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A B S T R A C T

Global energy transitions could fundamentally change flows of both minerals and energy resources over time. It
is, therefore, increasingly important to holistically and dynamically capture the impacts of large-scale energy
transitions on resource flows including hidden flows such as mine waste, as well as direct flows. Here we de-
monstrate a systematic model that can quantify resource flows of both minerals and energy resources under the
energy transition by using stock-flow dynamics and the concept of Total Material Requirement (TMR). The
proposed model was applied to the International Energy Agency’s scenarios up to 2050, targeting 15 electricity
generation and 5 transport technologies. Results indicate that the global energy transition could increase TMR
flows associated with mineral production by around 200–900% in the electricity sector and 350–700% in the
transport sector respectively from 2015 to 2050, depending on the scenarios. Such a drastic increase in TMR
flows is largely associated with an increased demand for copper, silver, nickel, lithium and cobalt, as well as
steel. Our results highlight that the decarbonization of the electricity sector can reduce energy resource flows
and support the hypothesis that the expansion of low-carbon technologies could reduce total resource flows
expressed as TMR. In the transport sector, on the other hand, the dissemination of Electric Vehicles could cause a
sharp increase in TMR flows associated with mineral production, which could offset a decrease in energy re-
source flows. Findings in this study emphasize that a sustainable transition would be unachievable without
designing resource cycles with a nexus approach.

1. Introduction

Transitioning to a low-carbon energy system is vital for realizing
sustainable development, and has already been under way for the last
few decades. Solar and wind power systems, for example, provided
328 TWh and 958 TWh globally in 2016, which were approximately 10
and 3 times respectively, compared to 2010 (IEA, 2018a). According to
a report published by the International Energy Agency (IEA, 2017),
over 70% of electricity must come from renewable energy sources
(including hydro) in 2050 in order to hold global temperature rise
within 2℃ up to 2100. Considering the current energy system where
renewable sources only provide around 14% of total demand, this
change can be considered extreme. Additionally, decarbonization will
also need to occur in the transport sector as well. The EV30@30

Campaign, which was launched at the 8th Clean Energy Ministerial
(CME) meeting in June 2017, is aiming to reach a 30% sales share for
Electric Vehicles (EVs) by 2030 (IEA, 2018b). Since members sup-
porting this campaign include big economies such as China, Japan and
India, a future where EVs dominate the majority of vehicle market
share may not be unreasonable to consider. Low-carbon energy systems
including renewable energy sources and EVs are supported by various
studies as environmentally friendly technologies, with less harmful
emissions such as CO2 and toxic gases (Hawkins et al., 2013; Hertwich
et al., 2015; Nugent and Sovacool, 2014; Pehnt, 2006; Plötz et al.,
2017). Such radical changes, however, could potentially affect not only
the energy sector but also other sectors that are as yet under-empha-
sized. Thus, we should consider and prepare for potential adverse im-
pacts which could offset the original benefits by viewing the system
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holistically across all sectors with nexus thinking (Liu et al., 2018).
The energy-mineral nexus, for example, is one of the important

interconnections that has been currently under-estimated in the context
of energy futures. As previous studies have stated (Giurco et al., 2014;
McLellan et al., 2012), there are a variety of mutual influences in these
sectors, and they are likely to become more important over time (both
as individual sectors, but more importantly as interconnected systems)
due to economic growth and technological development. One of the
largest factors, which is expected to make the energy-mineral nexus
more important, is the expansion of low-carbon energy technologies.
This is because these emerging technologies – which have significant
potential to mitigate global warming – require specific mineral re-
sources in significant quantities and make resource depletion a real
concern. Reflecting this concern, a growing number of studies have
examined the availability of minerals for the low-carbon energy tran-
sition in recent years as shown in Table 1. Although, there are differ-
ences in the targeted technologies, materials and analysis methodology,
these studies have largely concluded that the decarbonization of the
energy and transport sectors could potentially be restricted by mineral
availability in the long-term, and emphasized the importance of re-
cycling for boosting mineral supply to meet demand.

Although mineral availability has attracted more attention in recent
years in the context of low-carbon energy futures, there has been less
attention on the risks and trade-offs in the mining sector caused by
radical changes in the energy system. Specifically, environmental im-
pacts associated with resource extraction, which could potentially
change in conjunction with the energy system transformation, have
been largely omitted so far (Ali et al., 2017). This is crucial, because
extraction of some minerals which are required for giving functionality
to low-carbon technologies creates adverse impacts on both local eco-
systems and human health that are expected to increase (Lee and Wen,
2018; Mancini and Sala, 2018; McLellan et al., 2013). In general,
mining and processing of rare metals such as indium, cobalt and pla-
tinum generate larger environmental impacts to obtain a given amount
of minerals than bulk minerals such as steel and aluminium (Nuss and
Eckelman, 2014). This is attributed to many factors such as ore grades,
by-product ratio and maturity of infrastructure. Importantly, high grade
deposits of many rare metals are concentrated in a small number of
countries, and in some cases, these are developing countries with in-
sufficient environmental legislation (Natural Resource Governance
Institute, 2017; U.S. Geological Survey, 2018). In such cases, resource
extraction could possibly lead to more adverse impacts on local com-
munity in these countries than developed countries such as Australia
and Canada where concern about the environment has been more
strongly institutionalised (Natural Resource Governance Institute,
2017).

