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In the aquatic environment, Vibrio spp. interact with many living organisms that can 
serve as a replication niche, including heterotrophic protists, or protozoa. Protozoa 
engulf bacteria and package them into phagosomes where the cells are exposed to 
low pH, antimicrobial peptides, reactive oxygen/nitrogen species, proteolytic enzymes, 
and low concentrations of essential metal ions such as iron. However, some bacteria 
can resist these digestive processes. For example, Vibrio cholerae and Vibrio harveyi 
can resist intracellular digestion. In order to survive intracellularly, bacteria have acquired 
and/or developed specific factors that help them to resist the unfavorable conditions 
encountered inside of the phagosomes. Many of these intra-phagosomal factors used 
to kill and digest bacteria are highly conserved between eukaryotic cells and thus are 
also expressed by the innate immune system in the gastrointestinal tract as the first line 
of defense against bacterial pathogens. Since pathogenic bacteria have been shown 
to be hypervirulent after they have passed through protozoa, the resistance to digestion 
by protist hosts in their natural environment plays a key role in enhancing the infectious 
potential of pathogenic Vibrio spp. This review will investigate the current knowledge in 
interactions of bacteria with protozoa and human host to better understand the 
mechanisms used by both protozoa and human hosts to kill bacteria and the bacterial 
response to them.
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INTRODUCTION

Vibrio spp. are metabolically versatile bacteria that inhabit the aquatic environment. They 
can be  found in association with living organisms as well as with abiotic sediments and 
surfaces. Vibrio spp. have been associated with an array of organisms, including zooplankton 
and phytoplankton, crustaceans such as copepods, bivalves such as oysters and mussels, 
plants, fishes, and even water birds (Halpern et  al., 2008; Senderovich et  al., 2009; Vezzulli 
et  al., 2010; Lutz et  al., 2013). Vibrio spp. in their environment interact with heterotrophic 
protozoa, which are specialized eukaryotic cells that can be  found in a wide variety of 
environments. Phagotrophic protozoa are competent grazers, consuming large numbers of 
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prey, sometimes ingesting several times their own body 
weight (Vickerman, 1992).

Different environmental niches accommodate different 
predators and prey. For example, protozoa that are mainly 
surface-attached specialize on feeding on attached bacteria 
or biofilms, while suspension feeding protozoa consume 
planktonic bacteria, and some can feed on planktonic or 
biofilm cells (Finlay, 2001; Parry, 2004; Sigee, 2005). Some 
bacterivorous protozoa feed selectively on prey using a variety 
of different mechanisms (Caron et  al., 1982; Sibille et  al., 
1998; Hahn and Höfle, 2001). For example, amoeba use specific 
protein receptors for recognition of bacterial prey (Pan et  al., 
2018) and internalize bacteria into phagosomes using actin 
microfilament-dependent engulfment (Clarke and Maddera, 
2006). Other protists, such as ciliates, do not discriminate 
prey and package them into food vacuoles using ciliary motion 
(Gray et  al., 2012). Flagellates draw their prey toward the 
base of the flagellum and into an oral groove by creating a 
strong current. Some filter-feeding flagellates use a collar of 
tentacles located at the base of the flagellum that allows the 
smallest prey particles to pass (Chrzanowski and Simek, 1990; 
Matz et  al., 2002; Parry, 2004).

Once bacteria have been ingested, the expression of various 
factors can result in resistance to digestion and allows for 
intracellular growth, followed by escape to the extracellular 
environment. Many of the bacterial factors involved in digestion 
resistance and intracellular survival, growth, and escape from 
protozoa are also factors used by pathogenic bacteria during 
infection of other hosts (Cirillo et  al., 1999; Al-Khodor et  al., 
2008; Adiba et  al., 2010; Sun et  al., 2018). This evidence 
supports the coincidental evolution hypothesis that states the 
virulence factors used by bacteria during in vivo infection are 
the result of adaptation to other ecological niches (Levin, 1996). 
Therefore, the study of the environmental factors that select 
for the emergence of virulence traits becomes relevant for 
better understanding of the emergence of pathogenic bacteria, 
including Vibrio spp.

