples classified correctly, being

sensitive to data distribution. 

P pr = 

T P 

T P + F P 
(10)

(5) F-measure 

F-measure ( F m 

) incorporates Sen and Ppr to express their

tradeoff. Parameter β is used to adjust the relative impor-

tance of recall Sen and Ppr , which is usually set to 1. 

F m 

= 

(1 + β2 ) × Sen × P pr 
(11)
β × Sen + P pr 
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Fig. 8. Comparisons between six algorithms on SVEB and VEB. 
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(6) G-mean 

G-mean ( GM ) can evaluate the degree of inductive bias

according to the positive accuracy and negative accuracy,

which is widely used in imbalanced classification problems. 

GM = 

√ 

T N 

T N + F P 
× T P 

T P + F N 

(12) 

(7) Multiclass AUC 

Area under the receiver operating characteristic curve (AUC)

is a sound measure of discrimination and has been widely

used as an evaluation metric for classifiers, especially in im-

balanced learning. We use a multi-class modification of ba-

sic version of ROC. The multi-class AUC ( MAUC ) is calculated

by taking the average of AUCs obtained independently for

each class for the binary classification task of distinguishing

a given class from all the other ( Buda et al., 2017 ). 
(8) Statistical measures 

Wilcoxon signed-rank test ( Wilcoxon, 1945 ) and sign test

( Dixon & Mood, 1946 ) are two non-parametric tests adopted

in this study to explore the differences between each two

algorithms by calculating the p-value. 

. Experiments and analysis 

.1. Experiment 1: Determination of the input feature size 

To determine the suitable length of input features in the CTFM

nd the parameters of final classification model, we perform exper-

ments on five different input lengths ( N = 100, 130, 150, 180, 200)

round QRS complex intercepted from the original heartbeat. 

Fig. 6 takes S class as an example to show two parts of the

nput for different length. The colored region in the left subfig-

res are the selected features with N sampling points processed by
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QRS-based feature selection part (PART II). Those in the right sub-

figures are the features extracted from DAE-based extraction part

(PART I). 

Taking N = 180 as an example, Table 5 shows the confusion ma-

trix of the classification results on the testing set in inter-patient

scheme. Table 5 also indicates that the number of samples in N

class is the largest, and the number of misclassified samples is the

largest correspondingly. In N beats, 639 are misclassified into class

S, 167 are misclassified into class V and 241 are misclassified into

class F. In class S, V and F, the number of samples that are wrongly

classified into N class is the largest relatively. 

To compare the classification performances of five different in-

put lengths comprehensively, we detect the SVEB and VEB classes

according to AAMI standard. Table 6 highlights the best two results

for each metric. The trends of each metric with different length in

the detection of SVEB and VEB are plotted in Fig. 7 . When detect-

ing SVEB class, the values of Acc and Spe are generally higher than

those of Sen, Ppr, F m 

and GM which are consistent with the detec-

tion on VEB. It’s easy to see that when input length is set to 180

and 200, the best detection results are achieved on SVEB and VEB.

This may be explained that larger feature areas contribute more to

determine the class of heartbeats. 

For the SVEB class, the Acc, Spe, Ppr and F m 

with input length

N of 180 are all higher than those with N = 200. For the VEB class,

the gross ACC was 99.0% with N = 200, a little higher than those

with N = 180, which is 98.8%. However, the values of other five

metrics are slightly lower than those with N = 180. It indicates that

larger feature areas may not always achieve good performance, and

the location of feature area also plays an important role. We also

compare MAUC scores in different input length, and the results in

Table 6 indicate that the highest score is achieved at N = 180. In a

word, the input length of 180 sampling points is the respectively

best. Hence, we use it as the final input in this paper. 

5.2. Experiment 2: Comparison with the state-of-the-arts on two 

data grouping schemes 

In this section, we conduct experiments on both intra-patient

and inter-patient scheme. Intra-patient, as a popular grouping

scheme, randomly selects the corresponding number of beats

from all hearts as training set and testing set. It has achieved

a high classification accuracy in early literature. As is shown

in Table 7 , compared with the manual feature extraction and

traditional machine learning classifier by Martis, Acharya, Man-

dana, Ray, and Chakraborty (2013) , the classification accuracy of

Acharya et al. (2017) and Li and Zhou (2016) using CNN has

been significantly improved. The accuracy in this paper with intra-

patient scheme is 98.4%, remaining top when compared with the

related literature. It demonstrates that a series of methods pro-

posed in this paper are reliable. However, since the heartbeats in

testing set are likely from the same subject as the heartbeats in

training set, strong correlation between the beats of the same sub-

ject can easily lead to biased results. That means the final classifi-

cation result seems to be high, but in fact there remains a devia-

tion. 

From Tables 7 and 8 , we know that the accuracy of intra-

pattern scheme is superior to that of inter-pattern scheme, which

is consistent with the previous description. Nevertheless, when it

comes to real-life situation, the inter-patient scheme clearly distin-

guishing each object is more fair and persuasive. All the test beats

used in the experiments in Table 8 with inter-patient scheme come

from entirely new individuals that differ from the training data.

