
 1

 Abstract— Mobile telematics is a relatively new innovation that

involves collecting data on driving behavior using the internal

sensors in a smartphone rather than from an in-vehicle data

recorder. However, telematics data are usually not labeled, which

makes extracting driving patterns from them very difficult.

Therefore, unsupervised learning algorithms play an important

role in this field. In addition, most current research is based on

datasets developed in a laboratory or from site investigations and

questionnaires, which are very different from real-world driving

behaviors. To advance unsupervised learning techniques in this

field, and to fill the gap in findings based on real-world data, we

have developed an unsupervised pattern recognition framework

for mobile telematics data. The framework comprises three main

components: a self-organizing map, a nine-layers deep auto-

encoder, and partitive clustering algorithms. The SOM algorithm

reduces the complexity of the data, the deep auto-encoder extracts

the features, and the clustering algorithm groups driving events

with similar patterns into behaviors. Further, given clustering

with mobile telematics data is an under-researched area, we

undertook an empirical comparison of five well-known clustering

algorithms to determine the strengths and weaknesses of each

method and which is best suited to categorizing driving styles. The

study was conducted with a real-world insurance dataset

containing 500,000 journeys by 2500 drivers, and the results were

evaluated against three measures – Davis Boulding, Calinski

Harabasz, and execution time. Overall, we find that k-means

clustering and a self-organizing map were able to extract more

accurate patterns than others. A statistical analysis of the 29

clusters produced by SOM and k-means, revealed 29 unique

driving styles, all of which can be found in the transportation

literature. The results from the study, with support from the

corresponding literature review, demonstrate the efficacy of the

presented framework in unsupervised settings. Additionally, the

results provide a basis for developing a future risk analysis and

automatic decision support system for usage-based insurance

companies.

Index Terms— mobile telematics, pattern recognition, vehicle

driving, unsupervised learning

I. INTRODUCTION

ECHNOLOGICAL improvements in the internet of things

(IoT) have led to a wide range of applications that enhance

our lives, including smart homes, healthcare systems, vehicle

monitoring, and greater awareness of environmental problems.

IoT applications have two main advantages. First, they allow

hardware devices to connect with their surrounding

environment and each other to report on or accomplish a task.

Second, they generate huge amounts of data that are useful for

behavioral and environmental analytics. Further, growth in the

use of smartphones, as one type of interconnected device, is

likely to further increase the number of useful IoT applications

developed in future years [4].

Telematics is one such IoT application, which involves

integrating sensors, computer systems, and communications to

gather information about a vehicle’s operations. However,

using this technology requires different kinds of velocity and

acceleration sensors to be installed in the vehicle, which are

expensive and hard to develop. To overcome this problem,

Malalur et al. [5] invented a new kind of telematics, known as

mobile telematics, that uses the sensors in smartphones to

record and track driving behavior. Because most people already

own a smartphone, mobile telematics offers a new, low-cost

alternative for collecting data about driving behavior [6].

All smartphones contain at least one instrument capable of

measuring position by connecting to a fixed communication

system, such as a cellular radio station, wifi access point, or

GPS receiver. Smartphones can also contain a three-axis

accelerometer, a gyroscope, and/or a compass. These internal

sensors give mobile telematics apps a wide scope to gather

driving style data. The apps are easy to use, and the initial

hardware cost is either very low or free if the user already has a

smartphone [7]. Further, the massive amounts of data they

collect benefit a range of analytical uses like road safety [8],

intelligent transportation systems [9], usage-based insurance

[10], and others. Perhaps more importantly, these apps can help

people assess and improve their own driving behavior by

providing feedback on their driving styles with incentives to

change bad habits [5]. Thus, it is unsurprising that one of the

biggest beneficiaries of mobile telematics is the insurance

industry. With mobile telematics apps, insurers no longer need

to rely on expensive in-vehicle sensor installations to take

advantage of driver “monitoring”. As a result, many insurers

are specifically targeting drivers that are willing to use mobile

telematics with their marketing campaigns [7].

All these benefits, however, are predicated on good

definitions of driving. Thus, driving behavior detection

methods typically fall into two main groups [4]. The first is

rules-based detection, which identifies risky habits by defining

different thresholds for dangerous and normal behavior [11].

The rules and thresholds are usually developed by

transportation experts in autonomous driving, driving

A Mobile Telematics Pattern Recognition

Framework for Driving Behavior Extraction
Mohammad Siami, Mohsen Naderpour, Member, IEEE, Jie Lu, Fellow, IEEE.

T

The authors are with the Decision Systems and e-Service Intelligence
Laboratory, Center for Artificial Intelligence, Faculty of Engineering and

Information Technology, University of Technology Sydney, Sydney,

NSW 2007, Australia (e-mail: mohammad.siaminamini@uts.edu.au;
Mohsen.naderpour@uts.edu.au; jie.lu@uts.edu.au).

mailto:mohammad.siaminamini@uts.edu.au
mailto:Mohsen.naderpour@uts.edu.au
mailto:jie.lu@uts.edu.au

 2

simulation, behavioral risk assessment, and similar fields [12].

The second approach again relies on transportation experts, this

time with a set of predefined templates that describe different

driving styles ranging from normal to dangerous. A set of

pattern matching algorithms and machine learning models are

then used to classify a driver’s behavior according to the most

similar patterns [4]. Yet, developing good definitions of

something so fluid and dynamic as driving behavior is difficult,

even for experts.

Further, although extensive research has been undertaken on

driving style analytics with supervised learning algorithms,

only a few researchers have studied unsupervised learning

methods. Moreover, much of the research up to now has been

conducted using data collected from questionnaires, site

investigations, or laboratory simulations. However, driving

behavior in the real world is completely different from the

simulated behavior in generated data. We believe the dynamic

properties of human behavior mean that simulated data cannot

reflect all driving habits. To the best of our knowledge, Lee and

Jang [13] are two of a few researchers to have developed a

framework for driving style pattern recognition using real-

world data and unsupervised learning techniques. However,

their framework is based on collecting data with in-vehicle

recorders, which are expensive and difficult to implement.

Moreover, their research does not sufficiently consider the most

relevant state-of-the-art techniques in driving style analytics,

such as deep learning and auto-encoders.