In order to avoid protozoan predation, Vibrio spp. display 
various anti-grazing strategies, including the formation of 
biofilms (Matz et  al., 2005; Sun et  al., 2015), production of 
QS-regulated proteases such as PrtV (Vaitkevicius et al., 2006), 
secretion of ammonium and pyomelanin (Sun et  al., 2015; 
Noorian et  al., 2017), expression of the type VI virulence-
associated secretion system (VAS) of V. cholerae first identified 
by Pukatzki et  al. (2006) and the MARTX type III of V. 
vulnificus involved in the lysis of a wide range of eukaryotic 
cells, including amoebae (Lee et  al., 2013).

Reports have shown that V. cholerae and V. harveyi can 
resist the intracellular environment in the amoeba, Acanthamoeba 
castellanii (Abd et  al., 2004, 2005, 2007; Saeed et  al., 2007; 
Shanan et  al., 2016; Van der Henst et  al., 2016, 2018) and 
the ciliate, Cryptocaryon irritans (Qiao et al., 2017) respectively. 
In addition, the release of V. cholerae in expelled food vacuoles 
(EFVs) has recently been demonstrated to increase fitness in 
vitro and in vivo (Espinoza-Vergara et  al., 2019). The fact that 
the passage and release of pathogenic bacteria from the 

intracellular protozoan environment results in increased 
infectivity suggests that the exposure to intra-phagosomal factors 
may enhance virulence phenotypes.

Low pH, antimicrobial peptides (AMPs), and proteolytic 
enzymes, as well as reactive oxygen and nitrogen species (ROS/
RNS) are examples of the factors encountered by Vibrio spp. 
when in the phagosome in predatory protozoa and during the 
innate immune defense in the gastrointestinal (GI) tract. Thus, 
the intracellular environment may serve as a pre-adaptive 
ecosystem for Vibrio spp. before entering a human host. This 
review will describe the similarities in the strategies used by 
protozoa and human hosts to kill bacteria and the molecular 
factors used by Vibrio spp. to overcome such stressors. The 
impact of exposure to the intra-protozoal environment on the 
infectivity of V. cholerae and other bacterial pathogens will 
also be  discussed.

INTRACELLULAR SURVIVAL OF  
VIBRIO SPP.

Intracellular survival of Vibrio spp. has been demonstrated 
in various eukaryotic cells, including in the amoebae, A. 
castellanii, Acanthamoeba polyphaga, and Naegleria gruberi 
(Thom et  al., 1992; Abd et  al., 2007). V. cholerae O139 and 
O1 strains were shown to survive and grow within the cytoplasm 
of trophozoites and in cysts of A. castellanii (Thom et  al., 
1992; Abd et  al., 2005, 2007). Furthermore, it has been shown 
that V. cholerae can access the contractile vacuole in A. 
castellanii and escape to the extracellular environment (Van 
der Henst et  al., 2016). V. harveyi survives in the cytoplasm 
of the obligate parasitic marine ciliated protozoan, C. irritans 
(Qiao et al., 2017). Vibrio splendidus and Vibrio parahaemolyticus 
invade and survive intracellularly in other hosts such as oyster 
hemocytes (Duperthuy et al., 2011) and human epithelial cells 
(de Souza Santos and Orth, 2014), respectively.

Recent studies have investigated the intracellular mechanisms 
that mediate the survival and escape of V. cholerae from eukaryotic 
cells. Interestingly, virulence factors related to hemolytic activity 
and motility had a role in the intracellular survival of V. cholerae 
in A. castellanii (Van der Henst et al., 2018). In addition, OmpU, 
a major outer membrane protein that is needed for resistance 
to many stressors such as organic acids, bile, and AMPs as well 
as being a critical factor for the in vivo colonization of V. cholerae 
(Sperandio et  al., 1995; Provenzano and Klose, 2000), plays a 
role in survival in protozoa. It was recently shown that OmpU 
is important for the expulsion of V. cholerae within food vacuoles 
of ciliate hosts, a fact that suggests that this protein might confer 
resistance to V. cholerae to the intra-phagosomal factors required 
for digestion (Espinoza-Vergara et  al., 2019). Interestingly, it is 
also reported that OmpU is essential for V. splendidus host 
invasion and resistance to AMPs and is required for virulence 
in the oyster, Crassostrea gigas (Duperthuy et  al., 2011). Thus, 
the factors that mediate the intracellular survival of V. cholerae 
in protozoa and their link with the pathogenic lifestyle of this 
bacterium are being revealed.
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INTRA-PHAGOSOMAL FACTORS IN 
PROTOZOA AND THE INNATE IMMUNE 
DEFENSE OF THE GASTROINTESTINAL 
TRACT: SIMILAR STRESSORS 
ENCOUNTERED IN BOTH 
ENVIRONMENTS