While the low-carbon energy transition may expand demand for
metalliferous minerals, it is also likely to change energy resource flows
such as coal and oil and the environmental impacts associated with
their extraction. Thus there may be an opportunity to mitigate these

environmental consequences in addition to CO2 emissions. It is there-
fore apparent that the energy transition has both opportunities and
trade-offs with regards to resource flows and the environmental impacts
associated with resource extraction. It is increasingly important,
therefore, to understand the impacts of decarbonization of the energy
system on resource flows holistically by taking into consideration the
balance of these impacts. Since the energy transition will take several
decades, a dynamic analysis of resource flows and their consequences
over time is crucial to provide policy-makers with a long-term per-
spective on the issue.

One of the well-known methodologies to quantify resource flows
and their implications on environments is Material Flow Analysis
(MFA) (Brunner and Rechberger, 2016). This methodology is applied to
quantify the flows, outflows and stocks within the societal system.
There are however, shortcomings which should be highlighted. No-
tably, hidden resource flows are not fully taken into consideration in
typical MFA. Mining can impact on vegetation, landforms, biodiversity
as well as producing tailings, waste rock and mine water (Gavin Bridge,
2000; Giurco et al., 2010; Mudd, 2010, 2009, 2007; Prior et al., 2007;
Taelman et al., 2016). These hidden material flows, however, are lar-
gely unevaluated in MFA, despite the high correlation with environ-
mental burden (Halada et al., 2001; Kosai and Yamasue, 2019). Since
hidden flows involving mine waste can negatively affect the site where
extraction is undertaken, it is desirable to holistically analyse resource
flows including these hidden flows.

One indicator that addresses these hidden flows by taking into ac-
count ore grades and strip ratio is the Total Material Requirement
(TMR), originally developed by the Wuppertal Institute (Adriaanse
et al., 1997; Bringezu, 1993; Spangenberg et al., 1999; Stiller, 1999;
Wuppertal Institute, 2014, 2011). TMR is defined as the total mass of
resource flows caused by economic and non-economic activities, which
includes hidden flows arising from non-economic activities such as
waste rock disposal, as well as direct and indirect flows from economic
activities. Although TMR does not indicate environmental impacts di-
rectly, it can be considered as indicative of the ‘potential’ impacts from
the total mass of natural resources induced by selected human activities
(Bringezu et al., 2003; Kosai and Yamasue, 2019). Some examples of
studies using the concept of TMR are the evaluation of resource effi-
ciency at the scale of an economy (Arto, 2009; Bringezu et al., 2004;
Bringezu and Schütz, 2001; Fischer-Kowalski et al., 2011; Kristof and
Hennicke, 2010; Meyer, 2012; Moriguchi and Hashimoto, 2010; Risku-
Norja, 1999; Ščasný et al., 2003; Schütz and Welfens, 2000; Wang et al.,
2013), or the effect of recycling on specific products and material
substitution (Kosai and Yamasue, 2019; Yamasue et al., 2013a, 2013b,
2009a, 2009b). However, there has not yet been an examination trying
to quantify the changes in resource flows including hidden flows under
long-term decarbonization scenarios, although at least one study has
compared various type of electrical energy storage technologies re-
garding their TMR (Mostert et al., 2018).

As described above, although a growing number of studies have

Table 1
Summary of studies evaluating mineral availability for the low-carbon energy transition.

Studies Energy Scenario Period Subject to supply constraints Bottleneck Materials

(de Koning et al., 2018) Original 2000-2050 Solar PV, EVs Dy, In, Li, Nd
(Elshkaki and Graedel, 2013) GEO-3 2010-2050 Solar PV Ag, Ge, In, Te
(Grandell et al., 2016) Original 2010-2050 Solar, Wind, EVs, Fuel cells, LED Ag, Co, Dy, In, La, Pt, Ru, Te
(Månberger and Stenqvist, 2018) ETP 2017 2015-2060 EVs Co, Li
(Mclellan et al., 2016) Original 2010-2050 Solar PV, Wind Dy, In, Nd, Se, Te
(Moss et al., 2013a) EU SET-Plan 2011-2030 Solar PV, Wind, Nuclear Dy, Ga, In, Nd, Te
(Tokimatsu et al., 2017) Original 2010-2100 Solar PV, Nuclear, EVs Co, In, Li, Mn, Ni, Se, Te
(Valero et al., 2018) Original 2016-2050 Solar PV, Wind, EVs, Solar CSP Ag, Cd, Co, Cr, Cu, Ga, In, Li, Mn, Ni, Sn, Te, Zn
(Watari et al., 2018) ETP 2017 2015-2060 Solar PV, EVs Ag, In, Li, Ni, Pt, Se, Te

Note: GEO-3: Third Global Environmental Outlook developed by the United Nations Environmental Program (UNEP), ETP 2017: Energy Technology Perspectives
2017 developed by International Energy Agency (IEA), Strategic Energy Technology Plan (SET-Plan) developed by European Union.
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investigated the mineral requirements for low-carbon technologies such
as solar PV, Wind and EVs, there have been few (if any) attempts to
quantify changes in resource flows caused by energy transitions that
have included not only the expansion of low-carbon technologies but
also an associated decline in conventional technologies such as coal
fired power plants. When we further expand the scope to examine en-
ergy resource flows as well as mineral flows, there has been no analysis
of these resource flows in the same framework under energy transitions.
Therefore in this study we propose a model that can quantify resource
flows including not only direct flows but also hidden flows under the
low-carbon energy transition, by linking long-term energy scenarios to
MFA and incorporating the concept of TMR. The proposed model was
applied to the IEA’s long-term energy scenarios at a global level up to
2050, which are referred to by many decision-makers. To the best of our
knowledge, this is the first time that the associated resource flows will
be quantified holistically and dynamically taking into account both
minerals and energy resources, and evaluating potential environmental
implications by using TMR.