Hence, our goal with this research was to develop an up-to-

the-minute framework for driving style pattern recognition

based on the cheaper, easier alternative of mobile telematics,

and one that leverages the current state-of-the-art in machine

learning. That said, even though mobile telematics holds a great

deal of promise, there are several challenges to overcome. The

lack of research on unsupervised learning algorithms is the first

obstacle. The second involves clustering and the disparate

findings in the literature about which algorithms are the most

effective. Moreover, as a field, we need to determine which

clustering algorithms are able to classify dynamic driving habits

without pigeon-holing drivers into a set of predefined templates

or rules. These challenges led to the following four research

questions:

1) How can raw mobile telematics data that only contain

geographic position features be used to categorize driving

patterns?

2) How can the framework benefit from the current state-of-

the-art techniques in unsupervised learning, such as deep

auto-encoders?

3) What is the best clustering algorithm for categorizing

driving styles with unlabeled mobile telematics data?

4) Do the driving behaviors identified by the best

unsupervised learning algorithms and optimal clustering

algorithms correlate to known normal or abnormal driving

styles?

The framework we developed is based on unsupervised

learning models that transforms mobile telematics data into data

streams of driving characteristics. A change detection algorithm

identifies the most significant and informative time windows in

the stream about the decisions drivers have made, after which

the data is ready for clustering. A self-organizing map then

reduces the complexity of the data, and a deep auto-encoder

extracts the features.

To answer research questions 3 and 4, we undertook an

empirical study of five of the most well-known and commonly-

used partitional clustering algorithms in the field of pattern

recognition to reveal the strengths and weaknesses of each, and

to determine whether there is one best choice overall for

categorizing driving styles from mobile telematics data.

Clustering performance was measured against three different

metrics – Davis Boulding, Calinski Harabasz, and execution

time – and the data used was from a real-world insurance

dataset of 500,000 driving trips by 2500 drivers.

In summary, the main contributions of this paper include:

• An approach for identifying the driving events with the

highest rate of change according to three key

characteristics – velocity, x-axis acceleration, and y-axis

acceleration – using relative unconstrained least-squares

importance fitting (RuLSIF).

• A novel unsupervised learning framework specifically

designed for mobile telematics data that uses significant

patterns in lieu of labels to identify driving behaviors for

clustering.

• A self-organizing map for reducing the complexity of

data, and A deep auto-encoder architecture with nine

layers that automatically extracts features from driving

characteristics, are used to prepare data for partitive

clustering.

• An empirical assessment of five partitive clustering

algorithms on SOM and DAE results by the Davis

Boulding and Calinski Harabasz indexes as well as

execution time. The performance results show that a self-

organizing map and k-means clustering are the best

combination of two-stage clustering clustering similar

driving patterns into a set of driving behaviors.

• Verification that the categories extracted correlate to

known driving styles in the transportation literature.

The rest of this paper is organized as follows. The

background of the work has been explained in Section II.

Section III contains a review of the literature that informed this

research. Section IV presents the details of the mobile

telematics pattern recognition framework. Section V contains

the implementation and experimental results. Section VI

describes the various driving patterns extracted by SOM and k-

means. Finally, Section VII concludes the paper and describes

future work.

II. BACKGROUND

This section provides the background of this study, including

a brief summary of the change detection algorithm, the self-

organizing map algorithm, the deep auto-encoder, and the

partitive clustering methods used in this paper.

A. Change Detection Algorithm

The change detection algorithm is an algorithm to find time

windows of major change within time-series data – most

 3

commonly through statistical techniques. Change detection

algorithms have a wide range of applications, e.g., signal

segmentation [14], climate change detection [15], and driving

behavior analytics [13].

Let consider 𝒴(𝑡) ∈ 𝑅𝑑 as time-series data with d

dimensions at time t, and 𝑦(𝑡) = [𝑌(𝑡)𝑇 , 𝑌(𝑡 + 1)𝑇 , … ,

𝑌(𝑡 + 𝑘 − 1)𝑇]𝑇 ∈ 𝑅𝑑𝑘 is a consecutive time window of length

k at time t. Following Liu et al. [16] strategy, the dissimilarity

between 𝑦(𝑡) and 𝑦(𝑡 + 𝑛) is calculated from the equation

below, and the result is used as a change score to reflect the

amount of change between two time windows.

𝐶ℎ𝑎𝑛𝑔𝑒𝑆𝑐𝑜𝑟𝑒 = 𝐷(𝑝𝑡||𝑝𝑡+𝑛) + 𝐷(𝑝𝑡+𝑛||𝑝𝑡) (1)

where 𝑝𝑡 and 𝑝𝑡+𝑛 are the probability distributions of 𝓎(𝑡) and

𝓎(𝑡 + 𝑛). For simplicity, hereafter, we denote this dissimilarity

as 𝐷(𝑝||𝑝′) instead of 𝐷(𝑝𝑡||𝑝𝑡+𝑛).

To calculate the dissimilarity measure between two different

time segments, Liu et al. [16] proposed the relative

unconstrained least-squares importance fitting (RuLSIF)

algorithm. RuLSIF. It calculates the change between two

consecutive time windows with a density-based dissimilarity

measure:

𝐷(𝑝||𝑝′) = −
𝛼

2𝑛
∑ �̂�(𝑌𝑖)2

𝑛

𝑖=1

−
1 − 𝛼

2𝑛
 ∑ �̂�(𝑌𝑖

′)2

𝑛

𝑖=1

+
1

𝑛
∑ �̂�(𝑌𝑖)

𝑛

𝑖=1

−
1

2
 (2)

where n is the window size, and 𝑌𝑖 𝑎𝑛𝑑 𝑌𝑖
′ are two consecutive

time windows in d-dimensional time-series data. �̂� is the

density-ratio estimation of the data samples, and α is a constant

variable.

B. Self-organizing Map

Self-organizing map (SOM) is a special type of unsupervised

learning algorithm that generate a discretized map of an input

space. SOMs have become a common technique in a wide range

of applications, such as data visualization, dimension reduction,

and vector quantization [17]. The main advantage of SOM is

that they reduce computation costs, which is particularly

valuable if clustering is part of one’s strategy. Given the

complexity of calculating distances within multi-dimensional

data, most clustering algorithms are computationally greedy,

even with a small number of records. SOM decrease

computation costs by abstracting a prototype of the input data.

A clustering algorithm can then be used to classify the

abstracted data instead of the full dataset [18]. Another

advantage of SOM is its ability to tolerate noise. Each node in

a SOM represents a group of input data, so it is less sensitive to

data generated in noisy environments [19]. In contrast, one of

the greatest weaknesses of SOMs is detecting outliers. By

definition, outliers are rare data points and, therefore, SOMs

have difficulty generating a suitable prototype to represent

those data [20].

