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 Abstract— Mobile telematics is a relatively new innovation that 

involves collecting data on driving behavior using the internal 

sensors in a smartphone rather than from an in-vehicle data 

recorder. However, telematics data are usually not labeled, which 

makes extracting driving patterns from them very difficult. 

Therefore, unsupervised learning algorithms play an important 

role in this field. In addition, most current research is based on 

datasets developed in a laboratory or from site investigations and 

questionnaires, which are very different from real-world driving 

behaviors. To advance unsupervised learning techniques in this 

field, and to fill the gap in findings based on real-world data, we 

have developed an unsupervised pattern recognition framework 

for mobile telematics data. The framework comprises three main 

components: a self-organizing map, a nine-layers deep auto-

encoder, and partitive clustering algorithms. The SOM algorithm 

reduces the complexity of the data, the deep auto-encoder extracts 

the features, and the clustering algorithm groups driving events 

with similar patterns into behaviors. Further, given clustering 

with mobile telematics data is an under-researched area, we 

undertook an empirical comparison of five well-known clustering 

algorithms to determine the strengths and weaknesses of each 

method and which is best suited to categorizing driving styles. The 

study was conducted with a real-world insurance dataset 

containing 500,000 journeys by 2500 drivers, and the results were 

evaluated against three measures – Davis Boulding, Calinski 

Harabasz, and execution time. Overall, we find that k-means 

clustering and a self-organizing map were able to extract more 

accurate patterns than others. A statistical analysis of the 29 

clusters produced by SOM and k-means, revealed 29 unique 

driving styles, all of which can be found in the transportation 

literature. The results from the study, with support from the 

corresponding literature review, demonstrate the efficacy of the 

presented framework in unsupervised settings. Additionally, the 

results provide a basis for developing a future risk analysis and 

automatic decision support system for usage-based insurance 

companies.  

 

Index Terms— mobile telematics, pattern recognition, vehicle 

driving, unsupervised learning 

I. INTRODUCTION 

ECHNOLOGICAL improvements in the internet of things 

(IoT) have led to a wide range of applications that enhance 

our lives, including smart homes, healthcare systems, vehicle 

monitoring, and greater awareness of environmental problems. 

IoT applications have two main advantages. First, they allow 

 
 

 

hardware devices to connect with their surrounding 

environment and each other to report on or accomplish a task. 

Second, they generate huge amounts of data that are useful for 

behavioral and environmental analytics. Further, growth in the 

use of smartphones, as one type of interconnected device, is 

likely to further increase the number of useful IoT applications 

developed in future years [4]. 

Telematics is one such IoT application, which involves 

integrating sensors, computer systems, and communications to 

gather information about a vehicle’s operations. However, 

using this technology requires different kinds of velocity and 

acceleration sensors to be installed in the vehicle, which are 

expensive and hard to develop. To overcome this problem, 

Malalur et al. [5] invented a new kind of telematics, known as 

mobile telematics, that uses the sensors in smartphones to 

record and track driving behavior. Because most people already 

own a smartphone, mobile telematics offers a new, low-cost 

alternative for collecting data about driving behavior [6]. 

All smartphones contain at least one instrument capable of 

measuring position by connecting to a fixed communication 

system, such as a cellular radio station, wifi access point, or 

GPS receiver. Smartphones can also contain a three-axis 

accelerometer, a gyroscope, and/or a compass. These internal 

sensors give mobile telematics apps a wide scope to gather 

driving style data. The apps are easy to use, and the initial 

hardware cost is either very low or free if the user already has a 

smartphone [7]. Further, the massive amounts of data they 

collect benefit a range of analytical uses like road safety [8], 

intelligent transportation systems [9], usage-based insurance 

[10], and others. Perhaps more importantly, these apps can help 

people assess and improve their own driving behavior by 

providing feedback on their driving styles with incentives to 

change bad habits [5]. Thus, it is unsurprising that one of the 

biggest beneficiaries of mobile telematics is the insurance 

industry. With mobile telematics apps, insurers no longer need 

to rely on expensive in-vehicle sensor installations to take 

advantage of driver “monitoring”. As a result, many insurers 

are specifically targeting drivers that are willing to use mobile 

telematics with their marketing campaigns [7].  

All these benefits, however, are predicated on good 

definitions of driving. Thus, driving behavior detection 

methods typically fall into two main groups [4]. The first is 

rules-based detection, which identifies risky habits by defining 

different thresholds for dangerous and normal behavior [11]. 

The rules and thresholds are usually developed by 

transportation experts in autonomous driving, driving 
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simulation, behavioral risk assessment, and similar fields [12]. 

The second approach again relies on transportation experts, this 

time with a set of predefined templates that describe different 

driving styles ranging from normal to dangerous. A set of 

pattern matching algorithms and machine learning models are 

then used to classify a driver’s behavior according to the most 

similar patterns [4]. Yet, developing good definitions of 

something so fluid and dynamic as driving behavior is difficult, 

even for experts.  

Further, although extensive research has been undertaken on 

driving style analytics with supervised learning algorithms, 

only a few researchers have studied unsupervised learning 

methods. Moreover, much of the research up to now has been 

conducted using data collected from questionnaires, site 

investigations, or laboratory simulations. However, driving 

behavior in the real world is completely different from the 

simulated behavior in generated data. We believe the dynamic 

properties of human behavior mean that simulated data cannot 

reflect all driving habits. To the best of our knowledge, Lee and 

Jang [13] are two of a few researchers to have developed a 

framework for driving style pattern recognition using real-

world data and unsupervised learning techniques. However, 

their framework is based on collecting data with in-vehicle 

recorders, which are expensive and difficult to implement. 

Moreover, their research does not sufficiently consider the most 

relevant state-of-the-art techniques in driving style analytics, 

such as deep learning and auto-encoders.  

Hence, our goal with this research was to develop an up-to-

the-minute framework for driving style pattern recognition 

based on the cheaper, easier alternative of mobile telematics, 

and one that leverages the current state-of-the-art in machine 

learning. That said, even though mobile telematics holds a great 

deal of promise, there are several challenges to overcome. The 

lack of research on unsupervised learning algorithms is the first 

obstacle. The second involves clustering and the disparate 

findings in the literature about which algorithms are the most 

effective.  Moreover, as a field, we need to determine which 

clustering algorithms are able to classify dynamic driving habits 

without pigeon-holing drivers into a set of predefined templates 

or rules. These challenges led to the following four research 

questions: 

1) How can raw mobile telematics data that only contain 

geographic position features be used to categorize driving 

patterns?  

2) How can the framework benefit from the current state-of-

the-art techniques in unsupervised learning, such as deep 

auto-encoders? 

3) What is the best clustering algorithm for categorizing 

driving styles with unlabeled mobile telematics data? 

4) Do the driving behaviors identified by the best 

unsupervised learning algorithms and optimal clustering 

algorithms correlate to known normal or abnormal driving 

styles? 

The framework we developed is based on unsupervised 

learning models that transforms mobile telematics data into data 

streams of driving characteristics. A change detection algorithm 

identifies the most significant and informative time windows in 

the stream about the decisions drivers have made, after which 

the data is ready for clustering. A self-organizing map then 

reduces the complexity of the data, and a deep auto-encoder 

extracts the features. 