One of the most significant contributions of this paper is that our
dynamic model makes it possible to incorporate time-series changes of
various factors such as ore grades, capacity factors of each electricity
generation technology and the electricity generation mix, which affect
both mineral and energy resource flows. In other words, the holistic
impacts of large-scale and long-term energy transitions on resource
flows can be evaluated in time series, beyond just the comparison of
individual products at a certain period of time. Importantly, our model
allows us to dynamically evaluate the implications of flows of both
minerals and energy resources on the environment, within the same
framework by quantifying the extracted natural resources.

2. Materials and methods

The following steps were undertaken to quantify resource flows
including hidden flows under the various energy scenarios up to 2050:

1) Estimating technology flows and outflows based on long-term en-
ergy scenarios presented by the IEA, using stock-flow dynamics.

2) Calculating mineral intensity and TMR intensity related to minerals
in each energy technology by surveying various literature and
taking into consideration future ore grade decline.

3) Exploring hidden flows associated with energy resource usage for
generating electricity and running vehicles with consideration of
changes in electricity generation share.

4) Analysing hidden flows associated with both mineral production
and energy resource usage expressed by TMR under various energy
scenarios.

Fig. 1 shows the conceptual framework of this study and detailed
explanations of these steps are described in the following sections.

2.1. Stock-Flow Dynamics (step 1)

MFA is a well-developed methodology for quantifying material
flow, outflow and in-use stock in society (Moriguchi and Hashimoto,
2010), and has been expanded from static to dynamic analysis (Müller
et al., 2014). Here, we refer to time-expanded MFA as the stock-flow
dynamics. Various studies have analysed material flows in a certain
period of time, focusing on specific technologies or minerals by using
stock-flow dynamics (Busch et al., 2017, 2014; Elshkaki and Graedel,
2013; Gerst, 2009; Giurco et al., 2019; Hatayama et al., 2010;
Krausmann et al., 2018, 2017; Müller, 2005; Watari et al., 2018;
Wiedenhofer et al., 2019). This study also employed this modelling
approach for evaluating flows and stocks of low-carbon energy tech-
nologies from a long-term perspective.

When assuming that the introduced amount of specific technologies
(inflow) in year t is It , and the discarded amount (outflow) in year t is

Ot, then the in-use stock St can be expressed by the simple balance:

= + −−S S I Ot t t t1 (1)

Where Ot depends on the number of usage years (lifetime) of each
product. This useful lifetime varies from product to product. Even
within the same product group introduced to society in the same year,
the discard year is not constant and there is therefore a statistical
lifetime distribution for each product (Murakami et al., 2010; Oguchi
et al., 2010). Therefore, if the number of usage years of the product is
assumed as a, the lifetime distribution can be defined as g a( ). Hence, Ot
is given by the following:

∑=
=

−O I g a( )t
a

a

t a
0

max

(2)

Where amax is the maximum value of the product life. Therefore, It can
be calculated by Eq. (3).

∑= − +−

=

−I S S I g a( )t t t
a

a

t a1
0

max

(3)

In this study, St of low-carbon technologies up to 2050 was obtained
from the Energy Technology Perspectives 2017 (IEA, 2017), which was
the latest long-term energy scenario published by the IEA, and histor-
ical St was collected from various sources (Earth Policy Institute, 2018;
Global Wind Energy Council, 2018; U.S. Energy Information
Administration, 2018). Target technologies are 15 electricity genera-
tion technologies including Oil, Coal, Coal with CCS, Natural gas,
Natural Gas with CCS, Nuclear, Biomass and waste, Biomass and waste
with CCS, Hydro, Geothermal, Wind onshore, Wind offshore, Solar PV,
Solar CSP and Ocean. Five transport technologies are also taken into
account - namely, Internal Combustion Engine Vehicles (ICEV), Hybrid
Electric Vehicles (HEV), Plug-In Hybrid Electric Vehicles (PHEV),
Electric Vehicles (EV) and Fuel Cell Vehicles (FCV). Detailed assump-
tions for estimating future flows of low-carbon technologies such as
average lifetime and shape parameter are provided in Table S1 and S2
in the supplementary material.

2.2. Total Material Requirement Associated with mineral production (step
2)

TMR represents the total amount of materials required to provide
resources, including input quantities that typically do not exist in sta-
tistical data such as mine waste, in addition to the resources themselves,
and it can be expressed through the following equation:

∑ ∑ ∑= + +TMR M M Mm direct indirect hidden (4)

WhereTMRm represents the Total Material Requirement of mineral type
m, Mdirect is direct materials flows, Mindirect indicates indirect materials
flows and Mhidden expresses hidden flows. In this case, the direct flows
indicate the inflow of materials directly used by the economy. These are
all material flows that form part of products or are used for production
and consumption activities. Indirect flows measure the quantity of
material accompanying with imports of raw and semi-processed pro-
ducts into the economy. Hidden flows express the quantity of material
disturbed by the extraction process but not actually used in the pro-
duction of products (Office for National Statistics, 2018). Please note
that the hidden flows have been used historically not only to cover the
unused extraction but also the indirect flows because both hidden and
indirect flows could not be measured directly.