The gist of these algorithms is to map the input data into a

topographical map with N nodes on a regular two-dimensional

rectangular or hexagonal grid, where each node has d number

of features with a weight ω𝑖 = [ω𝑖1, ω𝑖2 , … , ω𝑖𝑑]𝑇. The

algorithm is iterative. In each iteration step t, a data sample x(t)

is randomly selected from the training data, and the distances

are calculated between x(t) and all the nodes. The most similar

node to x(t) is selected with

𝑐 = 𝑎𝑟𝑔𝑚𝑖𝑛(𝑑𝑖𝑠𝑡(𝑥(𝑡), 𝜔𝑖), ∀ 𝑖 𝑖𝑛 [1,2, … , 𝑁] (3)

where 𝑑𝑖𝑠𝑡(𝑥(𝑡), 𝜔𝑖) is equal to the distance of the sample x(t)

with the ith node.

After a “winning” neuron has been selected, it and its

neighboring neurons are updated with a weight updating rule:

𝜔𝑘(𝑡 + 1) = {
𝜔𝑘(𝑡) + 𝛾(𝑡)ℎ𝑘𝑐(𝑡). (𝑥(𝑡) − 𝜔𝑗(𝑡)) , ∀𝑘 ∈ 𝑁𝑐

𝜔𝑘(𝑡), 𝑒𝑙𝑠𝑒
 (4)

where Nc is the winning neuron’s neighbors, and 𝛾(𝑡) is the

learning rate, which is reduced in each iteration (t) with the

following equation:

𝛾(𝑡) = 𝛾0. 𝑒𝑥𝑝 (−𝛼.
𝑡

𝜏
) (5)

where 𝛾0 is the initial learning rate, 𝛼 is the exponential decaying

constant, and 𝜏 is the maximum number of iterations. ℎ𝑘𝑐(𝑡) is a

neighborhood kernel function that indicates the distance of the kth

neuron to the winning neuron c, as calculated by

ℎ𝑘𝑐 = exp (−
[(𝑥𝑘−𝑥𝑐)2+(𝑦𝑘−𝑦𝑐)2]

2(𝜎(𝑡)2)
) (6)

where 𝜎(𝑡) is equal to the width of the neighborhood function

and decreases in each iteration t by

𝜎(𝑡) = 𝛾0. exp (−
𝑡

𝜏
. log (𝜎0)) (7)

where 𝜎0 is the initial width [21].

C. Deep Auto-encoder

A deep auto-encoder model is a group of several auto-encoders

that are arranged in a neural network architecture. A simple

auto-encoder has two parts, an encoder and a decoder. An

example of a deep auto-encoder is shown in Fig. 1.

In the encoding layer, the encoder function ℎ = 𝑓(𝑊𝑥 + 𝑏)

is used for each layer to encode the input data. The encoding

stage continues up to the middle layer, at which point a decoder

function ℎ = 𝑓(𝑊′𝑥 + 𝑏′) begins to reconstruct the encoded

input data. Sigmoid, tanh, soft sign, and Relu functions are the

most prominent activation functions for encoder and decoder

functions [22].

The set of parameters for a basic auto-encoder comprises

𝑊𝑙 , 𝑊′𝑙′ , 𝑏𝑙 , 𝑏′𝑙′ . These parameters are trained to minimize the

Fig. 1. A deep auto-encoder with many layers

 4

loss function by

𝑙𝑜𝑠𝑠 =
1

𝑁
∑ (𝑦𝑖 − 𝑥𝑖)

2𝑁
𝑖=1 (8)

The training procedure is unsupervised, and the middle layer

represents the encoded version of input data [22]. In this paper,

we used a deep auto-encoder to automatically extract the

features from the driving style data.

D. Partitive Clustering

Partitive clustering is an unsupervised learning technique that

clusters unlabeled input data into a number of partitions, i.e.,

members are grouped according to distance-based similarity.

Partitive clustering algorithms assume that the input data can be

categorized into prototypes; thus, they are also known as

prototype-based clustering algorithms. The main goal is to

compress the data into these prototypes. Each partitive

clustering algorithm has different methods of defining the

prototypes for the input data. For example, one of the most

famous partitive clustering algorithms, k-means, uses the K-

means++ algorithm to find the initial prototypes [23]. Partitive

clustering algorithms have been used in a wide range of

applications, from big data clustering [24] for customer

segmentation [25, 26], to weather prediction [27], to biomedical

health [28], and many others. The main steps of a partitive

clustering algorithm are outlined in Algorithm 1 below.

Algorithm 1: Partitive clustering algorithm [23]

Input: Dataset and K number of prototypes, M max

iteration

Output: data points with a cluster label

1. Initialize K data points from the input data as initial

cluster prototypes.

2. Assign each data point to the closest prototype using a

distance function.

3. Recalculate the center of each cluster with these new

data points.

4. Repeat steps two and three if the clusters do not change

significantly.

III. LITERATURE REVIEW

The following sub-sections summarize relevant literature

relating to smartphone-based vehicle telematics, driving style

analytics, and pattern recognition. The review also includes a

brief summary of the self-organizing map algorithm, the change

detection algorithm, and the clustering methods used in this

paper.

A. Mobile Telematics

Smartphones provide the capabilities of a home computer

system in a mobile environment. Further, all smartphones have

at least one internal measurement sensor and the ability to

connect and transfer data to a remote server. Widespread

growth in the use of smartphones means these devices have

become a critical part of collecting data for industries like

insurance and transportation companies that have highly mobile

customers of all ages and income levels [4]. For example, prior

to mobile telematics, an insurance company wanting to take

advantage of driver telemetry had to rely on an in-vehicle data

recorder. One insurance company in Italy who uses telematics

devices for data gathering explains that a telematics business

model has wide-ranging benefits for all stakeholders:

customers, partners, technology providers, society, and, of

course, themselves. Obviously, increasing profit is the main

benefit for the insurer. By proactively selecting good drivers

according to their risk level, the profitability of this Italian

insurer increased by 30% even though they were offering 5% to

30% discounts on premiums [29].

However, using an in-vehicle data recorder to gather

telematics data is very expensive and difficult to implement.

Hence, once smartphones emerged as a phenomenon, mobile

telematics technology soon followed. Initially, the reliability of

this new technology was a major question. But, in 2014, Handel

et al. [30] conducted an empirical comparison of the data

generated by a smartphone versus a traditional in-vehicle data

recorder. In four main categories of reliability (accuracy,

availability, integrity, and continuity of service) the authors

found that smartphones could be a valid and appropriate tool

for collecting telematics data.