To answer research questions 3 and 4, we undertook an 

empirical study of five of the most well-known and commonly-

used partitional clustering algorithms in the field of pattern 

recognition to reveal the strengths and weaknesses of each, and 

to determine whether there is one best choice overall for 

categorizing driving styles from mobile telematics data. 

Clustering performance was measured against three different 

metrics – Davis Boulding, Calinski Harabasz, and execution 

time – and the data used was from a real-world insurance 

dataset of 500,000 driving trips by 2500 drivers.   

In summary, the main contributions of this paper include:  

• An approach for identifying the driving events with the 

highest rate of change according to three key 

characteristics – velocity, x-axis acceleration, and y-axis 

acceleration – using relative unconstrained least-squares 

importance fitting (RuLSIF).  

• A novel unsupervised learning framework specifically 

designed for mobile telematics data that uses significant 

patterns in lieu of labels to identify driving behaviors for 

clustering. 

• A self-organizing map for reducing the complexity of 

data, and A deep auto-encoder architecture with nine 

layers that automatically extracts features from driving 

characteristics, are used to prepare data for partitive 

clustering.   

• An empirical assessment of five partitive clustering 

algorithms on SOM and DAE results by the Davis 

Boulding and Calinski Harabasz indexes as well as 

execution time. The performance results show that a  self-

organizing map and k-means clustering are the best 

combination of two-stage clustering clustering similar 

driving patterns into a set of driving behaviors. 

• Verification that the categories extracted correlate to 

known driving styles in the transportation literature. 

The rest of this paper is organized as follows. The 

background of the work has been explained in Section II. 

Section III contains a review of the literature that informed this 

research. Section IV presents the details of the mobile 

telematics pattern recognition framework. Section V contains 

the implementation and experimental results. Section VI 

describes the various driving patterns extracted by SOM and k-

means. Finally, Section VII concludes the paper and describes 

future work. 

II. BACKGROUND 

This section provides the background of this study, including 

a brief summary of the change detection algorithm, the self-

organizing map algorithm, the deep auto-encoder, and the 

partitive clustering methods used in this paper.  

A. Change Detection Algorithm 

The change detection algorithm is an algorithm to find time 

windows of major change within time-series data – most 
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commonly through statistical techniques. Change detection 

algorithms have a wide range of applications, e.g., signal 

segmentation [14], climate change detection [15], and driving 

behavior analytics [13].  

Let consider 𝒴(𝑡)  ∈ 𝑅𝑑 as time-series data with d 

dimensions at time t, and 𝑦(𝑡) = [𝑌(𝑡)𝑇 , 𝑌(𝑡 + 1)𝑇 , … ,

𝑌(𝑡 + 𝑘 − 1)𝑇]𝑇 ∈ 𝑅𝑑𝑘 is a consecutive time window of length 

k at time t. Following Liu et al. [16] strategy, the dissimilarity 

between 𝑦(𝑡) and 𝑦(𝑡 + 𝑛) is calculated from the equation 

below, and the result is used as a change score to reflect the 

amount of change between two time windows.  

𝐶ℎ𝑎𝑛𝑔𝑒𝑆𝑐𝑜𝑟𝑒 =  𝐷(𝑝𝑡||𝑝𝑡+𝑛) + 𝐷(𝑝𝑡+𝑛||𝑝𝑡)   (1) 

where 𝑝𝑡  and 𝑝𝑡+𝑛 are the probability distributions of 𝓎(𝑡) and 

𝓎(𝑡 + 𝑛). For simplicity, hereafter, we denote this dissimilarity 

as 𝐷(𝑝||𝑝′) instead of 𝐷(𝑝𝑡||𝑝𝑡+𝑛). 

To calculate the dissimilarity measure between two different 

time segments, Liu et al. [16] proposed the relative 

unconstrained least-squares importance fitting (RuLSIF) 

algorithm. RuLSIF. It calculates the change between two 

consecutive time windows with a density-based dissimilarity 

measure: 

𝐷(𝑝||𝑝′) = −
𝛼

2𝑛
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where n is the window size, and 𝑌𝑖  𝑎𝑛𝑑 𝑌𝑖
′ are two consecutive 

time windows in d-dimensional time-series data. �̂� is the 

density-ratio estimation of the data samples, and α is a constant 

variable. 

B. Self-organizing Map 

Self-organizing map (SOM) is a special type of unsupervised 

learning algorithm that generate a discretized map of an input 

space. SOMs have become a common technique in a wide range 

of applications, such as data visualization, dimension reduction, 

and vector quantization [17]. The main advantage of SOM is 

that they reduce computation costs, which is particularly 

valuable if clustering is part of one’s strategy. Given the 

complexity of calculating distances within multi-dimensional 

data, most clustering algorithms are computationally greedy, 

even with a small number of records. SOM decrease 

computation costs by abstracting a prototype of the input data. 

A clustering algorithm can then be used to classify the 

abstracted data instead of the full dataset [18]. Another 

advantage of SOM is its ability to tolerate noise. Each node in 

a SOM represents a group of input data, so it is less sensitive to  

data generated in noisy environments [19]. In contrast, one of 

the greatest weaknesses of SOMs is detecting outliers. By 

definition, outliers are rare data points and, therefore, SOMs 

have difficulty generating a suitable prototype to represent 

those data [20].  

The gist of these algorithms is to map the input data into a 

topographical map with N nodes on a regular two-dimensional 

rectangular or hexagonal grid, where each node has d number 

of features with a weight ω𝑖  =  [ω𝑖1, ω𝑖2 , … , ω𝑖𝑑]𝑇. The 

algorithm is iterative. In each iteration step t, a data sample x(t) 

is randomly selected from the training data, and the distances  

are calculated between x(t) and all the nodes. The most similar 

node to x(t) is selected with 

𝑐 = 𝑎𝑟𝑔𝑚𝑖𝑛(𝑑𝑖𝑠𝑡(𝑥(𝑡), 𝜔𝑖),     ∀ 𝑖 𝑖𝑛 [1,2, … , 𝑁]           (3) 

where 𝑑𝑖𝑠𝑡(𝑥(𝑡), 𝜔𝑖) is equal to the distance of the sample x(t) 

with the ith node.  

After a “winning” neuron has been selected, it and its 

neighboring neurons are updated with a weight updating rule: 

𝜔𝑘(𝑡 + 1) =  {
𝜔𝑘(𝑡) +  𝛾(𝑡)ℎ𝑘𝑐(𝑡). (𝑥(𝑡) − 𝜔𝑗(𝑡)) , ∀𝑘 ∈ 𝑁𝑐

𝜔𝑘(𝑡),                                                                  𝑒𝑙𝑠𝑒
 (4) 

where Nc is the winning neuron’s neighbors, and 𝛾(𝑡) is the 

learning rate, which is reduced in each iteration (t) with the 

following equation:  

𝛾(𝑡) = 𝛾0. 𝑒𝑥𝑝 (−𝛼.
𝑡

𝜏
)  (5) 

where 𝛾0 is the initial learning rate, 𝛼 is the exponential decaying 

constant, and 𝜏 is the maximum number of iterations. ℎ𝑘𝑐(𝑡) is a 

neighborhood kernel function that indicates the distance of the kth 

neuron to the winning neuron c, as calculated by 

ℎ𝑘𝑐 = exp (−
[(𝑥𝑘−𝑥𝑐)2+(𝑦𝑘−𝑦𝑐)2]

2(𝜎(𝑡)2)
) (6) 

where 𝜎(𝑡) is equal to the width of the neighborhood function 

and decreases in each iteration t by 

𝜎(𝑡) = 𝛾0. exp (−
𝑡

𝜏
. log (𝜎0)) (7) 

where 𝜎0 is the initial width [21]. 