Phagosomes of bacterivorous protozoa use mechanisms of killing 
and digestion of bacteria that are highly conserved in eukaryotic 
cells. Intracellular digestion begins with a reduction in the pH 
in order to create an acidic environment required for the proper 
activity of various antibacterial compounds that are vital for 
the digestion of bacteria. Many of these compounds have been 
described: (1) AMPs, amphipathic peptides that disrupt the 
integrity of the cell membrane, (2) ROS/RNS, also involved 
in the loss of membrane integrity as well as DNA damage in 
bacteria, and (3) proteolytic enzymes such as endopeptidases 
and lipases, required for the digestion of macromolecules 
(Flannagan et  al., 2009). Here we  will describe how the factors 
used by the innate immune system of the GI tract: the acidic 
environment of the stomach, ROS/RNS compounds produced 
after the breakdown of macromolecules in the presence of low 
pH and bile, proteolytic enzymes such as proteases, peptidases, 
lipases, amylases, and nucleases, and AMPs that are synthesized 
by the GI epithelium are also encountered inside phagocytic 
cells (Figure  1). It is likely that key factors used by Vibrio 
spp. to resist the intracellular environment in protozoa might 
also serve to protect cells against stressors in the GI tract. 
Here the mechanisms displayed by Vibrio spp. to resist such 
stressors and how this can affect the infective cycle of the 
model pathogen V. cholerae will be  explored.

Low pH
The acidification of phagosomes containing bacteria is a critical 
step for intracellular digestion in phagocytic cells. Under normal 
conditions, early phagosomes become acidified by the action 
of specific proteins located on the surface of phagosomes. The 
vacuolar V-ATPase is a highly conserved enzyme that transports 
H+ ions (Forgac, 1999; Toei et  al., 2010) and is present in the 
phagosomes of protozoa and also on the surface of human 
GI cells (Figure 1). At the late stages of phagosome maturation, 
the low pH of the phagosome enables the fusion with the 
lysosome, an acidic organelle that contains enzymes that are 
crucial for the complete digestion of bacteria and macromolecules. 
Similarly, part of the initial steps in the digestion of 
macromolecules as well as the inactivation of pathogenic 
microorganisms in mammals takes place in the stomach, an 
environment that is characterized by a low pH. Here, the 
exposure to the acidic environment (due to hydrochloric acid) 
and the production of ROS/RNS in the gastric environment 
causes loss of membrane integrity and DNA damage in bacteria 
(Conner et  al., 2016). Together, these facts highlight that 
acidification is an important conserved strategy used by different 
organisms to inactivate and digest bacteria.