B. Driving Style Analytics

Wahlström et al. [4] divided the practical applications of

mobile telematics into seven categories: navigation,

transportation mode classification, cooperative intelligent

transportation systems, mobile cloud computing, driver

behavior classification, and monitoring road conditions. Our

focus is on driving style analytics and, within this, driver

behavior classification and pattern recognition.

According to the study of Wahlström et al. [4], driving

behavior classification methods typically follow one of two

approaches. The first is to define driving behavior according to

one or more thresholds. For example, “safe acceleration” might

be defined as when the norm of acceleration or deceleration is

less than 2 m/s2; velocity changes beyond this threshold would

be classified as extreme events [2]. The second approach is to

define a range of templates that represent different driving

behaviors. For example, a harsh cornering event might be

defined in a template by an acceleration value on the x and/or

y-axis during a specified time window. Harsh cornering events

in drivers are then identified by calculating the similarity of

their behavior to the template definition.

However, technological advancements, and particularly the

integration of machine learning into pattern matching

algorithms, are now providing opportunities to classify driving

styles more acutely than ever before [31, 32]. For instance,

Wang and Xi [33] proposed a binary classification solution to

distinguish aggressive driving patterns from moderate ones.

Their method involves support vector machine (SVM) and k-

means clustering to decrease execution times and improve

prediction accuracy. The k-means clustering algorithm first

reduces the complexity of the input data, then SVM

distinguishes between normal and abnormal driving styles.

Cross-validation experiments show the approach to be faster

and more accurate than SVM alone. In another study,

Henriksson [34] introduced a pattern recognition framework to

 5

identify driving contexts from vehicle-generated data. City

driving styles were compared to open road driving by finding

the hidden relations between driving attributes in these two

contexts. In a comparison between SVM and a hidden Markov

model, the results show SVM to be more reliable.

Through a driving behavior monitoring system, Yu et al. [3]

categorized different, unusual driving behaviors into six

groups: weaving, swerving, sideslipping, fast U-turns, turning

with a wide radius, and sudden braking. Their method not only

distinguishes between normal and abnormal driving patterns

but also specifies the type of dangerous driving behavior. In a

comparison between SVM and a neural network as a training

algorithm for the classification model, the neural network

model was better able to detect dangerous driving patterns.

Driver identification is another research area in driving style

analytics. To date, researchers have applied several artificial

intelligence and machine learning algorithms to identify who is

behind the wheel. A data transformation method was proposed

by Dong et al. [35] to transform trajectory data into information

that is usable in deep learning. They used a convolutional neural

network (CNN) and a recurrent neural network (RNN) to

distinguish drivers from passengers in a real-world dataset

collected by a European insurance company. In a subsequent

study, Dong et al. [36] proposed another model based on an

auto-encoder regularized network (ARNet) to estimate the total

number of drivers using one vehicle. The algorithm contains

multiple levels of neural networks, including a gated recurrent

unit (GRU), an auto-encoder, and logits. Insurance companies

can take particular advantage of these models because

underwriters are very interested in how many people are

actually driving a car, especially when policies and premiums

are linked to the age and number of drivers. A Mobile telematics

data analytics framework based on supervised learning method

has been proposed by Siami et al. [37], they detected the gender

of drivers from the driving styles using Choquet Fuzzy Integral

Vertical Bagging Random Forest Classifier. In another study, a

driver identification methodology was proposed by Moreira-

Matias and Farah [38], using trip-based historical datasets

collected by in-vehicle data recorders to identify the category

of driver behind the wheel. They took the advantage of the

driver-labelled trip data to build a pattern of different drivers in

different categories using various supervised learning

algorithms.

The above methods are all supervised learning techniques

that have shown outstanding performance in comparison to

traditional methods of driving analytics. In fact, most current

studies on driving style analytics with machine learning

techniques are conducted in supervised learning scenarios.

Only a few consider unsupervised methodologies for driving

style analytics. One study, by Liu et al. [39], maps driving style

patterns into three-dimensional data so as to visualize each

pattern as a different color. A deep auto-encoder framework

reduces the data streams into three-dimensional data. Each

dimension is then mapped to either red, green, or blue – one

color for each unique behavior – and the auto-encoder extracts

the features from the behaviors. However, using their

framework in real-world scenarios is somewhat challenging

because they used synthetic data to train the deep learning

model. In the real world, many data are uncharacteristic and

completely different from the data generated in a laboratory.

Lee and Jang [13] also proposed an unsupervised learning

framework to characterize driving style patterns, this time with

data generated by in-vehicle data recorders. However, their

study did not extend to exploring the performance of different

clustering algorithms for driving style extraction. Moreover, the

correlation between their results and driving styles described in

the literature was not fully investigated. These issues, combined

with the problem of in-vehicle data, warrant further study in a

mobile telematics setting. Shouno [40] incorporated a

variational auto-encoder into a deep unsupervised learning

framework for the purposes of reducing the input dimensions

down to a two-dimensional space. Driving styles were then

characterized according to a topological map. He tested his

framework on a Honda Driving simulator with 59 drivers,

which, again is simulated data and completely different from

those found in the real-world.

Driving behavior is complex, nuanced, and dynamic, and

understanding driving behavior with synthetic data which

everything rely on good definition cannot show the behavior of

drivers in the real-world. In addition, the lack of labeled data is

a challenge, as highlighted in [41]. To the best of our

knowledge, much of the research until now has been conducted

on data gathered from either questionnaires, site investigations,

or laboratory simulations. We believe that the dynamic

properties of human behavior cannot be fully reflected in

simulated data. Moreover, our literature review shows that

driving style pattern recognition using mobile telematics data

has not been studied in any great detail. This study is intended

to fill those gaps.

IV. MOBILE TELEMATICS PATTERN RECOGNITION

FRAMEWORK

The unsupervised learning framework presented in this paper

is designed to extract driving patterns from trajectory data. Fig.

2. illustrates the two major steps in the framework. The first step

is data preparation to prepare the trajectory data for analytics.

Here, trajectories are transformed into streaming data to reveal

driving behaviors, and change detection is applied to find the

most important events in the raw telemetry. The second step

involves categorizing the different driving behaviors using a

two-stage clustering procedure.

A. Data Preparation

Data cleaning and preparation is an essential step for any data

mining and knowledge discovery project. Hence, the primary

goal of this step is to clean the data and reduce its complexity.

There are two parts to this process: data transformation and

change detection.