C. Deep Auto-encoder 

A deep auto-encoder model is a group of several auto-encoders 

that are arranged in a neural network architecture. A simple 

auto-encoder has two parts, an encoder and a decoder. An 

example of a deep auto-encoder is shown in Fig. 1.  

In the encoding layer, the encoder function ℎ = 𝑓(𝑊𝑥 + 𝑏) 

is used for each layer to encode the input data. The encoding 

stage continues up to the middle layer, at which point a decoder 

function ℎ = 𝑓(𝑊′𝑥 + 𝑏′) begins to reconstruct the encoded 

input data. Sigmoid, tanh, soft sign, and Relu functions are the 

most prominent activation functions for encoder and decoder 

functions [22].  

 

The set of parameters for a basic auto-encoder comprises 

𝑊𝑙 , 𝑊′𝑙′ , 𝑏𝑙 , 𝑏′𝑙′ . These parameters are trained to minimize the 

 
Fig.  1. A deep auto-encoder with many layers 
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loss function by  

𝑙𝑜𝑠𝑠 =  
1

𝑁
∑ (𝑦𝑖 −  𝑥𝑖)

2𝑁
𝑖=1   (8) 

The training procedure is unsupervised, and the middle layer 

represents the encoded version of input data [22]. In this paper, 

we used a deep auto-encoder to automatically extract the 

features from the driving style data.  

D. Partitive Clustering 

Partitive clustering is an unsupervised learning technique that 

clusters unlabeled input data into a number of partitions, i.e., 

members are grouped according to distance-based similarity. 

Partitive clustering algorithms assume that the input data can be 

categorized into prototypes; thus, they are also known as 

prototype-based clustering algorithms. The main goal is to 

compress the data into these prototypes. Each partitive 

clustering algorithm has different methods of defining the 

prototypes for the input data. For example, one of the most 

famous partitive clustering algorithms, k-means, uses the K-

means++ algorithm to find the initial prototypes [23]. Partitive 

clustering algorithms have been used in a wide range of 

applications, from big data clustering [24] for customer 

segmentation [25, 26], to weather prediction [27], to biomedical 

health [28], and many others. The main steps of a partitive 

clustering algorithm are outlined in Algorithm 1 below. 

 

Algorithm 1: Partitive clustering algorithm [23] 

 

Input: Dataset and K number of prototypes, M max 

iteration 

Output: data points with a cluster label 

1. Initialize K data points from the input data as initial 

cluster prototypes. 

2. Assign each data point to the closest prototype using a 

distance function. 

3. Recalculate the center of each cluster with these new 

data points. 

4. Repeat steps two and three if the clusters do not change 

significantly. 

III. LITERATURE REVIEW 

The following sub-sections summarize relevant literature 

relating to smartphone-based vehicle telematics, driving style 

analytics, and pattern recognition. The review also includes a 

brief summary of the self-organizing map algorithm, the change 

detection algorithm, and the clustering methods used in this 

paper. 

A. Mobile Telematics 

Smartphones provide the capabilities of a home computer 

system in a mobile environment. Further, all smartphones have 

at least one internal measurement sensor and the ability to 

connect and transfer data to a remote server. Widespread 

growth in the use of smartphones means these devices have 

become a critical part of collecting data for industries like 

insurance and transportation companies that have highly mobile 

customers of all ages and income levels [4]. For example, prior 

to mobile telematics, an insurance company wanting to take 

advantage of driver telemetry had to rely on an in-vehicle data 

recorder. One insurance company in Italy who uses telematics 

devices for data gathering explains that a telematics business 

model has wide-ranging benefits for all stakeholders: 

customers, partners, technology providers, society, and, of 

course, themselves. Obviously, increasing profit is the main 

benefit for the insurer. By proactively selecting good drivers 

according to their risk level, the profitability of this Italian 

insurer increased by 30% even though they were offering 5% to 

30% discounts on premiums [29]. 

However, using an in-vehicle data recorder to gather 

telematics data is very expensive and difficult to implement. 

Hence, once smartphones emerged as a phenomenon, mobile 

telematics technology soon followed. Initially, the reliability of 

this new technology was a major question. But, in 2014, Handel 

et al. [30] conducted an empirical comparison of the data 

generated by a smartphone versus a traditional in-vehicle data 

recorder. In four main categories of reliability (accuracy, 

availability, integrity, and continuity of service) the authors 

found that smartphones could be a valid and appropriate tool 

for collecting telematics data. 

B. Driving Style Analytics 

Wahlström et al. [4] divided the practical applications of 

mobile telematics into seven categories: navigation, 

transportation mode classification, cooperative intelligent 

transportation systems, mobile cloud computing, driver 

behavior classification, and monitoring road conditions. Our 

focus is on driving style analytics and, within this, driver 

behavior classification and pattern recognition.  

According to the study of Wahlström et al. [4], driving 

behavior classification methods typically follow one of two 

approaches. The first is to define driving behavior according to 

one or more thresholds. For example, “safe acceleration” might 

be defined as when the norm of acceleration or deceleration is 

less than 2 m/s2; velocity changes beyond this threshold would 

be classified as extreme events [2]. The second approach is to 

define a range of templates that represent different driving 

behaviors. For example, a harsh cornering event might be 

defined in a template by an acceleration value on the x and/or 

y-axis during a specified time window. Harsh cornering events 

in drivers are then identified by calculating the similarity of 

their behavior to the template definition.  

However, technological advancements, and particularly the 

integration of  machine learning into pattern matching 

algorithms, are now providing opportunities to classify driving 

styles more acutely than ever before [31, 32]. For instance, 

Wang and Xi [33] proposed a binary classification solution to 

distinguish aggressive driving patterns from moderate ones. 

Their method involves support vector machine (SVM) and k-

means clustering to decrease execution times and improve 

prediction accuracy. The k-means clustering algorithm first 

reduces the complexity of the input data, then SVM 

distinguishes between normal and abnormal driving styles. 

Cross-validation experiments show the approach to be faster 

and more accurate than SVM alone. In another study, 

Henriksson [34] introduced a pattern recognition framework to 
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identify driving contexts from vehicle-generated data. City 

driving styles were compared to open road driving by finding 

the hidden relations between driving attributes in these two 

contexts. In a comparison between SVM and a hidden Markov 

model, the results show SVM to be more reliable.  

Through a driving behavior monitoring system, Yu et al. [3] 

categorized different, unusual driving behaviors into six 

groups: weaving, swerving, sideslipping, fast U-turns, turning 

with a wide radius, and sudden braking. Their method not only 

distinguishes between normal and abnormal driving patterns 

but also specifies the type of dangerous driving behavior. In a 

comparison between SVM and a neural network as a training 

algorithm for the classification model, the neural network 

model was better able to detect dangerous driving patterns. 