For example, mining activities produce direct material flows as an
extracted ore. In addition to direct material flows, fuels and reducing
agents are required to produce concentrate, and energy is used for
transportation which can be defined as in-direct material flows.
Furthermore, mining requires the removal of overburden or waste rock
in order to access the ore, which may also require land clearing that
removes vegetation. Additionally, waste is produced in the form of

T. Watari, et al. Resources, Conservation & Recycling 148 (2019) 91–103

93



tailings. These flows are not typically incorporated into statistical data
because they are non-economic activities. In TMR, these are referred to
as hidden flows, and are incorporated to evaluate all resource changes
comprehensively. Fig. 2 shows the conceptual framework of TMR that
consists of direct, indirect and hidden flows.

Here, resource flows accompanying a specific technology p in year t
can be expressed by Eq. (5):

∑= ∙
=

M W Ip t
m

n

m p t,
1

,
(5)

Where Mp t, is the total of direct material flows associated with tech-
nology flows in year t , Wm represents the material intensity of material
type m and n expresses the total number of used minerals. In this case,
we estimated material intensity by taking an average value from a wide
range of literature as shown in Table 2, and for the sake of simplicity
assumed that the current average value would be constant in the future.

Fig. 1. Conceptual framework of the model to quantify resource flows including hidden flows under the various energy scenarios.

Fig. 2. Conceptual framework of Total Material Requirement.
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While this is likely to be an overestimate of the material requirement, as
technology is expected to improve the material intensity (particularly
for expensive or rare materials), the use of current values is expected to
give a conservative estimation that could be considered an upper limit.
The detailed calculations of material intensity for each technology are
provided in Table S3-13 of the supplementary material.

Then, TMR flows associated with mineral production arising from
the energy transition TMRmineral t, were calculated using Eq. (6).

∑ ∑= ∙
=

∈

TMR M TMRmineral t m

n

p P
p t

m

, 1 ,
(6)

Where p represents the set of target technologies and TMRm indicates
TMR intensity (tonnes-TMR/tonne) in the production of each element
from cradle to refinery gate. In this case, since TMR intensity of each
mineral highly relates to their ore grades, the value of some minerals is
expected to increase in future, reflecting future ore grade declines
(Prior et al., 2013). This study also takes into account this potential
change by estimating ore grade declines with Eq. (7).

= ∙Ore grades α tt
β (7)

Where t is time, α and β represent constants which determine the shape
of the trendline fitted to historical data. Based on the literature survey,
only the case of copper, zinc, lead and nickel show decline trends in the
past (Van der Voet et al., 2018) and there is no evidence to justify that
all minerals’ ore grades will be declined. This study, therefore,

estimated the TMR intensity taking into consideration the future de-
cline in ore grades only in the case of these minerals. Fig. 3 shows the
TMR intensity of each mineral in 2015 at the global level. Details are
given in Figure S2 and S3 in the supplementary material.

2.3. Total Material Requirement Associated with energy resources (step 3)

In addition to mineral production, a low-carbon transition could
change flows of energy resources for generating electricity and running
vehicles because each energy technology requires different types of
energy resources which have their own TMR intensity (tonnes-TMR/
TWh or tonnes-TMR/MJ). This study also takes this change into account
by estimating TMR flows associated with energy resource usage under
the transition to a low-carbon energy system. TMR flows of energy
resources used for electricity generation and vehicle use in year t are
estimated by following equation:

∑= ∙
∈

TMR E TMRenergy t
p P

p t p t, , ,
(8)

Where Ep t, represents the energy consumption (expressed in units of
TWh or MJ) by technology type p in year t , and TMRp t, expresses the
TMR intensity of the energy resources.

In the case of electricity generation technologies, Ep t, was obtained
from scenarios in the literature (IEA, 2017). Meanwhile, Ep t, at the time
of using the vehicle was calculated using following assumptions from

Table 2
Correspondence between the material intensities for low-carbon technologies and references.

Technologies References

Oil, Coal, Natural gas (Vidal et al., 2013)
Carbon Capture and Storage (Moss et al., 2011, 2013a)
Nuclear (Moss et al., 2011, 2013b)
Biomass and Waste (Ashby, 2013)
Hydro (Ashby, 2013)
Geothermal (Ashby, 2013; Moss et al., 2011, 2013a)
Wind (onshore and offshore) (Ashby, 2013; Bödeker et al., 2010; Falconer, 2009; Fizaine and Court, 2015; García-Olivares et al., 2012; Guezuraga et al., 2012; Habib

et al., 2016; Habib and Wenzel, 2016, 2014; Hoenderdaal et al., 2013; Kleijn and Van Der Voet, 2010; Lacal-Arantegui, 2015; Martínez
et al., 2009; Mclellan et al., 2016; Moss et al., 2013b; Roelich et al., 2014; Teske et al., 2016; U.S. Department of Energy, 2011; VESTAS,
2006; Wilburn, 2011; World Bank Group, 2017; Zimmermann, 2013)

Solar (c-Si, CIGS, CdTe) (Andersson and Jacobsson, 2000; Ashby, 2013; Berry, 2012; Bleiwas, 2010; Bödeker et al., 2010; Elshkaki and Graedel, 2013; Fizaine
and Court, 2015; Fthenakis, 2012; Kavlak et al., 2015; Mclellan et al., 2016; Moss et al., 2013a; Stamp et al., 2014; Teske et al., 2016;
The Warren Centre, 2016; U.S. Department of Energy, 2011; Valero et al., 2018; Woodhouse et al., 2013; World Bank Group, 2017)