1) Data transformation

Smartphones record information about the position of a

vehicle as geolocation coordinates, e.g., latitude and longitude,

which can be used to locate a vehicle on a map or as a starting

 6

point for estimating speed and acceleration. However, to be

useful in the current application, the raw geolocation data needs

to be processed. Some preliminary definitions used in this

process follow.

Definition 1. The position of a vehicle in a 2D coordinate

space at time t is Pt. A driver starts each trip at time 0 from

location P0 = [0, 0] [35].

Definition 2. Mobile telematics devices generate a series of

GPS data for each trip (tr) [42]

tr = P0→ P1 … → P𝑖 … → P𝑖

The starting point of a trip is P0, and the end point is Pi. The

trips associated with each driver occur at different times, day or

night.

Definition 3. In line with international standard ISO 8855,

we considered a two-dimensional coordinate system to

calculate the driving characteristics. The coordinate system is

depicted in Fig 3. The forward and backward directional

movements of the car are plotted on the x-axis, and the left and

right directional movements of the car are plotted on the y-axis.

These assumptions are used to calculate the value of

instantaneous velocity and acceleration. Therefore, changing

the position of the vehicle in a forward or backward direction

indicates x-axis movement and movement in a left or right

direction indicates y-axis movement.

Definition 4. Let |𝑉�̅�| be the instantaneous velocity of the

vehicle at time t, calculated by

|𝑉�̅�| = √(𝑣𝑥𝑡
)

2
+ (𝑣𝑦𝑡

)
2

 (9)

where 𝑣𝑥𝑡
 and 𝑣𝑦𝑡

show the instantaneous velocity of the vehicle

at time t over the x and y axes. These are calculated by 𝑣𝑥𝑡
=

Δ𝑥

Δ𝑡
 and 𝑣𝑦𝑡

=
Δ𝑦

Δ𝑡
 , respectively.

Definition5. |𝐴𝑡
̅̅ ̅| is the norm of an acceleration/deceleration

event at time t, calculated by

 |𝐴𝑡
̅̅ ̅| = √(𝑎𝑥𝑡

)
2

+ (𝑎𝑦𝑡
)

2

 (10)

where 𝑎𝑥𝑡
 is the value of the instantaneous acceleration at time

t over the x-axis, which is equal to
Δ𝑣𝑥

Δ𝑡
. Similarly, the

instantaneous acceleration over the y-axis is 𝑎𝑦𝑡
=

Δ𝑣𝑦

Δ𝑡
.

2) Change detection

The data streams generated from mobile telematics do not

arrive ready for analysis as smartphones record data without

any knowledge of the mechanical features of the vehicle [43].

For example, if a driver stops for a long time, these data would

be recorded even though they are useless for our purposes. So,

to ensure these types of data do not decrease the performance

of the model, they must be identified and removed. We

accomplish this through the change scores between time

windows discussed in Section II.A, where each time window is

associated with a driving event.

The change detection algorithm is formulated by considering

𝑉(𝑡), 𝐴𝒙(t), and 𝐴𝑦(𝑡) as three dimensions which are velocity

V(t), x-axis acceleration 𝐴𝒙(t), and y-axis acceleration 𝐴𝑦(𝑡)

respectively. Here, 𝑉(𝑡), 𝐴𝒙(t), and 𝐴𝑦(𝑡) are three time

windows with a length of k, which are:

 𝑉(𝑡) = [𝒱(𝑡)𝑇 , 𝒱(𝑡 + 1)𝑇 , … , 𝒱(𝑡 + 𝑘 − 1)𝑇]𝑇 ∈
 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦;

𝐴𝒙(t) = [𝒜𝓧(𝑡)𝑇 , 𝒜𝓧(𝑡 + 1)𝑇 , … , 𝒜𝓧(𝑡 + 𝑘 − 1)𝑇]𝑇 ∈ 𝑥 −

𝑎𝑥𝑖𝑠 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛;

𝐴𝒚(t) = [𝒜𝓎(𝑡)𝑇 , 𝒜𝓎(𝑡 + 1)𝑇 , … , 𝒜𝓎(𝑡 + 𝑘 − 1)𝑇]
𝑇

∈

 𝑦 − 𝑎𝑥𝑖𝑠 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛, where T is the transpose. Let Y(t) =

[𝑉(𝑡), 𝐴𝒙(t), 𝐴𝒚(t)] is a the three-dimensional input data at

time t, and 𝓎(𝑡) be a group of n retrospective subsequences of

input data at time t, which is:

𝓎(𝑡) = [𝑌(𝑡), 𝑌(t + 1), … , Y(𝑡 + 𝑛 − 1)]
𝓎(𝑡) and 𝓎(𝑡 + 𝑛) are treated as two consecutive segments

of the data stream. Fig. 4. illustrates an example of n

retrospective consecutive segments of in one-dimensional time-

series data [44]. The strategy is to calculate a dissimilarity score

for these two segments using Eq. 1 as the measure of change.

We selected RuLSIF as the change detection and scoring

algorithm. RuLSIF is extremely good at detecting driving style

changes [13], human activity sensing [16], and smart home

signal processing [45] in data streams. RuLSIF calculates a

change score using a density-based dissimilarity measure from

Fig. 3- Two-dimensional vehicle coordinate system (ISO 8855)

Fig. 2- The driving style pattern detection framework

 7

two consecutive time window by using Eq 2.

We used the implemented version of change detection

algorithm developed by Liu et al. [16]. Three dimensions

including velocity, x-axis acceleration and y-axis acceleration

are the input data and the change score is the output.

B. Two-stage Clustering

Once the data has been prepared for analytics, a two-stage

clustering algorithm categorizes the selected time windows into

groups. In this stage, we used SOM and a deep auto-encoder to

make a choice between them for subsequent clustering.

1) SOM

In our framework, the SOM is a lattice output space with a

rectangular topology. The first step is to generate an initial

SOM according to the number of input records. Then, one

sample driving event (record) is selected randomly, and its

similarity to all the rest of the SOM nodes is calculated in terms

of Euclidean distance. The node with the smallest distance is

selected as the best matching unit (BMU), and the selected

sample is assigned to that. The winner and its neighboring

nodes are then updated with the weight updating rule in Eq.4.

The process continues until all data have been assigned to a

corresponding node.

2) Deep Auto-encoder

The deep auto-encoder component consists of a number of

neural networks with randomly generated weight and bias

vectors, which are optimized during the training phase.