Among them, De et al. (2004) and Zhang, Dong, Luo, Choi, and

Wu (2014) adopted the same data grouping method as this paper,

using beats of 22 records in DS2 as testing set to show the de-

tection results on SVEB, VEB and the overall accuracy. Jiang and
ong (2007) ; Kiranyaz, Ince, and Gabbouj (2016) and Ince, Ki-

anyaz, and Gabbouj (2009) used 24 new records relative to the

raining set as testing set data to verify the effectiveness of mod-

ls. As is seen from Table 8 , the proposed method yields the best

lassification result regardless of the overall accuracy of the model

r detection for SVEB and VEB separately. 

.3. Experiment 3: Comparison with different strategies for 

ddressing imbalance problem 

To show the efficacy of MMNNS, we test the other two datasets

n the basis of the previous experiments, and compared it with

ther five algorithms, including several classical methods dealing

ith imbalanced learning with CNN. The brief descriptions of the

trategy for these algorithms are shown in Table 9 . 

The first algorithm named PCNN aims to feed the original im-

alanced data directly into a pure CNN model without any process.

lgorithm SMCNN and BSCNN preprocess the original data by over-

ampling them using SMOTE and BLSM respectively. On the basis

f BSCNN, the classifier CNN is replaced by a cascaded structure of

AE and CNN in algorithm BSDC, which feeds oversampled train-

ng data to a DAE at first and then to a CNN. The fifth algorithm

s BSCP, which integrates 2PT to BSCNN. Unlike BSCNN, which only

ne-tunes the model using balanced training data after oversam-

ling, BSCP introduces an extra fine-tuning phase using the origi-

al imbalanced data. The last one is our method: MMNNS. 

For the purpose of comparison, we present the test results of

ach method on SVEB and VEB separately with respect to Acc, Sen,

pe, Ppr, F m 

and GM, together with overall accuracy and MAUC

core in Tables 10 –12 . The variation trends of these metrics in dif-

erent algorithms on different datasets are shown in Fig. 8 . As il-

ustrated in the tables and figures, the performances in all metrics

n MIT-BIH Arrhythmia Dataset are obviously better than those on

ther dataset. This is because our model is trained exactly on MIT-

IH Arrhythmia Dataset. However, no matter which dataset we test

n, we can see that the five algorithms show significant improve-

ents, compared with feeding imbalanced original data into CNN

irectly. The SMCNN and the BSCNN have similar effects, and the

atter one is slightly better than the former one because it focuses

n the borderline samples that are easier to be misclassified. Al-

orithm BSDC constructs a cascaded structure combining DAE and

NN, extracting high-level features of heartbeats sequentially. The

ccuracy of each metric is just a little lower than MMNNS while

igher than others. On the basis of BSCNN, BSCP involves a fine-

uning phase using imbalanced data, which improves the final per-

ormance somewhat. The algorithm MMNNS achieves the highest

verall accuracy and MAUC score, and the performances of the

etection on SVEB and VEB are almost always better than other

ethods. 

In the last step, Wilcoxon signed-rank test and sign test are

mplemented over average accuracy, sensitivity, specificity, positive

redictive rate, F-measure, G-mean and MAUC between each two

lgorithms. We consider MMNNS as the control method, and calcu-

ate the p-value to see if there are significant differences between

uch two algorithms. The smaller the p-value is, the more signif-

cant the difference between the two algorithms is. As shown in

able 13 , there remain significant differences between MMNNS and

he other five algorithms, with p-value lower than 0.05. This makes

t clear that the MMNNS significantly outperforms other methods. 

. Conclusion and future work 

The heartbeats of ECG signals in the existing datasets are usu-

lly imbalanced among different classes, which brings great dif-

culties in classifying them accurately. However, most scholars

ainly pay attention to enhance the overall accuracy of the system
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Table 10 

Classification results on MIT-BIH arrhythmia database. 

Algorithm SVEB VEB Overall Acc MAUC 

Acc Sen Spe Ppr F m GM Acc Sen Spe Ppr F m GM 

PCNN 95.9 50.8 97.6 45.1 47.8 70.4 96.8 82.1 97.9 72.4 77.0 89.7 92.5 73.8 

SMCNN 96.1 53.2 97.6 50.3 51.7 72.1 97.0 83.6 97.9 78.2 80.8 90.5 93.4 82.6 

BSCNN 96.4 58.7 97.9 57.6 58.1 75.8 97.6 86.4 98.3 81.2 83.7 92.2 94.1 86.3 

BSDC 96.5 61.6 97.9 60.1 60.8 77.7 98.2 88.9 99.0 86.9 87.9 93.8 95.7 92.1 

BSCP 96.8 60.2 98.0 58.2 59.2 76.8 97.9 88.3 98.5 84.3 86.3 93.3 94.5 87.4 

MMNNS 97.3 64.4 98.6 63.7 64.0 79.7 98.8 91.0 99.3 90.0 90.5 95.1 96.6 97.8 

The values in the table multiply the original values by 100. 

Table 11 

Classification results on European ST-T database. 