V. cholerae expresses several survival strategies to adapt to 
acidic and oxidative conditions. Aggregation (or suspended 
biofilms) and biofilm formation have been reported to physically 
protect V. cholerae from acid stress (Zhu and Mekalanos, 2003) 
due to the strong protection given by the biofilm matrix that 
protects V. cholerae from various stressors, including antibiotics 
and ROS (Mankere et  al., 2018; Wang et  al., 2018). Another 
mechanism providing resistance to low pH is the activation 
of the acid tolerance response (ATR). In V. cholerae, the ATR 
is controlled by the modulation of the cadBA operon that is 
activated by the ToxR-like protein CadC (Merrell and Camilli, 
2000). cadA is an infection-induced gene in V. cholerae that 
encodes a lysine decarboxylase (CadA) required for the active 
efflux of H+ ions from the bacterial cytoplasm to the extracellular 
space (Merrell and Camilli, 1999). The lysine cadaverine/
antiporter (CadB) works together with CadA in the presence 
of high concentrations of H+ to provide resistance to acidic 
environments (Merrell and Camilli, 2000). Under acidic 
conditions, CadB catalyzes the uptake of lysine, which in 
combination with H+ ions forms cadaverine in the cell cytoplasm, 
a polyamine that is excreted outside of the cell by the same 
antiporter. In addition, the activation of ATR in V. cholerae 
can be  mediated by ToxR in the presence of organic acids. It 
was shown that the ectopic expression of the ToxR-regulated 
outer membrane OmpU is sufficient to overcome the reduction 
in ATR that occurs in a ∆toxR mutation (Merrell et  al., 2001).

Reports have shown that the adaptation of V. cholerae to 
low pH before infection causes a significant induction of the 
ATR system resulting in improved intestinal colonization 
(Merrell et  al., 2002). However, it was shown that this 
colonization advantage is not due to increased survival of  
V. cholerae to the stomach environment or to the expression 
of colonization or virulence factors (Angelichio et  al., 2004). 
It is believed that acid-adapted V. cholerae have a growth 
advantage over non-adapted cells and that this growth advantage 
is responsible of the hyperinfective phenotype in vivo, since 
the fitness advantage of acid-adapted V. cholerae could not 
be  confirmed in vitro (Angelichio et  al., 2004). Interestingly, 
it was recently shown that V. cholerae shows an increased 
resistance to low pH when contained in EFVs released by 
ciliated protozoa and also displays an in vitro growth advantage 
in high nutrient and temperature conditions and in vivo 
colonization advantage in the infant mouse colonization model 
(Espinoza-Vergara et  al., 2019).

Reactive Oxygen and Nitrogen Species
Under normal physiological conditions, the human body 
produces small amounts of ROS/RNS in the GI tract due 
to chemical reactions between oxygen and nitrogen components 
in the presence of acids or bile (Davies et  al., 2011; Aviello 
and Knaus, 2018). ROS/RNS are oxidative species that can 
directly damage the DNA of microorganisms, thereby acting 
as a natural antimicrobial barrier. Human professional 
phagocytes and amoeba are known to produce ROS/RNS 
such as nitric oxide (NO) and hydrogen peroxide (H2O2) 
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inside phagosomes as an antibacterial strategy (Zhang and 
Soldati, 2013; Di Meo et  al., 2016). Indeed, the production 
of ROS in the phagosome of the amoeba Dictyostelium 
discoideum has been visualized and quantified (Zhang and 
Soldati, 2013). Furthermore, it is known that the intestinal 
epithelial layer also produces NO by the induction of oxide 
synthases (iNOS) (Eckmann et  al., 2000). To resist RNS/
ROS, pathogenic bacteria such as V. cholerae display specific 
factors such as hmpA and nnrS, two genes under the control 
of the σ54-dependent transcriptional regulator NorR (Stern 
et  al., 2012). Deletion of either hmpA or nnrS causes a 
significant reduction in long-term colonization of V. cholerae 

in the adult mouse model, showing that RNS is an important 
barrier to V. cholerae infection in vivo (Stern et  al., 2012). 
Another strategy to resist ROS used by many microorganisms 
as well as eukaryotic cells is the expression of catalases, 
superoxide dismutase (SOD), and alkyl superoxide reductase 
subunit C’s (Imlay, 2008). These enzymes break down ROS 
into non-damaging sub-products such as H2 and O2. In 
V. cholerae, OxyR, and two catalases KatG and KatB are 
involved in the resistance to ROS (Wang et  al., 2013). Thus, 
the factors used by V. cholerae to resist RNS/ROS may 
facilitate the survival of this bacterium inside phagotrophic 
protozoa as well as within the human intestinal tract.