Following Liu et al. [39], we designed a deep network with four

encoder layers. The number of nodes in each layer are: 45 →

22 → 11 → 5 → 3 → 5 → 11 → 22 →45. Therefore, the

network extracts the features by using the encoder layers 45 →

22 → 11 → 5 → 3. The gradient descent optimizer is used to

minimize reconstruction errors.

The driving characteristics are denoted as 𝑋 ∈ ℝ 𝐷 ×𝑇 , where

𝐷 is the dimension of the input data, and T is the length of the

time window. For example, a driving event at time (t) is:

𝑋𝑡 = (𝑉1, … , 𝑉𝑇 , 𝐴𝑥1, … , 𝐴𝑥𝑇 , 𝐴𝑦1, … , 𝐴𝑦𝑇)

The activation function is a hyperbolic tangent so the value

of the input variables should be in the range (−1,1). Obviously,

the raw velocity and acceleration values will not fall within this

range, so the data needs to be normalized before running the

deep auto-encoder. We performed minimum and maximum

normalization to transform the value of each dimension into

(−1,1).
The input data for the first layer of the deep auto-encoder is

denoted as 𝑋𝑡, and the encoder function is

ℎ𝑡
𝑙 = tanh(W𝑒𝑛

𝑙 𝑋𝑡 + 𝑏𝑒𝑛
𝑙)

where W𝑒𝑛
𝑙 is a weight matrix for the encoder at the lth layer and

𝑏𝑒𝑛
𝑙 is the bias vector for the lth encoder layer.

The decoder function is a tanh function:

𝑟𝑡
𝑙 = tanh(W𝑑𝑒

𝑙 ℎ𝑡 + 𝑏𝑑𝑒
𝑙)

where W𝑑𝑒
𝑙 is the weight matrix and 𝑏𝑑𝑒

𝑙 is the bias vector.

An assumption during the encoder-decoder process is that the

output value of 𝑟𝑡
𝑙 is equal to 𝑥𝑡

𝑙. Thus, the objective function

needs to calculate the reconstruction error between 𝑟𝑡
𝑙 and 𝑥𝑡

𝑙:

𝑂(𝑉𝑙) =
1

𝑁𝑉
∑ ‖ 𝑟𝑡

𝑙 − 𝑥𝑡
𝑙‖

2

2𝑁𝑉
𝑡=1 (11)

where
1

𝑁𝑉
∑ ‖ 𝑟𝑡

𝑙 − 𝑥𝑡
𝑙‖

2

2𝑁𝑉
𝑡=1 is the average value of the squared

error between the reconstructed data and the input data.

A gradient descent optimizer with a learning rate of 𝜆 helps

to minimize the reconstruction errors. Finding the best learning

rate for a deep auto-encoder is typically very difficult and time-

consuming. Hence, we have opted for a linear grid search,

where the first learning rate considered is 𝜆∗ and the search

distance is 𝜃, which is very small. This results in a learning rate

of 𝜆+ = 𝜆∗ + 𝜃+. 𝜃 is updated with

𝜃+ = {
𝜃 𝑂(𝑉𝑙) ≥ 𝑂+(𝑉𝑙)

−0.5 × 𝜃 𝑂(𝑉𝑙) < 𝑂+(𝑉𝑙)
 (12)

The search stops when the change in the construction error

between 𝑂(𝑉𝑙) and 𝑂+(𝑉𝑙) falls below a set threshold.

The features extracted through this deep auto-encoder

process are then carried forward for use in the partitive

clustering step.

3) Clustering

The SOM and deep auto-encoder algorithms have reduced

the data to an abstract subspace. However, there will still be too

many points to analyze directly, so they need to be clustered

into similar groups. As mentioned in the Introduction, no

research has been undertaken to determine whether there is a

definitive best choice for clustering unlabelled telematics data.

Therefore, we conducted our own empirical study on this issue

with a range of different partitive clustering algorithms. Our

hope is to not just find the most suitable choice for our

framework, but to generate results that contribute to the debate

on which clustering algorithm(s) might be best for mobile

telematics data. The study is presented in Section IV.C.

V. IMPLEMENTATION AND DATA ANALYSIS

We implemented our framework in Python 2.7 on an Intel®

Xeon® 3.01 GHz CPU, 64 GB of RAM, and running a Linux

operating system. The software platform was Anaconda 2.7.

The specific implementations of the SOM library [46] and the

RuLSIF library [16]. The Tensorflow is used for deep auto-

encoder implementation.

A. Data Preparation

Our source data was a large-scale dataset collected by a

European insurance company containing trip data for over

Fig. 4-. A sample of change detection with one-dimensional time-series data.

𝓎(𝑡) is the input data at time t, 𝑌(𝑡) denotes k subsequences, and 𝑦(𝑡) is a

group of retrospective subsequences. The value of 𝑛 is equal to the window

size, and 𝑘 is the length of subsequence. In this example, k=3 three, but it is

possible for this value to be bigger.

 8

500,000 journeys from more than 2500 drivers. The

computational cost to process this entire dataset would be

extremely high. But, according to Dong et al. [35], each person

has their own driving patterns so no new useful information

would be gained by analyzing more than a few trips per driver.

We selected the 20 longest trips per driver to include in the

analysis. Thus, the final dataset contained 50,000 journeys (20

trips × 2500 drivers). Table I provides brief details about the

data used.
TABLE I: SELECTED DATASET

Trips Drivers

Journeys

per

driver

Traveling time (minute)

Min Average Max

50,000 2,500 20 23:21 26:13 30:00

To extract the driving characteristics from the trajectory data,

we split the data into three streams. The first stream was

velocity, containing the speed of a vehicle during a trip at any

given time. The second and third streams were acceleration

over the x and y axes. These streams were used to assess hard

breaking, sharp starts [13], and cornering behavior [2, 30].

To remove useless data, we divided the data into time

windows of approximately 15 seconds with a slide in steps of 1

second because, according to Zhang et al. [47], it takes at least

15 seconds to complete a single driving event. The RuLSIF-

based change detection scores were then calculated for each

time window. Fig. 5 shows the input and output of the RuLSIF

change detection algorithm with velocity, x-acceleration, and y-

acceleration as the three input variables. Fig. 5. shows the

change score for the corresponding time frame. Approximately

7.9 million time windows were assessed. Following Lee and

Jang [13], we selected the 5% with the highest RuLSIF scores

to represent the most significant changes, and further selected

all windows with a change score greater than a threshold of

68.598. This left 394,833 windows, each representing one

driving event with 15 seconds of data.