Solar CSP (Ashby, 2013; Bödeker et al., 2010; Moss et al., 2011; Pihl et al., 2012; Teske et al., 2016; World Bank Group, 2017)
Ocean (Ashby, 2013)
Vehicles (ICEV, HEV, PHEV, EV, FCV) (Fishman et al., 2018; Forster and Rutherford, 2011; Moss et al., 2013b; U.S. Department of Energy, 2011; Valero et al., 2018; World

Bank Group, 2017)

Fig. 3. Total Material Requirement (TMR) in-
tensity of each mineral in 2015 at the global
level. The values for Cu, Zn, Pb and Ni were
calculated by the authors and the other mi-
nerals were obtained from (Halada, 2007;
Halada et al., 2001). Note: TMR intensity of
Cu, Zn, Pb and Ni are changing over time, re-
flecting ore grade projections. Detailed results
are provided in Figure S2 and S3 in the sup-
plementary material.
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the literature (IEA, 2018b, 2010). In this case, we simply assumed that
ICEV and HEV require gasoline and PHEV and EV use electricity for
operation. Although FCV require hydrogen for operation of the ve-
hicles, this has been assumed to be zero because of the lack of data and
low level introduction in the energy scenarios. The TMR intensity of
gasoline was obtained from the literature (Nakajima et al., 2006), and
the TMR intensity for generating electricity used by EVs was calculated
by multiplying the TMR intensity of each electricity generation tech-
nology by the electricity generation ratio in each year. That is, TMR
intensity of electricity generation is assumed to change over time, re-
flecting the mix of generation technologies. Detailed assumptions are
presented in Table S14 and 15 of the supplementary material.

2.4. Scenario analysis (step 4)

In this study, changes in resource flows expressed by TMR were
quantified under various energy scenarios. Namely, the Reference
Technology Scenario (RTS), 2 °C Scenario (2DS) and Beyond 2 °C
Scenario (B2DS) which were set based on IEA publications (IEA, 2017).
In this case, the RTS takes into account the current energy system and
voluntary targets of each country pledged in the Paris Agreement,
which will lead to a temperature rise of 2.7 °C by 2100. In contrast, the
2DS can be considered as a major climate change mitigation scenario
from the IEA, delineating a path to keep global temperature rise below
2 °C in 2100. The B2DS is the most ambitious scenario, which lays out
an energy system pathway achieving only 1.75 °C temperature increase.
Scenario analysis allows us to quantitatively and dynamically evaluate
the difference in the impact of each climate change scenario from the
perspective of resource flows. Although resource flows including
hidden flows do not directly indicate the environmental implications
accompanying the energy transition, this analysis can make it possible
to comprehensively grasp the total resource transformation caused by
large-scale technological changes and can quantify ‘potential’ adverse
impacts which have not yet been well-covered in the context of energy
futures.

2.5. Limitations and sensitivity analysis

Uncertainties of some assumptions for predicting future resource
flows are inevitable. In order to examine the potential effects of varying
assumptions, a sensitivity analysis targeting three parameters was
conducted. The analysed parameters were: the average lifetime of low-
carbon technologies, the shape parameter of lifetime distribution and
the material intensity. The transport sector in the B2DS is used as an
example. In this case, we evaluated the effect on the results by varying
the above three indicators up and down by 30%, respectively.

The potential change in TMR flows caused by more detailed as-
sumption differences was also examined by taking the transport sector
in the B2DS as an example. First, although the ore grade decline of some
minerals was predicted in this study, new deposits which have high
grades might be discovered and developed in the future. Second, de-
spite the fact that the proportion of primary and secondary production
could affect TMR flows significantly, this study has not taken this into
consideration. Here we set various scenarios for investigating these
uncertainties as shown in Table 3. In this case, potential secondary
production was calculated by multiplying recycling rates and outflows,

which was estimated based on stock-flow dynamics with Weibull dis-
tribution shown in Eq. (2). This is basically the same methodology as in
previous authors’ works (Giurco et al., 2019; Watari et al., 2018). TMR
intensity of secondary production was determined as 1.5% of primary
production based on the examples of aluminium, copper and lead,
which both TMR intensity of both primary and secondary production
could be obtained from literature (Wuppertal Institute, 2014).

3. Results

3.1. Total material requirement for global energy transition

Fig. 4 shows the integrated resource flows of both mineral and en-
ergy resources expressed as their respective TMR at the global level.
What we can see from this figure is that the low-carbon energy tran-
sition could mitigate TMR flows in the electricity sector over time, re-
flecting the decreasing energy resource flows. In the transport sector, on
the other hand, increases in TMR flows would be inevitable even if we
introduce EVs, capable of decreasing energy resource usage for vehicle
operations. In both sectors, the ratio of flows associated with mineral
production is increasing drastically over time in the case of 2DS and
B2DS, whereas the flows induced by energy resources dominate in the
case of RTS.