Algorithm SVEB VEB Overall Acc MAUC 

Acc Sen Spe Ppr F m GM Acc Sen Spe Ppr F m GM 

PCNN 91.2 48.7 92.6 41.1 44.6 67.2 91.8 78.0 93.1 68.7 73.1 85.2 88.4 68.2 

SMCNN 91.7 51.2 92.9 45.2 48.0 69.0 92.1 80.5 93.6 75.1 77.7 86.8 90.1 79.9 

BSCNN 92.0 53.3 92.8 45.9 49.3 70.3 92.6 81.7 93.6 75.7 78.6 87.4 91.8 82.4 

BSDC 92.9 57.6 93.3 48.2 52.5 73.3 93.6 85.1 94.8 83.6 84.3 89.8 93.1 88.3 

BSCP 92.6 55.4 93.0 46.1 50.3 71.8 92.7 84.7 93.9 82.0 83.3 89.2 92.4 86.0 

MMNNS 94.1 59.7 94.2 50.4 54.7 75.0 95.3 89.2 95.6 88.3 88.7 92.3 93.7 94.1 

The values in the table multiply the original values by 100. 

Table 12 

Classification results on MIT-BIH ST change database. 

Algorithm SVEB VEB Overall Acc MAUC 

Acc Sen Spe Ppr F m GM Acc Sen Spe Ppr F m GM 

PCNN 91.8 50.3 93.2 46.3 48.2 68.5 92.3 73.4 93.8 69.6 71.4 83.0 90.2 71.5 

SMCNN 92.3 53.6 96.8 48.2 50.8 72.0 93.4 76.1 95.2 75.7 75.9 85.1 91.4 81.2 

BSCNN 92.4 54.3 97.1 48.7 51.3 72.6 93.6 76.9 95.3 75.8 76.3 85.6 91.9 81.4 

BSDC 93.8 58.3 97.9 56.4 57.3 75.5 95.2 78.1 97.2 82.3 80.1 87.1 93.7 89.6 

BSCP 93.0 55.2 97.3 52.1 53.6 73.3 94.1 87.0 95.9 83.2 85.1 91.3 92.8 85.3 

MMNNS 95.2 60.8 98.4 59.1 59.9 77.3 96.5 89.4 97.4 88.6 89.0 93.3 94.3 93.2 

The values in the table multiply the original values by 100. 

Table 13 

Wilcoxon signed-rank test and sign test of different algorithms (taking MMNNS as 

the control method). 

Algorithm Wilcoxon signed-rank test Sign test Hypothesis ( α = 0 . 05 ) 

p-value p-value 

PCNN 0.0 0 03 0.0 0 0 0 Rejected for MMNNS 

SMCNN 0.0010 0.0 0 02 Rejected for MMNNS 

BSCNN 0.0047 0.0017 Rejected for MMNNS 

BSDC 0.0287 0.0023 Rejected for MMNNS 

BSCP 0.0046 0.0 0 06 Rejected for MMNNS 
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o  
osing sight of the fact that other metrics are also needed to con-

ider at the same time to make it more reliable. In addition, even

hough some scholars have already taken some measures to bal-

nce the original data, they only adopt simple oversampling meth-

ds, not considering the specific characteristics of the ECG itself. 

In this paper, we propose a novel multi-module neural net-

ork system named MMNNS for ECG heartbeats classification.

e focus on the imbalance problem of heartbeats which is not

ell addressed before. A system consisting of four submodules is

onstructed, and a series of balancing measures which combine

esampling, data feature, and algorithm together are taken on

he original data. DAE and CNN are used as feature extractors of

CG heartbeats, from which the feature representations are fed

nto softmax regression. We then realize the classification on four

lasses of N, S, V and F according to AAMI standard. We train

ur model on MIT-BIH Arrhythmia Database using inter-patient

cheme especially, and fine-tuning the model by 2PT algorithm.

hen, we validate the model on other two datasets with five
lassical methods for addressing imbalance problem. Finally, seven

lassification assessment metrics and two statistical measures are

sed to evaluate the classification results. Our designed system

chieves an accuracy of 97.3%, a sensitivity, specificity and positive

redictive rate of 64.4%, 98.6% and 63.7%, a F-measure of 64%

nd G-mean of 79.7% for the SVEB class. The VEB accuracy is

8.8%, sensitivity, specificity, positive predictive rate, F-measure

nd G-mean are 91.0%, 99.3%, 90.0%, 90.5%, 95.1% respectively. The

verall accuracy and MAUC score are 96.6% and 0.978. Such results

re superior over most state-of-the-arts. Specifically, MMNNS

roposed in this paper not only provides a solution for heart-

eats classification, but also shows a way for other time series

lassification even image classification. 

In the future works, other types of neural networks could be

aken into account to enhance the classification performance. Be-

ides, more attention should be paid to the structure and nature of

inority classes to gain a better insight into the source of learn-

ng difficulties. Furthermore, the approach proposed in this paper

ould be extended to solve the imbalance problem in other related

elds. It is possible to evaluate this approach on more datasets and

ake more comprehensive comparisons with other approaches. 
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