B. Two-stage Clustering

After preparing the data and selecting the time windows with

highest change score, the events were ready to analyze for their

driving characteristics. As mentioned, we used SOM to reduce

the complexity of data and deep auto-encoder to extract the

features. In SOM, defining a map with an appropriate number

of nodes is crucial because, when 𝑛 is small, the prototype will

be very generic and, when 𝑛 is very large, the prototype will be

very detailed. Therefore, to define an optimal number of nodes,

we followed Céréghino and Park [48] and identified a number

of nodes equal to 5 × √𝑛 where 𝑛 is the total number of

selected events. With 394,833 events, the optimal number of

nodes was 2814. The next challenge was defining an

appropriate map size for the input data. We selected a map size

of 21×134 based on the eigenvalues and eigenvectors [18].

After defining the SOM map, we designed the architecture of

the deep auto-encoder to have nine layers. In the training phase,

the model was taught to reduce reconstruction errors with a

gradient descent optimizer. After training the model, the

encoder layer extracted the features and, in so doing, reduced

the number of input features.

The second step in a two-stage clustering algorithm is

partitive clustering. In this step, we used various partitive

clustering algorithms to find the best clustering algorithm with

the highest performance. A key concern in developing a

partitive clustering algorithm is finding the optimal number of

clusters as a suitable number of clusters can improve

performance. However, because the number of clusters is

generally unknown in real-world problems, we developed

Algorithm 4 to address this issue. In brief, the algorithm applies

the sum of square error (SSE) and a bootstrapping technique to

find a robust result.

C. Performance Evaluation

To determine the optimal clustering algorithm for the

framework, and for mobile telematics data in general, we

compared five different partitive clustering algorithms against

three metrics with a five-fold cross-validation method and

Fig. 5- The change detection scores. The five shaded blue columns indicated a detected driving behavior that exceeded the change threshold (in this case 68.60).

All of these events have significant changes in driving behavior over velocity, x-acceleration, and/or y-acceleration. For example, the driver in Event 1 is driving
at high and radically varying speeds, with many variations in y-axis acceleration. Event 4 displays high variations in all the variables.

 9

Algorithm 3. The details follow.

The five algorithms we chose for comparison were k-means,

MINIbatch k-means, agglomerative clustering, spectral

clustering, and BIRCH clustering. After preparing data for

clustering using the SOM and DAE, we used the test samples

to compare the performance of the five models in terms of

execution time, the Calinski Harabasz, and the Davis Boulding

indexes.

1) Execution time is the total time to determine the results –

smaller values are better.

2) Calinski Harabasz (CH) is a score calculated by assigning

N data objects 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} to K different

clusters 𝐶 = {𝑐1, 𝑐2, … , 𝑐𝑛} using the following

equation [49]:

CH(k) =
𝑇𝑟(𝑆𝐵)

𝑇𝑟(𝑆𝑊)
×

𝑁 − 𝑘

𝑘 − 1

𝑇𝑟(𝑆𝐵) = ∑ 𝑁𝑖‖𝑚𝑖 − 𝑚‖2𝐾

𝑖=1
 (12)

𝑇𝑟(𝑆𝑤) = ∑ ∑ ‖𝑥𝑗 − 𝑚𝑖‖
2𝑁𝑖

𝑗=1
𝐾
𝑖=1

where k is the number of clusters, i is the number of items in a

cluster ni, and mi is the centroid of cluster i. Tr(SB) shows the

sum of between-cluster distances, and Tr(Sw) is the sum of

within-cluster distances.

3) Davies-Boulding (DB) is another performance index that

evaluates the clusters based on the sum of within-cluster

scatters and between-cluster separations [50]:

 DBI =
1

𝑛
∑ 𝑚𝑎𝑥𝑛

𝑖=1,𝑖≠𝑗 (
𝜎𝑖+𝜎𝑗

𝑑(𝑐𝑖,𝑐𝑗)
) (13)

where n is the number of clusters, 𝜎𝑖 is the average distance of

all members of the i-th cluster to the center of the j-th cluster,

and 𝜎𝑗 is the average distance of all members of cluster j to the

center of the i-th cluster. d(ci,cj) is the distance between the

center of the two clusters i and j [51, 52].

D. Experimental Results

The results of the comparison follow, starting with the Davis

Boulding index in Table II. As shown, SOM did better than the

deep auto-encoder with all five clustering algorithms. Within

SOM, the performance from best to worst was k-means, Birch,

MINIbatchKM, agglomerative, and spectral clustering.

Similarly, k-means clustering had an outstanding performance

in DAE part in comparison to others. Notably, k-means had the

lowest standard deviations and was also the most stable in

different folds with both SOM and the deep auto-encoder.

Therefore, from a Davis Boulding point of view, SOM + k-

means is the optimal choice.

The results against the Calinski Harabasz index are shown in

Table III. Again, k-means clustering had the highest average

CH score with a reasonable standard deviation with both SOM

and the deep auto-encoder. In this case, DAE+k-means

clustering placed first, followed by SOM+k-means. The

SOM+Spectral clustering is the third method with a high CH

score, but the standard deviation for this model is very high.

From a deeper analysis of each fold, we found this algorithm

was always unstable.

Algorithm 3: Performance validation algorithm

Input: selected events from change detection

Output: performance results
1. X = data from change detection

2. X_SOM =training SOM model

3. X_DEA = training Deep Auto-encoder

4. Clustering_methods = [K-means, MinibatchKM, Spectral, Agglomerative,

birch]

5. For fold in 5-fold cross validation for (X_SOM, X_DEA)

5.1. For clustering in Clustering methods

5.1.1. Finding optimal number of cluster for clustering by
using train data with algorithm 4

5.1.2. CH[clustering , fold] = the value of Calinski

Harabasz for current fold by using test data
5.1.3. DB[clustering , fold] = average value of Davis

Boulding for current fold by using test data

6. CH[clustering] = average of CH value in all folds for all
clutsering_methods

7. BD[clustering] = average of BD value in all folds for all

clutsering_methods

Algorithm 4: Finding optimal number of clusters
Input: low complexity data, max number of clusters C, max iterations n