Driver identification is another research area in driving style 

analytics. To date, researchers have applied several artificial 

intelligence and machine learning algorithms to identify who is 

behind the wheel. A data transformation method was proposed 

by Dong et al. [35] to transform trajectory data into information 

that is usable in deep learning. They used a convolutional neural 

network (CNN) and a recurrent neural network (RNN) to 

distinguish drivers from passengers in a real-world dataset 

collected by a European insurance company. In a subsequent 

study, Dong et al. [36] proposed another model based on an 

auto-encoder regularized network (ARNet) to estimate the total 

number of drivers using one vehicle. The algorithm contains 

multiple levels of neural networks, including a gated recurrent 

unit (GRU), an auto-encoder, and logits. Insurance companies 

can take particular advantage of these models because 

underwriters are very interested in how many people are 

actually driving a car, especially when policies and premiums 

are linked to the age and number of drivers. A Mobile telematics 

data analytics framework based on supervised learning method 

has been proposed by Siami et al. [37], they detected the gender 

of drivers from the driving styles using Choquet Fuzzy Integral 

Vertical Bagging Random Forest Classifier. In another study, a 

driver identification methodology was proposed by Moreira-

Matias and Farah [38], using trip-based historical datasets 

collected by in-vehicle data recorders to identify the category 

of driver behind the wheel. They took the advantage of the 

driver-labelled trip data to build a pattern of different drivers in 

different categories using various supervised learning 

algorithms.  

The above methods are all supervised learning techniques 

that have shown outstanding performance in comparison to 

traditional methods of driving analytics. In fact, most current 

studies on driving style analytics with machine learning 

techniques are conducted in supervised learning scenarios. 

Only a few consider unsupervised methodologies for driving 

style analytics. One study, by Liu et al. [39], maps driving style 

patterns into three-dimensional data so as to visualize each 

pattern as a different color. A deep auto-encoder framework 

reduces the data streams into three-dimensional data. Each 

dimension is then mapped to either red, green, or blue – one 

color for each unique behavior – and the auto-encoder extracts 

the features from the behaviors. However, using their 

framework in real-world scenarios is somewhat challenging 

because they used synthetic data to train the deep learning 

model. In the real world, many data are uncharacteristic and 

completely different from the data generated in a laboratory. 

Lee and Jang [13] also proposed an unsupervised learning 

framework to characterize driving style patterns, this time with 

data generated by in-vehicle data recorders. However, their 

study did not extend to exploring the performance of different 

clustering algorithms for driving style extraction. Moreover, the 

correlation between their results and driving styles described in 

the literature was not fully investigated. These issues, combined 

with the problem of in-vehicle data, warrant further study in a 

mobile telematics setting. Shouno [40] incorporated a 

variational auto-encoder into a deep unsupervised learning 

framework for the purposes of reducing the input dimensions 

down to a two-dimensional space. Driving styles were then 

characterized according to a topological map. He tested his 

framework on a Honda Driving simulator with 59 drivers, 

which, again is simulated data and completely different from 

those found in the real-world.  

Driving behavior is complex, nuanced, and dynamic, and 

understanding driving behavior with synthetic data which 

everything rely on good definition  cannot show the behavior of 

drivers in the real-world. In addition, the lack of labeled data is 

a challenge, as highlighted in [41]. To the best of our 

knowledge, much of the research until now has been conducted 

on data gathered from either questionnaires, site investigations, 

or laboratory simulations. We believe that the dynamic 

properties of human behavior cannot be fully reflected in 

simulated data. Moreover, our literature review shows that 

driving style pattern recognition using mobile telematics data 

has not been studied in any great detail. This study is intended 

to fill those gaps. 

 

IV. MOBILE TELEMATICS PATTERN RECOGNITION 

FRAMEWORK  

The unsupervised learning framework presented in this paper 

is designed to extract driving patterns from trajectory data. Fig. 

2. illustrates the two major steps in the framework. The first step 

is data preparation to prepare the trajectory data for analytics. 

Here, trajectories are transformed into streaming data to reveal 

driving behaviors, and change detection is applied to find the 

most important events in the raw telemetry. The second step 

involves categorizing the different driving behaviors using a 

two-stage clustering procedure. 

A. Data Preparation 

Data cleaning and preparation is an essential step for any data 

mining and knowledge discovery project. Hence, the primary 

goal of this step is to clean the data and reduce its complexity. 

There are two parts to this process: data transformation and 

change detection. 

1) Data transformation 

Smartphones record information about the position of a 

vehicle as geolocation coordinates, e.g., latitude and longitude, 

which can be used to locate a vehicle on a map or as a starting 
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point for estimating speed and acceleration. However, to be 

useful in the current application, the raw geolocation data needs 

to be processed. Some preliminary definitions used in this 

process follow. 

 

Definition 1. The position of a vehicle in a 2D coordinate 

space at time t is Pt. A driver starts each trip at time 0 from 

location P0  =  [0, 0] [35].  

Definition 2. Mobile telematics devices generate a series of 

GPS data for each trip (tr) [42] 

tr =  P0→ P1  …  → P𝑖  …  → P𝑖  

The starting point of a trip is P0, and the end point is Pi. The 

trips associated with each driver occur at different times, day or 

night.  

Definition 3. In line with international standard ISO 8855, 

we considered a two-dimensional coordinate system to 

calculate the driving characteristics. The coordinate system is 

depicted in Fig 3. The forward and backward directional 

movements of the car are plotted on the x-axis, and the left and 

right directional movements of the car are plotted on the y-axis.  

These assumptions are used to calculate the value of 

instantaneous velocity and acceleration. Therefore, changing 

the position of the vehicle in a forward or backward direction 

indicates x-axis movement and movement in a left or right 

direction indicates y-axis movement.  

 

Definition 4. Let |𝑉�̅�| be the instantaneous velocity of the 

vehicle at time t, calculated by 

|𝑉�̅�| =  √(𝑣𝑥𝑡
)

2
+ (𝑣𝑦𝑡

)
2

  (9) 

where 𝑣𝑥𝑡
 and 𝑣𝑦𝑡

show the instantaneous velocity of the vehicle 

at time t over the x and y axes. These are calculated by 𝑣𝑥𝑡
=

Δ𝑥

Δ𝑡
 and 𝑣𝑦𝑡

=
Δ𝑦

Δ𝑡
 , respectively.  

Definition5. |𝐴𝑡
̅̅ ̅| is the norm of an acceleration/deceleration 

event at time t, calculated by 

 |𝐴𝑡
̅̅ ̅| =  √(𝑎𝑥𝑡

)
2

+  (𝑎𝑦𝑡
)

2

 (10) 

where 𝑎𝑥𝑡
 is the value of the instantaneous acceleration at time 

t over the x-axis, which is equal to 
Δ𝑣𝑥

Δ𝑡
. Similarly, the 

instantaneous acceleration over the y-axis is 𝑎𝑦𝑡
= 

Δ𝑣𝑦

Δ𝑡
. 

 

2) Change detection 

The data streams generated from mobile telematics do not 

arrive ready for analysis as smartphones record data without 

any knowledge of the mechanical features of the vehicle [43]. 