A B

FIGURE 1 | (A) A Blast Tree View of potential factors [V-type proton ATPase, inducible NADPH oxidase, and the human bactericidal permeability-increasing protein 
(BPI)] encountered in both protozoa and humans (highlighted) that contribute to the killing of Vibrio spp. shows pairwise alignment between human proteins and 
those found in protozoa. Produced by NCBI Tree Viewer. (B) A Blast Tree View of potential factors [acid phosphatase (lysosomal acid lipase/ cholesteryl ester 
hydrolase), galactosidase, cytochrome P450 3A43, and acid phosphatase] encountered in both protozoa and humans (highlighted) that contribute to the killing of 
Vibrio spp. shows pairwise alignment between human proteins and those found in protozoa. Produced by NCBI Tree Viewer.
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Antimicrobial Peptides
Another cause of mortality for pathogenic bacteria in the host 
is the presence of host-derived AMPs. Production of these 
molecules can be  mediated in the human host by several 
phagocytes and epithelial cells (Diamond et  al., 2009), e.g., 
macrophages and the GI epithelium. In mammals, the two 
main classes of AMPs are defensins and cathelicidins (Dorin 
et  al., 2015). Most of the AMPs act by disrupting and 
permeabilizing the cell membrane, causing loss of viability. 
Some examples of AMPs produced in the human intestinal 
tract are: α-defensins: human neutrophil peptides 1-4 (HNP1-
4), and human defensin 5 and 6 (HD5 and HD6); β-defensins: 
beta defensin 1 to 4 (hBD1-4); cathelicidin: LL-37/h-CAP18 
(human cathelicidin antimicrobial peptide 18 kDa); other AMPs: 
bactericidal/permeability-increasing protein (BPI), chemokines 
CCL14, CCL15, and CCL20/macrophage-immflamatory-protein-3α 
(Muniz et  al., 2012). Importantly, AMPs are also produced by 
phagocytic cells in order to arrest the growth and inactivate 
bacteria. As shown in Figure  1, heterotrophic protozoa such 
as Tetrahymena spp., Dictyostelium spp., and Acanthamoeba 
spp. encode proteins with high similarities to BPI, an important 
bactericidal and LPS neutralizing AMP released by human 
neutrophils (Calafat et  al., 2000) and GI epithelial cells 
(Canny and Colgan, 2005).

Polymyxin B as well as other cationic AMPs (CAMPs) 
has been widely used to screen for AMP resistance in V. 
cholerae and other Gram-negative bacteria. Genes related to 
the modification of the lipid A portion of LPS (Henderson 
et al., 2014), the outer membrane porin B, and OmpT (Mathur 
and Waldor, 2004) as well as the VexAB system (Bina et  al., 
2006) are important for V. cholerae resistance to CAMPs. 
Lipid A acylation has been reported to play an important 
role in the resistance to CAMPs in bacterial pathogens such 
as V. cholerae, Salmonella enterica, Escherichia coli, and 
Helicobacter pylori (Guo et  al., 1998; Band and Weiss, 2014). 
In V. cholerae, mutation in the acyltransferase gene, msbB, 
resulted in a significant reduction in the resistance to polymyxin 
B and impairment in colonization of the small intestinal tract 
of the infant mouse (Matson et  al., 2010), indicating that 
CAMPs are an important line of defense against V. cholerae. 
In addition, genes involved in the aminoacylation of lipid A 
encoded within the almEFG operon, are essential for resistance 
to CAMPs (Henderson et  al., 2014). Recently, AlmG, a 
glycosyltransferase, positively regulated by the response 
regulator, CarR (Bilecen et  al., 2015), has been identified to 
be  responsible for polymyxin B resistance in pandemic V. 
cholerae (Henderson et al., 2017). It is known that a reduction 
in the aminoacylation/phosphorylation of lipid A results in 
a decrease in the negative charge surface of the bacterial 
outer membrane, causing an increased affinity for CAMPs 
with target molecules (Steimle et  al., 2016).