When we consider the ‘TMR flows/MWh or vehicle in-use’ as shown
in Fig. 5, which implies the resource intensity of this sector of society,
all scenarios express a decreasing trend in the case of the electricity
sector. On the contrary, the transport sector suggests that the more
decarbonization progresses, the more resource flows are needed. That
is, the decarbonization of the transport sector would lead to larger re-
source flows, and as a result it may increase the degree of environ-
mental burden around the sites where mining activities would be
conducted. The reason why the value in the B2DS is decreasing since
around 2045 is that the number of vehicles in-use is continuing to in-
crease despite the TMR flows is showing a saturation trend around that
time. This could be due to the average lifetime of the vehicles which is
assumed as more than 10 years in this study. Although TMR does not
indicate the environmental impacts directly, these results highlighted
that the long-term energy transition could change existing resource
flows and potentially bring about adverse implications in mining
countries in terms of how much natural resources are transformed. The
significant message here is the importance of considering the whole
resource cycle, including hidden resource flows of minerals as well as
energy resources, in order to be prepared and make appropriate miti-
gation policies for a truly ‘sustainable’ energy transition.

When we examine the TMR flows associated with mineral produc-
tion shown in Fig. 6 in more detail, all scenarios indicate that resource
flows involving hidden flows would increase drastically over time. In
the 2DS, TMR flows are increased by around 450% to 500% from 2015
and 2050 in the electricity and transport sectors, respectively, whereas
in the RTS, which can be considered as the ‘business as usual scenario’
TMR increases by 200% and 350% respectively. Moreover, in the B2DS,
which is the most ambitious scenario, TMR increases by approximately
900% and 700% from 2015 to 2050 in the electricity and transport
sectors respectively.

Such drastic increases in TMR are mostly from emerging technolo-
gies such as solar PV and EVs. Solar PV, for example, dominates around

Table 3
Scenario summary for sensitivity analysis.

Scenario summary Description

Original Scenario Ore grade will decline over time, and all flows will come from primary production.
New Deposit Discovery Scenario New deposits including high grade ores will be discovered to retain the current value of ore grades.
Low Recycling Scenario 50% of outflows will be recovered and supplement supply as secondary production.
High Recycling Scenario 90% of outflows will be recovered and supplement supply as secondary production.
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70% of TMR in 2050 in the case of the electricity sector, depending on
the scenarios. Additionally, around 45%–95% of resource flows in 2050
are induced by EVs (PHEV and EV). These results strengthen the ar-
gument that the low-carbon energy transition could change existing
resource flows associated with hidden flows significantly, and imply
increasing environmental consequences from the generation of mine
waste and changing landscapes in the mining countries.

Regarding the fractional contribution of each of the minerals,
copper flows are increasing over time especially in the transport sector
and play a large role in pushing up the resource flows. The share of steel
is limited to 5%–10% and the remaining resource flows are largely from
nickel, lithium, cobalt and copper. In the electricity sector, on the other
hand, the proportion of steel is relatively higher than in the transport
sector, and copper and silver mostly dominate remaining shares in all
scenarios.

It is important to note that there has been no inclusion of feedback
loops in the modelling of energy demand. That is, there is no modelling
of the additional energy requirement to provide the additional required
minerals (mining through to mineral production), nor is there a sec-
ondary feedback to then further examine the additional mineral

requirement to provide this additional energy. This is something that
could be added in future studies.

3.2. Sensitivity analysis

Fig. 7 shows the results of sensitivity analysis indicating that the
material intensity has the largest potential to change the results, which
are shown as TMR flows associated with mineral production. In addi-
tion to the material intensity, the average lifetime changes the timing of
product replacement and affects the direct resource flows to a sig-
nificant extent – particularly if recycling is not considered to mitigate
primary resource requirements. These results perhaps emphasize the
necessity of analysis that takes into account differences in average
lifetime and material intensity for each region. Although uncertainty
cannot be avoided in prediction, coping with it could be a future task
undertaken by developing comprehensive databases or promoting col-
laboration with industry, for example.

Fig. 8 shows TMR flows in the transport sector of B2DS under the
various scenarios with different assumptions on ore grades and re-
cycling shown in Table 3. Both the new deposit discovery and high

Fig. 4. Estimated Total Material Requirement (TMR) flows associated for generating electricity and operating vehicles up to 2050 at the global level. (a) Reference
Technology Scenario (RTS) in the electricity sector (b) 2 Degree Scenario (2DS) in the electricity sector (c) Beyond 2 Degree Scenario (B2DS) in the electricity sector
(d) RTS in the transport sector (e) 2DS in the transport sector (f) B2DS in the transport sector.

Fig. 5. Resource intensity for electricity generation and vehicle operation up to 2050 at the global level estimated by TMR flows per MWh or in-use vehicles.
(2015=1) (a) Electricity sector (t-TMR/MWh) (b) Transport sector (t-TMR/vehicle in-use).
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Fig. 6. Estimated TMR flows associated with mineral production in the electricity sector and transport sector up to 2050 at the global level. (a) Reference Technology
Scenario (RTS) by mineral in the electricity sector (b) 2 Degree Scenario (2DS) by mineral in the electricity sector (c) Beyond 2 Degree Scenario (B2DS) by mineral in
the electricity sector (d) RTS by technology in the electricity sector (e) 2DS by technology in the electricity sector (f) B2DS by technology in the electricity sector (g)
RTS by mineral in the transport sector (h) 2DS by mineral in the transport sector (i) B2DS by mineral in the transport sector (j) RTS by technology in the transport
sector (k) 2DS by technology in the transport sector (l) B2DS by technology in the transport sector.