For example, if a driver stops for a long time, these data would 

be recorded even though they are useless for our purposes. So, 

to ensure these types of data do not decrease the performance 

of the model, they must be identified and removed. We 

accomplish this through the change scores between time 

windows discussed in Section II.A, where each time window is 

associated with a driving event.  

The change detection algorithm is formulated by considering 

𝑉(𝑡), 𝐴𝒙(t), and 𝐴𝑦(𝑡) as three dimensions which are velocity 

V(t), x-axis acceleration 𝐴𝒙(t), and y-axis acceleration 𝐴𝑦(𝑡) 

respectively. Here, 𝑉(𝑡), 𝐴𝒙(t), and 𝐴𝑦(𝑡) are three time 

windows with a length of k, which are: 

 𝑉(𝑡) = [𝒱(𝑡)𝑇 , 𝒱(𝑡 + 1)𝑇 , … , 𝒱(𝑡 + 𝑘 − 1)𝑇]𝑇 ∈
 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦;  

𝐴𝒙(t) = [𝒜𝓧(𝑡)𝑇 , 𝒜𝓧(𝑡 + 1)𝑇 , … , 𝒜𝓧(𝑡 + 𝑘 − 1)𝑇]𝑇 ∈ 𝑥 −

𝑎𝑥𝑖𝑠 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛; 

𝐴𝒚(t) = [𝒜𝓎(𝑡)𝑇 , 𝒜𝓎(𝑡 + 1)𝑇 , … , 𝒜𝓎(𝑡 + 𝑘 − 1)𝑇]
𝑇

∈

 𝑦 − 𝑎𝑥𝑖𝑠 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛, where T is the transpose. Let  Y(t) = 

[𝑉(𝑡), 𝐴𝒙(t), 𝐴𝒚(t)] is a the three-dimensional input data at 

time t, and 𝓎(𝑡) be a group of n retrospective subsequences of 

input data at time t, which is:  

𝓎(𝑡) = [𝑌(𝑡), 𝑌(t + 1), … , Y(𝑡 + 𝑛 − 1)] 
𝓎(𝑡) and 𝓎(𝑡 + 𝑛) are treated as two consecutive segments 

of the data stream. Fig. 4. illustrates an example of n 

retrospective consecutive segments of in one-dimensional time-

series data [44]. The strategy is to calculate a dissimilarity score 

for these two segments using Eq. 1 as the measure of change. 

We selected RuLSIF as the change detection and scoring 

algorithm. RuLSIF is extremely good at detecting driving style 

changes [13], human activity sensing [16], and smart home 

signal processing [45] in data streams. RuLSIF calculates a 

change score using a density-based dissimilarity measure from 

 
Fig.  3- Two-dimensional vehicle coordinate system (ISO 8855)  

 
Fig.  2- The driving style pattern detection framework 
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two consecutive time window by using Eq 2.  

We used the implemented version of change detection 

algorithm developed by Liu et al. [16]. Three dimensions 

including velocity, x-axis acceleration and y-axis acceleration 

are the input data and the change score is the output.  

B. Two-stage Clustering  

Once the data has been prepared for analytics, a two-stage 

clustering algorithm categorizes the selected time windows into 

groups. In this stage, we used SOM and a deep auto-encoder to 

make a choice between them for subsequent clustering. 

1) SOM  

In our framework, the SOM is a lattice output space with a 

rectangular topology. The first step is to generate an initial 

SOM according to the number of input records. Then, one 

sample driving event (record) is selected randomly, and its 

similarity to all the rest of the SOM nodes is calculated in terms 

of Euclidean distance. The node with the smallest distance is 

selected as the best matching unit (BMU), and the selected 

sample is assigned to that. The winner and its neighboring 

nodes are then updated with the weight updating rule in Eq.4. 

The process continues until all data have been assigned to a 

corresponding node. 

2) Deep Auto-encoder 

The deep auto-encoder component consists of a number of 

neural networks with randomly generated weight and bias 

vectors, which are optimized during the training phase. 

Following Liu et al. [39], we designed a deep network with four 

encoder layers. The number of nodes in each layer are: 45 → 

22 → 11 → 5 → 3 → 5 → 11 → 22 →45. Therefore, the 

network extracts the features by using the encoder layers 45 → 

22 → 11 → 5 → 3. The gradient descent optimizer is used to 

minimize reconstruction errors.  

The driving characteristics are denoted as 𝑋 ∈  ℝ 𝐷 ×𝑇 , where 

𝐷 is the dimension of the input data, and T is the length of the 

time window. For example, a driving event at time (t) is: 

𝑋𝑡 = (𝑉1, … , 𝑉𝑇 , 𝐴𝑥1, … , 𝐴𝑥𝑇 , 𝐴𝑦1, … , 𝐴𝑦𝑇) 

The activation function is a hyperbolic tangent so the value 

of the input variables should be in the range (−1,1). Obviously, 

the raw velocity and acceleration values will not fall within this 

range, so the data needs to be normalized before running the 

deep auto-encoder. We performed minimum and maximum 

normalization to transform the value of each dimension into 

(−1,1). 
The input data for the first layer of the deep auto-encoder is 

denoted as 𝑋𝑡, and the encoder function is 

ℎ𝑡
𝑙 = tanh(W𝑒𝑛

𝑙  𝑋𝑡 + 𝑏𝑒𝑛
𝑙 ) 

where W𝑒𝑛
𝑙  is a weight matrix for the encoder at the lth layer and 

𝑏𝑒𝑛
𝑙  is the bias vector for the lth encoder layer.  

The decoder function is a tanh function: 

𝑟𝑡
𝑙 = tanh(W𝑑𝑒

𝑙  ℎ𝑡 + 𝑏𝑑𝑒
𝑙 ) 

where W𝑑𝑒
𝑙  is the weight matrix and 𝑏𝑑𝑒

𝑙  is the bias vector.  

An assumption during the encoder-decoder process is that the 

output value of 𝑟𝑡
𝑙  is equal to 𝑥𝑡

𝑙. Thus, the objective function 

needs to calculate the reconstruction error between 𝑟𝑡
𝑙  and 𝑥𝑡

𝑙:  

𝑂(𝑉𝑙) =  
1

𝑁𝑉
∑ ‖ 𝑟𝑡

𝑙 − 𝑥𝑡
𝑙‖

2

2𝑁𝑉
𝑡=1  (11) 

where 
1

𝑁𝑉
∑ ‖ 𝑟𝑡

𝑙 −  𝑥𝑡
𝑙‖

2

2𝑁𝑉
𝑡=1  is the average value of the squared 

error between the reconstructed data and the input data.  

A gradient descent optimizer with a learning rate of 𝜆 helps 

to minimize the reconstruction errors. Finding the best learning 

rate for a deep auto-encoder is typically very difficult and time-

consuming. Hence, we have opted for a linear grid search, 

where the first learning rate considered is 𝜆∗ and the search 

distance is 𝜃, which is very small. This results in a learning rate 

of 𝜆+ = 𝜆∗ + 𝜃+. 𝜃 is updated with  

𝜃+ = {
𝜃                  𝑂(𝑉𝑙) ≥ 𝑂+(𝑉𝑙)

−0.5 × 𝜃   𝑂(𝑉𝑙) < 𝑂+(𝑉𝑙)
 (12) 

 

The search stops when the change in the construction error 

between 𝑂(𝑉𝑙) and 𝑂+(𝑉𝑙) falls below a set threshold.  