Similar to the modification of lipid A, the expression of 
major outer membrane proteins in V. cholerae is critical for 
resistance to CAMPs. OmpU, the major outer membrane 
protein of V. cholerae, plays a key role in the resistance to 
polymyxin B and other CAMPs such as P2, an active peptide 

derived from BPI (Mathur and Waldor, 2004). It has been 
proposed that the interaction between OmpU and AMPs leads 
to the activation of the stress response mediated by the sigma 
factor σE, resulting in increased survival (Mathur et  al., 2007). 
In general terms, stress responses in bacteria lead to the 
activation of specific pathways in response to different stressors 
such as starvation, biocides, and temperature in order to 
maintain cell viability. Another mechanism for resistance to 
AMPs is the activation of the VexAB system. As described 
previously, VexAB is an efflux system in V. cholerae involved 
in the resistance to antibiotics, such as polymyxin B and also 
tensoactive molecules such as SDS and Triton-X 100 (Bina 
et  al., 2006). Interestingly, deletion of ∆vexAB reduced CT 
production, expression of virulence factors, and colonization 
(Bina et al., 2008), suggesting that this systems like the VexAB 
might be  important to V. cholerae survival in the presence 
of AMPs inside phagosomes/food vacuoles in protozoa and 
also in the human intestinal tract.

Digestive and Other Enzymes
Lysosomal acid lipase (gastric lipase in the stomach), acid 
phosphatase and galactosidase are three digestive enzymes 
present in both protozoa and the GI tract (Figure 1). Although 
there is a lack of information about the impact of these 
enzymes on the pathogenicity of bacteria, the bacterial 
resistance to these factors in their primary aquatic habitat 
might promote pathogen’s growth in the intestinal tract. This 
idea is supported by the fact that the maintenance of normal 
levels of digestive enzymes such as alkaline phosphatase in 
the gut contributes to the growth of beneficial commensal 
bacteria and prevents the growth of pathogenic microorganisms 
(Malo et  al., 2010).

Interestingly, the presence of cytochrome P450, an enzyme 
involved in the production of steroid hormones, cholesterol, 
fatty acids, and bile acids in humans is also present in protozoa 
(Zimniak and Waxman, 1993). It is known that the presence 
of bile acids induces the expression of virulence factors such 
as the cholera toxin in V. cholerae (Hung and Mekalanos, 
2005). Despite the fact that the biosynthesis of cholesterol 
(bile acids precursor) has not been reported in protozoa such 
as Tetrahymena spp., similar organic acids potentially produced 
by protist hosts might induce the expression of virulence factors 
in pathogenic Vibrio spp. and other bacteria.

The resistance of Vibrio spp. to the factors encountered 
inside of the phagosomes/food vacuoles in heterotrophic protozoa 
might serve as a pre-adaptation niche before entering a host. 
In addition to the physical protection that a protozoa might 
confer to intracellular pathogens, as has been previously suggested, 
the passage of bacteria within protozoa might activate specific 
factors used to resist the strategies that also contribute to the 
inactivation of bacteria within mammalian hosts. Thus, the 
adaptation and resistance to the intracellular environment in 
protozoa may positively impact on the infective cycle of 
pathogenic Vibrio spp., possibly by increasing the number of 
viable cells that reach the site of infection or by 
enhanced pathogenicity.
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THE IMPACT OF PROTOZOAN 
PREDATION ON VIRULENCE

The interaction of bacteria with protozoa has been correlated 
with increased pathogenicity, and thus, protists hosts have been 
suggested to be  “Trojan horses” protecting and disseminating 
pathogens in the environment (Barker and Brown, 1994; 
Denoncourt et al., 2014). For example, Gram-negative pathogens 
such as S. enterica, E. coli, and Listeria monocytogenes can survive 
and remain inside A. castellanii cysts where they are more 
tolerant to antibiotics and low pH (Lambrecht et  al., 2015). 
Similar protection was shown for Legionella pneumophila, with 
increased resistance to chlorine when inside of A. polyphaga 
cysts (Kilvington and Price, 1990). It is known that eukaryotic 
membranes might act as a physical barrier to biocides, a fact 
that might explain this effect. In contrast, bacterial adaptation 
to the intracellular environment can also result in increased 
pathogenicity through improved resistance to antimicrobials and 
induction of virulence factors. For example, the use of divalent 
metals such as copper and zinc is a conserved antimicrobial 
mechanism against bacteria in both amoeba and macrophages 
(German et  al., 2013). Thus, resistance to copper and/or zinc 
might lead to increased bacterial virulence in vivo. In E. coli 
and Pseudomonas aeruginosa, genes encoding copper resistance 
are related to grazing resistance against D. discoideum (Hao 
et al., 2016). In Campylobacter jejuni, the efflux system CmeABC 
that confers resistance to antibiotics, might also be  involved in 
metal detoxification and increased virulence (Vieira et al., 2017).