Fig. 7. Results of sensitivity analysis on TMR flows associated with mineral production in transport sector in Beyond 2 Degree Scenario. (a) average lifetime of low-
carbon technologies. (b) shape parameter of lifetime distribution. (c) material intensity in each technology. Note: Line represents the mean value and the flow pane
shows the range of results when changing each parameter up and down by 30%. The value indicates the width of the maximum and the minimum in 2050.
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recycling scenarios have the potential to reduce TMR flows by around
3 Gt in 2050 compared to the original scenario, and when combining
both, TMR flows in 2050 could be half of original scenario. This might
imply the importance to invest for new ore deposits with high grades as
well as recycling, to reduce the environmental consequences.

4. Discussion

4.1. What can be understood from TMR for energy transitions?

Based on the IEA’s energy scenarios and our analysis, the energy
transition over the next few decades would increase resource flows
associated with mining activities considerably, including hidden flows
as well as direct flows with the concept of TMR. That is, the low-carbon
energy transition could change landscapes and generate mine waste
representing a potential environmental burden for mining countries.
Minerals which have a large potential to change natural landscapes
under the energy transition are indicated as steel, copper and silver.
Nickel, cobalt, and lithium which are vital for battery technologies also
have large potential to produce adverse impacts on environment.

On the other hand, it can be also clearly seen that the low-carbon
energy transition can reduce energy resource flows such as coal in the
use phase and the reduction of TMR in the electricity sector adds sup-
port as a co-benefit of decarbonization. However, although the energy
transition in the transport sector could decrease the usage of energy
resources, it causes a sharp increase in mineral production and, as a
result, the amount of resources per vehicle would increase over time.
That is, our results emphasize the possibility that the energy transition
in the transport sector could bring about adverse impacts in resource
extracting countries in the future. The most significant message here is
the importance of managing the resources cycle not only to mitigate the
concerns about mineral availability, but also to reduce adverse impacts
associated with mining activities.

Specifically, this study emphasizes the necessity of proper man-
agement of copper and other rare metals such as nickel, lithium and
cobalt from the viewpoint of TMR as well as steel that accounts for the
majority of material intensity. This trend is more pronounced in the
case of vehicles, in which the TMR of copper has been rapidly in-
creasing with the spread of EVs, whereas steel still dominates most of
the material use in EVs. In other words, analysis using the concept of

TMR could give us an insight to discuss the resource cycle not only from
the viewpoint of "quantity" but also from the "quality" considering en-
vironmental burden. That is, the mitigating strategies such as recycling
could be explored based on the potential environmental implications as
well as the absolute quantities. From this point of view, the necessity of
horizontal recycling of rare metals, not cascade recycling accompanied
by deterioration of quality is emphasized, and it is urgent to develop
product designs and decomposition technologies that make it possible
to recycle while keeping the original material or component quality,
rather than minor components being lost in slag or larger metal streams
due to the increased miniaturization and complexity of parts.

4.2. Social impacts of mining activities for energy transition

The analysis of TMR in this study highlights the scale of resource
flows and the minerals which are likely to lead to the greatest en-
vironmental impacts through the expansion of mining activities.
However, it is also important to consider qualitative data on environ-
mental and social impacts (including health and human rights impacts)
of resource demand, to understand the specific risks and trade-offs
which are not captured through quantitative analysis of resource flows.
It is also crucial to consider the locations on where mining typically
occurs for these minerals, and where it is likely to expand to, to mitigate
new adverse impacts that may arise as a result of the low-carbon
transition.

If not managed appropriately, there are significant environmental
and social impacts associated with the mining and processing of mi-
nerals for low-carbon technologies in the electricity and transport
sector. However, because of the complex nature of many supply chains
it is difficult to directly link specific mining impacts to end-uses, par-
ticularly if these minerals are used in many applications. For certain
minerals where low-carbon technologies are responsible for a high
share of consumption and the minerals are mined in only a few loca-
tions, such as rare earths or tellurium, it is easier to draw a link between
mining impacts to specific technologies (Redlinger et al., 2015; Xiaoyue
and Graedel, 2011). This becomes more difficult for minerals such as
aluminium and copper which are used in a wide range of technologies,
as well as mined in various locations around the world. For particular
minerals, including cobalt, lithium, nickel and rare earths, new or ex-
panded mining operations are under development specifically because

Fig. 8. TMR flows for the transport sector in Beyond 2 Degree Scenario at the global level under various scenarios with varying ore grade and recycling rate. (a) New
deposit discovery scenario (b) Low recycling scenario (c) High recycling scenario (d) combination of new deposit discovery and low recycling scenario (e) com-
bination of new deposit discovery and high recycling scenario.
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of increased demand for these minerals from low-carbon technologies
(Ali et al., 2018).

The most discussed social and environmental impacts from mining
activities associated with low-carbon technologies is the mining of co-
balt from Democratic Republic of the Congo (DRC). Mining has led to
heavy mineral contamination of air, water and soil, with severe health
impacts for miners and surrounding communities (Banza Lubaba Nkulu
et al., 2018). Cobalt used for lithium-ion battery manufacture is gen-
erally produced as a co-product of copper mining; the exception to this
is the 15–20% of cobalt from DRC which is produced from artisanal and
small-scale mines (ASM) (BGR, 2017). Artisanal miners work in dan-
gerous conditions in hand-dug mines that are at risk of cave-ins or
landslides, and are at most risk for heavy mineral contamination
(Tsurukawa et al., 2011). There is extensive child labour, with an es-
timated 40,000 children under 15 years working in artisanal cobalt
mines (Amnesty International, 2016). New cobalt mines are proposed in
DRC, as well as in Australia, Canada, Indonesia, the US, Panama and
Vietnam.