The features extracted through this deep auto-encoder 

process are then carried forward for use in the partitive 

clustering step.  

3) Clustering 

The SOM and deep auto-encoder algorithms have reduced 

the data to an abstract subspace. However, there will still be too 

many points to analyze directly, so they need to be clustered 

into similar groups. As mentioned in the Introduction, no 

research has been undertaken to determine whether there is a 

definitive best choice for clustering unlabelled telematics data. 

Therefore, we conducted our own empirical study on this issue 

with a range of different partitive clustering algorithms. Our 

hope is to not just find the most suitable choice for our 

framework, but to generate results that contribute to the debate 

on which clustering algorithm(s) might be best for mobile 

telematics data. The study is presented in Section IV.C.  

V. IMPLEMENTATION AND DATA ANALYSIS  

We implemented our framework in Python 2.7 on an Intel® 

Xeon® 3.01 GHz CPU, 64 GB of RAM, and running a Linux 

operating system. The software platform was Anaconda 2.7. 

The specific implementations of the SOM library [46] and the 

RuLSIF library [16]. The Tensorflow is used for deep auto-

encoder implementation.  

A. Data Preparation 

Our source data was a large-scale dataset collected by a 

European insurance company containing trip data for over 

 
Fig.  4-. A sample of change detection with one-dimensional time-series data. 

𝓎(𝑡) is the input data at time t, 𝑌(𝑡) denotes k subsequences, and 𝑦(𝑡) is a 

group of retrospective subsequences. The value of 𝑛 is equal to the window 

size, and 𝑘 is the length of subsequence. In this example, k=3 three, but it is 

possible for this value to be bigger.   
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500,000 journeys from more than 2500 drivers. The 

computational cost to process this entire dataset would be 

extremely high. But, according to Dong et al. [35], each person 

has their own driving patterns so no new useful information 

would be gained by analyzing more than a few trips per driver. 

We selected the 20 longest trips per driver to include in the 

analysis. Thus, the final dataset contained 50,000 journeys (20 

trips × 2500 drivers). Table I provides brief details about the 

data used. 
TABLE I: SELECTED DATASET 

Trips Drivers 

Journeys 

per 

driver 

Traveling time (minute) 

Min Average Max 

50,000 2,500 20 23:21 26:13 30:00 

 

To extract the driving characteristics from the trajectory data, 

we split the data into three streams. The first stream was 

velocity, containing the speed of a vehicle during a trip at any 

given time. The second and third streams were acceleration 

over the x and y axes. These streams were used to assess hard 

breaking, sharp starts [13], and cornering behavior [2, 30].   

To remove useless data, we divided the data into time 

windows of approximately 15 seconds with a slide in steps of 1 

second because, according to Zhang et al. [47], it takes at least 

15 seconds to complete a single driving event. The RuLSIF-

based change detection scores were then calculated for each 

time window. Fig. 5 shows the input and output of the RuLSIF 

change detection algorithm with velocity, x-acceleration, and y-

acceleration as the three input variables. Fig. 5. shows the 

change score for the corresponding time frame. Approximately 

7.9 million time windows were assessed. Following Lee and 

Jang [13], we selected the 5% with the highest RuLSIF scores 

to represent the most significant changes, and further selected 

all windows with a change score greater than a threshold of 

68.598. This left 394,833 windows, each representing one 

driving event with 15 seconds of data.  

B. Two-stage Clustering 

After preparing the data and selecting the time windows with 

highest change score, the events were ready to analyze for their 

driving characteristics. As mentioned, we used SOM to reduce 

the complexity of data and deep auto-encoder to extract the 

features. In SOM, defining a map with an appropriate number 

of nodes is crucial because, when 𝑛 is small, the prototype will 

be very generic and, when 𝑛 is very large, the prototype will be 

very detailed. Therefore, to define an optimal number of nodes, 

we followed Céréghino and Park [48] and identified a number 

of nodes equal to 5 × √𝑛 where 𝑛 is the total  number of 

selected events. With 394,833 events, the optimal number of 

nodes was 2814. The next challenge was defining an 

appropriate map size for the input data. We selected a map size 

of 21×134 based on the eigenvalues and eigenvectors [18]. 

After defining the SOM map, we designed the architecture of 

the deep auto-encoder to have nine layers. In the training phase, 

the model was taught to reduce reconstruction errors with a 

gradient descent optimizer. After training the model, the 

encoder layer extracted the features and, in so doing, reduced 

the number of input features.  

The second step in a two-stage clustering algorithm is 

partitive clustering. In this step, we used various partitive 

clustering algorithms to find the best clustering algorithm with 

the highest performance. A key concern in developing a 

partitive clustering algorithm is finding the optimal number of 

clusters as a suitable number of clusters can improve 

performance. However, because the number of clusters is 

generally unknown in real-world problems, we developed 

Algorithm 4 to address this issue. In brief, the algorithm applies 

the sum of square error (SSE) and a bootstrapping technique to 

find a robust result. 

C. Performance Evaluation 

To determine the optimal clustering algorithm for the 

framework, and for mobile telematics data in general, we 

compared five different partitive clustering algorithms against 

three metrics with a five-fold cross-validation method and 

 

Fig.  5- The change detection scores. The five shaded blue columns indicated a detected driving behavior that exceeded the change threshold (in this case 68.60). 

All of these events have significant changes in driving behavior over velocity, x-acceleration, and/or y-acceleration. For example, the driver in Event 1 is driving 
at high and radically varying speeds, with many variations in y-axis acceleration. Event 4 displays high variations in all the variables.  
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Algorithm 3. The details follow.  

The five algorithms we chose for comparison were k-means, 

MINIbatch k-means, agglomerative clustering, spectral 

clustering, and BIRCH clustering. After preparing data for 

clustering using the SOM and DAE, we used the test samples 

to compare the performance of the five models in terms of 

execution time, the Calinski Harabasz, and the Davis Boulding 

indexes. 

1) Execution time is the total time to determine the results – 

smaller values are better. 

2) Calinski Harabasz (CH) is a score calculated by assigning 

N data objects 𝑋 =  {𝑥1, 𝑥2, … , 𝑥𝑛} to K different 

clusters 𝐶 =  {𝑐1, 𝑐2, … , 𝑐𝑛} using the following 

equation [49]: 

CH(k) =
𝑇𝑟(𝑆𝐵)

𝑇𝑟(𝑆𝑊)
×

𝑁 − 𝑘

𝑘 − 1
 

𝑇𝑟(𝑆𝐵) = ∑ 𝑁𝑖‖𝑚𝑖 − 𝑚‖2𝐾

𝑖=1
 (12) 

𝑇𝑟(𝑆𝑤) = ∑ ∑ ‖𝑥𝑗 − 𝑚𝑖‖
2𝑁𝑖

𝑗=1
𝐾
𝑖=1     

where k  is the number of clusters, i is the number of items in a 

cluster ni, and mi is the centroid of cluster i. Tr(SB) shows the 

sum of between-cluster distances, and Tr(Sw) is the sum of 

within-cluster distances. 