The transit of bacteria through protozoa has been linked to 
increased hyperinfectivity in pathogenic bacteria. For example, 
S. enterica and L. pneumophila recovered after exposure to 
A. castellanii display hyperinvasive phenotypes during in vivo 
infection (Cirillo et  al., 1994; Rasmussen et  al., 2005). Similarly, 
mice infections performed with Mycobacterium ulcerans previously 
co-incubated with A. polyphaga led to enhanced pathogenicity 

(Azumah et  al., 2017). In the case of Vibrio spp., it has recently 
been shown that their release in EFVs to the extracellular 
environment results in bacterial growth and colonization advantage 
in vitro and in vivo, respectively (Espinoza-Vergara et al., 2019). 
In addition, the use of a critical virulence factor in V. cholerae, 
OmpU, involved in colonization and resistance to low pH, AMPs, 
and bile, was shown to be  involved in the release of EFVs 
from protozoa. This fact illustrates how a factor involved in 
the resistance to stressors encountered in the protozoan phagosome 
and within the human host enhances the survival and potentially 
increases the infectivity of V. cholerae (Figure  2). Thus, the 
release of Vibrio spp. in EFVs as well as the intracellular adaptation 
to the presence of biocides and induction of virulence in bacteria 
can lead to fitness advantages during infection of a host.

CONCLUSIONS AND FUTURE 
PERSPECTIVE

Taken together, this review highlights that the strategies 
used to digest and inactivate bacteria in both protozoa and 
the GI tract of the human host are highly conserved and 
further emphasize how the resistance to the intracellular 
digestion in protozoa might enhance the pathogenicity of 
Vibrio spp. More research regarding the impact on the 
infection cycle of intracellular exposed Vibrio spp. is 
fundamental to further understanding the mechanisms that 
result in hyperinfectivity. This will not only enable us to 
identify key environmental clues that enable the pathogenicity 
of important pathogens such as V. cholerae but also will 
contribute to understanding whether the activation of 
hyperinfectivity is a conserved response in other pathogenic 
bacteria that interact with protozoa.

The packaging of multiple bacteria into phagosomes by 
protozoa might explain how pathogenic Vibrio spp. have acquired 

FIGURE 2 | Representation of the conserved factors required for the inactivation and digestion of bacteria used by both protozoa and the innate defense system of 
the human GI tract. The maturation of bacterial-containing phagosomes in Tetrahymena (Protozoa), a process that depends on acidification. As shown, different 
factors are recruited at different stages of the phagosome maturation process. Some pathogenic bacteria, such as Vibrio spp., are able to resist the digestion 
process and are expelled in EFVs to the extracellular environment, a condition where they show a hyperinfective phenotype in vivo. From left to right in human GI 
tract, the antimicrobial strategies deployed by the stomach and the intestinal tract. The factors represented here are highly similar to the ones encountered in 
phagocytic protozoa, thus, the pre-adaptation to such stressors within protozoa might be crucial for pathogenic bacteria to survive and multiply within the human GI 
tract. The figure was created with BioRender.com.
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specific factors that increase the fitness during infection. In 
the past, increased conjugation rates have been shown for E. 
coli contained in Tetrahymena phagosomes (Schlimme et  al., 
1997; Matsuo et  al., 2010). Thus, horizontal gene transfer in 
protozoa might be  a crucial step for pathogenic bacteria to 
increase fitness in both the environment and during infection 
of a host. As next-generation sequencing continues to become 
more affordable, the evaluation of horizontal gene transfer of 
pathogenic Vibrio spp. in protozoa becomes possible, thus 
adding another layer of potential selection pressure on the 
development of virulence.
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