Other minerals for which significant impacts have been observed
include mining of copper, nickel and rare earths. Copper mining can
lead to long-lasting heavy mineral contamination of soils and water, as
seen in Chile, the largest copper producer, as well as China, India and
Brazil (Stowhas et al., 2018). Health impacts that have been observed
include pulmonary tuberculosis (PTB) among underground miners ex-
posed to silica in Zambia (Ngosa and Naidoo, 2016) and exposure to
arsenic for smelter workers in China (Sun et al., 2015). High purity
Class 1 Nickel, which usually comes from sulphide mines, is most sui-
table for lithium-ion battery manufacturing. Nickel sulphide mining has
had historical environmental impacts in Canada and Russia, including
damaging lakes and wetlands (Mudd, 2010).

Rare earths processing is complex and requires large amounts of
chemicals, which are harmful to human health if not managed appro-
priately, and produces large volumes of solid waste, gas and wastewater
(McLellan et al., 2013). In China, where around 80% of the world’s rare
earths are produced, wastewater from tailings dams has polluted
groundwater, which has led to crop failures and the displacement of
farming communities (Bontron, 2012). There have also been social
conflicts over the Lynas Advanced Materials Plant (LAMP) in Kuantan,
Malaysia, which processes concentrate from Western Australia (Ali,
2014). New mines are proposed for Canada, Greenland, Malawi, South
Africa and Uganda.

Although lithium mining is generally considered less risky than
many other minerals, there are concerns over water contamination and
shortages in the lithium triangle of Argentina, Bolivia and Chile, and
the inadequate compensation for affected local communities (Wanger,
2011). For some minerals, such as specialty minerals used in PV, little is
known about environmental or social impacts, particularly as they are
often mined as by-products. Indium, gallium, selenium, cadmium and
tellurium are known to be hazardous to human health, and there are
reports of lung disease from exposure to indium in manufacturing
processes (White and Shine, 2016).

Although the TMR associated with mineral production increases in a
low-carbon transition, the TMR associated with energy resources in the
electricity sector decreases in the same scenario. This would lead to a
reduction in the impacts associated with fossil fuel extraction, parti-
cularly coal mining, which can lead to lung damage from exposure to
coal dust and kidney disease from the contamination of groundwater
(Castleden et al., 2011). Across all mining associated with energy, re-
sponsible operations are necessary to avoid negative environmental
health impacts for workers and local communities, ensure the respect of
human rights and a sustainable energy transition.

Policies and strategies considering only decarbonization would miss
trade-offs and bring about serious problems which have been less
highlighted. Since future mineral production, which will have large
potential environmental consequences as indicated by TMR changes
would be concentrated into a few specific countries (e.g. DRC, South

Africa, Australia and Chile) (Natural Resource Governance Institute,
2017), it will be increasingly important to develop technologies and
infrastructures for ‘sustainable’ material cycles for mitigating adverse
impacts in countries where mining would be carried out, in parallel
with the transition to a low-carbon energy future. From this point of
view, nexus thinking is critical to comprehensively understand the
trade-offs and synergies arising from the energy transition. Although
energy policy and resource policy have been addressed independently
so far, the results of this study support the need for collaboration in
these sectors and tackling future problems with nexus and life cycle
thinking to extend such collaboration to any stakeholders existing in the
supply chain of resources (Nakajima et al., 2019).

5. Conclusions

In this paper we have presented a model that can dynamically
quantify resource flows in the low-carbon energy transition by using the
concept of Total Material Requirement (TMR) and stock-flow dynamics,
taking into account hidden flows such as mine waste. The research
objective of the study was to identify risks and trade-offs of dec-
arbonization by tracking flows of both mineral and energy resources for
designing holistically beneficial strategies. This is important because
policies and strategies which only consider one aspect, could bring
about severe problems in other areas.

The main findings from the application of the proposed model to the
International Energy Agency’s scenarios up to 2050 are as follows:

(1) TMR intensity, which indicates the total mass of resource trans-
formation caused by economic and non-economic activities in-
cluding hidden flows, in each low-carbon technology is dominated
by various minerals such as copper, silver and cobalt, while steel
accounts for the majority of mineral intensity.

(2) Low-carbon energy transitions could increase TMR flows associated
with mineral production by around 200% to 900% in the electricity
sector and 350%–700% in the transport sector respectively from
2015 to 2050 globally.

(3) Increases in TMR flows accompanying mineral production have a
heavy contribution from copper, silver, nickel, lithium and cobalt in
addition to steel.

(4) The expansion of solar PV and EVs produces the largest increases in
TMR flows accompanying minerals, and these two technologies
account for 50%–80% of the total flows in 2050, depending on
scenarios.

(5) Low-carbon energy transitions can reduce energy resource flows for
generating electricity and support the theory that the expansion of
low-carbon technologies could reduce total resource flows ex-
pressed by TMR in the electricity sector.

(6) In the transport sector, although implementation of EVs could de-
crease the usage of energy resources, it causes a sharp increase in
mineral production, and as a result, the amount of resource flows
per vehicle will be increased over time.

In summary, our results emphasize the importance of designing
resource cycles simultaneously with the energy transition, and the need
for collaboration between energy-mineral sectors which tend to be
considered separately at present. We believe that this study could help
as a step towards developing a nexus approach for achieving a sus-
tainable energy transition in terms of energy, minerals and the en-
vironment.
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