3) Davies-Boulding (DB) is another performance index that 

evaluates the clusters based on the sum of within-cluster 

scatters and between-cluster separations [50]: 

 

 DBI =  
1

𝑛
∑ 𝑚𝑎𝑥𝑛

𝑖=1,𝑖≠𝑗 (
𝜎𝑖+𝜎𝑗 

𝑑(𝑐𝑖,𝑐𝑗)
)  (13) 

where n is the number of clusters, 𝜎𝑖 is the average distance of 

all members of the i-th cluster to the center of the j-th cluster, 

and 𝜎𝑗 is the average distance of all members of cluster j to the 

center of the i-th cluster. d(ci,cj) is the distance between the 

center of the two clusters i and j [51, 52]. 

 

D. Experimental Results 

The results of the comparison follow, starting with the Davis 

Boulding index in Table II. As shown, SOM did better than the 

deep auto-encoder with all five clustering algorithms. Within 

SOM, the performance from best to worst was k-means, Birch, 

MINIbatchKM, agglomerative, and spectral clustering. 

Similarly, k-means clustering had an outstanding performance 

in DAE part in comparison to others. Notably, k-means had the 

lowest standard deviations and was also the most stable in 

different folds with both SOM and the deep auto-encoder. 

Therefore, from a Davis Boulding point of view, SOM + k-

means is the optimal choice.  

The results against the Calinski Harabasz index are shown in 

Table III. Again, k-means clustering had the highest average 

CH score with a reasonable standard deviation with both SOM 

and the deep auto-encoder. In this case, DAE+k-means 

clustering placed first, followed by SOM+k-means. The 

SOM+Spectral clustering is the third method with a high CH 

score, but the standard deviation for this model is very high. 

From a deeper analysis of each fold, we found this algorithm 

was always unstable. 

 

Algorithm 3: Performance validation algorithm 

 

Input: selected events from change detection 

Output: performance results 
1. X = data from change detection 

2. X_SOM =training SOM model 

3. X_DEA = training Deep Auto-encoder 

4. Clustering_methods = [K-means, MinibatchKM, Spectral, Agglomerative, 

birch] 

5. For fold in 5-fold cross validation for (X_SOM, X_DEA) 

5.1. For clustering in Clustering methods 

5.1.1. Finding optimal number of cluster for clustering by 
using train data with algorithm 4 

5.1.2. CH[clustering , fold] = the value of Calinski 

Harabasz for current fold by using test data 
5.1.3. DB[clustering , fold] = average value of Davis 

Boulding for current  fold by using test data 

6. CH[clustering] = average of CH value in all folds for all 
clutsering_methods 

7. BD[clustering] = average of BD value in all folds for all 

clutsering_methods 
 

Algorithm 4: Finding optimal number of clusters 
Input: low complexity data, max number of clusters C, max iterations n 

Output: optimal number of clusters 
1. X = data from SOM nodes  

1.1. For k = 2 to C 

1.1.1. For i = 1 to n 

1.1.2. Di = Random under sampling for 80% 

1.1.3. Clustering Di into k clusters   

1.1.4. SSEi =Sum of Square errors  

2. SSEk = 1 𝑁⁄ ∑ 𝑆𝑆𝐸𝑖 

3. k = the first k which has the amount of improvement rather than previous k is 

less than 1% 

TABLE II- DAVIS BOULDING INDEX RESULTS 

Feature 

extraction Clustering Average Minimum Maximum std 

S
O

M
 

K-means 0.120 0.112 0.130 0.008 

MINIbatchKM 0.140 0.116 0.177 0.023 

Spectral 0.172 0.125 0.305 0.075 

Agglomerative 0.140 0.107 0.162 0.025 

Birch 0.132 0.114 0.155 0.017 

D
ee

p
 A

u
to

-e
n

co
d

er
 K-means 0.154 0.148 0.160 0.005 

MINIbatchKM 0.165 0.142 0.189 0.018 

Spectral 0.204 0.158 0.317 0.064 

Agglomerative 0.169 0.138 0.199 0.028 

Birch 0.159 0.140 0.184 0.019 

 

TABLE III- - CALINSKI HARABASZ INDEX RESULTS 

Feature 

extraction 
Clustering Average Minimum Maximum std 

S
O

M
 

K-means 17,375.60 16,754.93 17,891.93 475.62 

MINIbatchKM 15,136.85 14,784.21 15,765.54 381.08 

Spectral 17,040.31 15,191.46 19,364.84 1962.88 

Agglomerative 14,871.24 14,714.06 15,010.68 138.09 

Birch 14,753.34 14,528.51 15,171.88 255.69 

D
ee

p
 A

u
to

en
co

d
er

 K-means 18,242.75 17,248.70 18,967.43 640.11 

MINIbatchKM 16,266.25 15,744.51 16,813.88 480.94 

Spectral 16,292.00 14,336.08 18,900.63 1671.52 

Agglomerative 15,582.44 15,178.67 16,010.59 408.40 

Birch 15,522.14 15,035.29 16,199.02 457.58 

 



 10 

Table IV shows the execution times. Efficiency is an 

important factor since data on driving characteristics tends to 

be very large-scale, and running unsupervised learning 

algorithms are prone to long runtimes. 

As the results show, SOM had much faster running times 

with all clustering methods than the deep auto-encoder. The 

most important reason for this difference is that, with a deep 

auto-encoder, one record equals one point while, with SOM, 

one point equals an abstracted group of records. 

Across all three metrics, the optimal clustering choice for 

driving style pattern recognition is clear – SOM + k-means, 

firstly because it had a very low DB index in comparison to 

other methods, which means that the extracted clusters with 

SOM+k-means are unique and they are less similar to other 

clusters in comparison to other techniques [53]. In addition, CH 

index in deep auto encoder is slightly better than SOM+k-

means, and this difference is not big enough to encourage us for 

select this algorithm as the selected method while its 

computation cost is very high and BD index is very low.  

VI. EXTRACTED DRIVING PATTERNS 

From the three tests in the previous section, we determined 

that k-means in tandem with SOM was the best overall 

algorithm for recognizing driving style patterns. The next step 

is finding the optimal number of clusters. We used Algorithm 4 

to determine the optimal number of clusters by using SOM+k-

means clustering algorithm. We found that the optimal number 

of clusters was 29. Fig. 5 lists the sum of square errors for 

different numbers of clusters in each iteration, showing 29 as 

the optimum number of clusters, because 29 clusters does not 

exceed the defined threshold of 1%, and it does meet the 

stopping condition of less than 1% improvement.  

Hence, we extracted 29 unique driving behaviors from our 

data set. Each cluster is a group of time-series data and raw 

numbers. As results, however, raw numbers do not mean much 

to transportation experts so we need to understand each driving 

pattern and find a meaningful name for each cluster. We 

followed a matching algorithm to find a suitable label for each 

driving behavior. In this algorithm, first, we reviewed various 

driving behavior introduced by top-ranked, highly cited 

publications and selected three papers to review: [1-3]. Second, 

we developed a descriptive analytics to understand each 

category using average, minimum, maximum, and standard 

deviation across velocity, acceleration, x-axis and y-axis 

acceleration. Then, we compared the similarity between the 

extracted driving patterns and current driving behaviors in the 

literature. We then selected the most similar pattern in the 

literature as a representative of each category. Finally, we 

named each cluster to reflect the name of the most similar 

driving behavior found in the literature. 

 

Algorithm 5: The matching algorithm 
Input: Extracted driving behavior, current driving behavior in the 

literature  

Output: Corresponding driving pattern in the literature, and Name of 

all clusters 
1. DB = 29 extracted driving behaviors by SOM + k-means 

2. DB_lit = various driving behavior in the current literature 

3. For each driving_behavior in DB: 

3.1.  Developing descriptive analytics with minimum, maximum, average, 

and standard deviation across all input variables 

3.2. Corresponding_patterns[driving_behavior] = the most similar 

pattern in the literature for driving_behavior 

3.3. Names[driving_behavior] = finding a suitable name according to the 

corresponding driving behavior 

3.3.1. DB[clustering , fold] = average value of Davis 

Boulding for current  fold by using test data 

4. Return Corresponding_patterns, names 

 

After implementing algorithm 5, we understand the 

characteristics of all 29 clusters. For example, Cluster 17 

represents those who drive at very low speed with low 

acceleration, and accounts for 16.5% of the events. This 

behavior shows that these drivers have a tendency to stop the 

vehicle. In another driving group, Cluster 29, the y-acceleration 

TABLE IV- EXECUTION TIME RESULTS (MINUTES) 

 SOM Deep Auto-encoder 

K-means 40.87 180.93 

MINIbatchKM 33.47 66.99 

Spectral 82.35 250.70 

Agglomerative 41.03 199.38 

Birch 41.30 190.73 

 

 

Fig.  6- Sum of Square error per number of cluster for SOM + k-means clustering 
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is close to zero and the x-acceleration is higher than zero for a 

short period of time, which is similar to the cornering behavior 

described by Fazeen et al. [2]. The next group, Cluster 13, is 

normal driving behavior, i.e., standard speeds with very low 

acceleration, few changes, and a small standard deviation. Yu 

et al. [3] describe this type of driving as “normal driving 

behavior”. Cluster 8 exhibits swerving behavior as described by 

Chen et al. [1]. The value of both x-axis and y-axis acceleration 

have a high peak value with a high standard deviation. Drivers 

in Cluster 2 exhibit weaving behavior at high speeds. They have 

a very high variation between x- and y-axis acceleration. The 

standard deviation of acceleration is very high, and the mean 

value of acceleration is high [3]. Cluster 6 reflects sudden 

breaking and accounts for 4.3% of the driving events. x-

acceleration remains unchanged while y- acceleration 

significantly decreases, and the standard deviation of the y-

acceleration is high [1]. Cluster 26 is characterized by high 

variations in both x- and y-acceleration. The velocity range is 

medium, and the standard deviation of acceleration is high with 

low acceleration. In the above, we explained the top clusters 

that account for the 50% of driving events to describe how the 

clustering results are matched with a corresponding name in the 

transportation research. Additional information about all the 

other clusters, along with the statistical results for each group, 

are provided in the Appendix.  

VII. CONCLUSION AND FURTHER STUDY  

Understanding driving patterns with unsupervised learning 

techniques is an underexplored area of research and finding the 

best clustering algorithm with the highest performance and the 

optimal number of clusters is still problematic. In this paper, we 

proposed a framework to extract unique driving behaviors from 

smartphones generated data. Previous research on driving style 

analytics is largely based on laboratory simulations, site 

investigations, or questionnaires. These datasets are completely 

different from real-world data, which are mostly unlabeled. 

Further, when real data is used, it comes from in-vehicle 

recorders, which are expensive to install and limits the take-up 

of telematics. Our framework, however, was developed using 

real smartphone data rather than in-vehicle data recorders or a 

synthetic dataset, which is less expensive.   

In our framework, we used the relative unconstrained least-

squares importance fitting (RuLSIF) model as a change 

detection algorithm to detect the most informative time frames 

for recognizing driving characteristics. We used this algorithm 

to decrease the complexity of clustering algorithms by 

removing unnecessary time frames. A two-stage clustering 

framework comprising SOM and a deep auto-encoder to reduce 

the complexity of input data, after which the data can be 

clustered for analysis with a partitive clustering algorithm. 

From an evaluation of k-means, MINIbatch k-means, 

agglomerative clustering, spectral clustering, and Birch 

clustering, we find that SOM + k-means clustering is the 

optimal choice for extracting driving patterns according to the 

result of the Davis Boulding and Calinski Harabasz indexes and 

execution time. The final clustering results revealed 29 unique 

driving categories. We found the most similar driving patterns 

in the literature for each cluster to identify a label for all the 

extracted driving categories.  

In the future, we plan to propose an unsupervised decision 

support system that uses extracted driving categories as the 

criteria for automatic decision making. To ensure the system is 

comprehensive and effective, we will need to design a risk 

assessment framework that can evaluate the probability and 

severity of each pattern and calculate a risk score for each 

unique behavior and, in turn, each driver. Fuzzy inference 

systems will be our starting point in this endeavor. Moreover, 

one of the most vexing challenges with using machine learning 

techniques for driving style analytics is the lack of labeled data. 

Thus, researchers in the field of transportation and road safety 

could also use this framework to label unlabeled driving 

patterns in telematics data. Once labelled, the data could be used 

with a supervised learning technique with the most state of art 

machine learning algorithms for various applications. 

 

APPENDIX  

TABLE V 

FREQUENT DRIVING BEHAVIORS -  PART I 

C
lu

st
er

 

n
u

m
b
er

 

F
re

q
u
en

cy
 

P
er

ce
n

ta
g
e 

(%
) 

A
v

er
ag

e 

sp
ee

d
 (

k
m

/h
) 

A
v

er
ag

e 

ac
ce

le
ra

ti
o
n
 

(m
/s

2
) 

A
cc

el
er

at
io

n
 

st
d
 

Name Patterns of behavior 

 

17 16.49% 1.961 -0.108 0.088 Warm stopping 
Drivers in this group drive at low speeds with low deceleration and are prone to 

stopping. 

 

29 9.08% 45.808 0.353 0.202 
Cornering with 
medium speed 

During cornering behavior, y- acceleration is close to zero. x-acceleration is high 
with significant standard deviation [2]. 

 

13 6.68% 50.550 0.333 0.022 
Driving at 

normal speed 

Drivers proceed at normal speed with very low acceleration and standard 

deviation. 

 

8 5.18% 39.130 0.011 1.288 
Swerving at 

medium speed 
While swerving, x- and y-acceleration both have a high peak and high standard 
deviation [1]. 

 

2 4.96% 80.925 0.002 2.225 
Weaving at high 

speed 

There is high variation in between x- and y-acceleration. y-acceleration is very 

smooth over an extended period. The standard deviation of acceleration is high, 
but with a low mean [3]. 

 

11 4.59% 87.621 0.1114 0.163 
Cornering at 

high speed 

During cornering, speeds are high and x-acceleration increases rapidly over a short 

period of time, while y- acceleration is almost zero [3]. 
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This table shows the 29 clusters extracted with SOM+ K-means, which represent the driving patterns within our dataset. The average speeds and acceleration 

values are the means of the velocity and instantaneous acceleration figures for all driving patterns in each group. The names for each group were derived from 
the patterns and values at each cluster center with reference to previous studies in transportation. 
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