Output: optimal number of clusters
1. X = data from SOM nodes

1.1. For k = 2 to C

1.1.1. For i = 1 to n

1.1.2. Di = Random under sampling for 80%

1.1.3. Clustering Di into k clusters

1.1.4. SSEi =Sum of Square errors

2. SSEk = 1 𝑁⁄ ∑ 𝑆𝑆𝐸𝑖

3. k = the first k which has the amount of improvement rather than previous k is

less than 1%

TABLE II- DAVIS BOULDING INDEX RESULTS

Feature

extraction Clustering Average Minimum Maximum std

S
O

M

K-means 0.120 0.112 0.130 0.008

MINIbatchKM 0.140 0.116 0.177 0.023

Spectral 0.172 0.125 0.305 0.075

Agglomerative 0.140 0.107 0.162 0.025

Birch 0.132 0.114 0.155 0.017

D
ee

p
 A

u
to

-e
n

co
d

er
 K-means 0.154 0.148 0.160 0.005

MINIbatchKM 0.165 0.142 0.189 0.018

Spectral 0.204 0.158 0.317 0.064

Agglomerative 0.169 0.138 0.199 0.028

Birch 0.159 0.140 0.184 0.019

TABLE III- - CALINSKI HARABASZ INDEX RESULTS

Feature

extraction
Clustering Average Minimum Maximum std

S
O

M

K-means 17,375.60 16,754.93 17,891.93 475.62

MINIbatchKM 15,136.85 14,784.21 15,765.54 381.08

Spectral 17,040.31 15,191.46 19,364.84 1962.88

Agglomerative 14,871.24 14,714.06 15,010.68 138.09

Birch 14,753.34 14,528.51 15,171.88 255.69

D
ee

p
 A

u
to

en
co

d
er

 K-means 18,242.75 17,248.70 18,967.43 640.11

MINIbatchKM 16,266.25 15,744.51 16,813.88 480.94

Spectral 16,292.00 14,336.08 18,900.63 1671.52

Agglomerative 15,582.44 15,178.67 16,010.59 408.40

Birch 15,522.14 15,035.29 16,199.02 457.58

 10

Table IV shows the execution times. Efficiency is an

important factor since data on driving characteristics tends to

be very large-scale, and running unsupervised learning

algorithms are prone to long runtimes.

As the results show, SOM had much faster running times

with all clustering methods than the deep auto-encoder. The

most important reason for this difference is that, with a deep

auto-encoder, one record equals one point while, with SOM,

one point equals an abstracted group of records.

Across all three metrics, the optimal clustering choice for

driving style pattern recognition is clear – SOM + k-means,

firstly because it had a very low DB index in comparison to

other methods, which means that the extracted clusters with

SOM+k-means are unique and they are less similar to other

clusters in comparison to other techniques [53]. In addition, CH

index in deep auto encoder is slightly better than SOM+k-

means, and this difference is not big enough to encourage us for

select this algorithm as the selected method while its

computation cost is very high and BD index is very low.

VI. EXTRACTED DRIVING PATTERNS

From the three tests in the previous section, we determined

that k-means in tandem with SOM was the best overall

algorithm for recognizing driving style patterns. The next step

is finding the optimal number of clusters. We used Algorithm 4

to determine the optimal number of clusters by using SOM+k-

means clustering algorithm. We found that the optimal number

of clusters was 29. Fig. 5 lists the sum of square errors for

different numbers of clusters in each iteration, showing 29 as

the optimum number of clusters, because 29 clusters does not

exceed the defined threshold of 1%, and it does meet the

stopping condition of less than 1% improvement.

Hence, we extracted 29 unique driving behaviors from our

data set. Each cluster is a group of time-series data and raw

numbers. As results, however, raw numbers do not mean much

to transportation experts so we need to understand each driving

pattern and find a meaningful name for each cluster. We

followed a matching algorithm to find a suitable label for each

driving behavior. In this algorithm, first, we reviewed various

driving behavior introduced by top-ranked, highly cited

publications and selected three papers to review: [1-3]. Second,

we developed a descriptive analytics to understand each

category using average, minimum, maximum, and standard

deviation across velocity, acceleration, x-axis and y-axis

acceleration. Then, we compared the similarity between the

extracted driving patterns and current driving behaviors in the

literature. We then selected the most similar pattern in the

literature as a representative of each category. Finally, we

named each cluster to reflect the name of the most similar

driving behavior found in the literature.

Algorithm 5: The matching algorithm
Input: Extracted driving behavior, current driving behavior in the

literature

Output: Corresponding driving pattern in the literature, and Name of

all clusters
1. DB = 29 extracted driving behaviors by SOM + k-means

2. DB_lit = various driving behavior in the current literature

3. For each driving_behavior in DB:

3.1. Developing descriptive analytics with minimum, maximum, average,

and standard deviation across all input variables

3.2. Corresponding_patterns[driving_behavior] = the most similar

pattern in the literature for driving_behavior

3.3. Names[driving_behavior] = finding a suitable name according to the

corresponding driving behavior

3.3.1. DB[clustering , fold] = average value of Davis

Boulding for current fold by using test data

4. Return Corresponding_patterns, names

After implementing algorithm 5, we understand the

characteristics of all 29 clusters. For example, Cluster 17

represents those who drive at very low speed with low

acceleration, and accounts for 16.5% of the events. This

behavior shows that these drivers have a tendency to stop the

vehicle. In another driving group, Cluster 29, the y-acceleration

TABLE IV- EXECUTION TIME RESULTS (MINUTES)

 SOM Deep Auto-encoder

K-means 40.87 180.93

MINIbatchKM 33.47 66.99

Spectral 82.35 250.70

Agglomerative 41.03 199.38

Birch 41.30 190.73

Fig. 6- Sum of Square error per number of cluster for SOM + k-means clustering

0.00%

25.80%

16.20%

12.94%

10.59%

6.48%
6.72% 6.23%

3.93% 4.39% 4.14% 3.82% 3.44% 3.17% 3.05%
1.99% 2.37% 2.31% 1.65% 1.78% 1.80% 1.11% 1.75% 1.64% 1.38% 1.25% 1.34%

0.82%

0%

5%

10%

15%

20%

25%

30%

0

5

10

15

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Im
p

ro
v
em

en
t

(c
o
m

p
ar

e
to

 p
re

v
io

u
s

st
ep

)

S
u

m
 o

f
S

q
u

ar
e

E
rr

o
r

(S
S

E
)

x
 1

0
0

0
0

Number of clusters

SSE results

improvement SSE

 11

is close to zero and the x-acceleration is higher than zero for a

short period of time, which is similar to the cornering behavior

described by Fazeen et al. [2]. The next group, Cluster 13, is

normal driving behavior, i.e., standard speeds with very low

acceleration, few changes, and a small standard deviation. Yu

et al. [3] describe this type of driving as “normal driving

behavior”. Cluster 8 exhibits swerving behavior as described by

Chen et al. [1]. The value of both x-axis and y-axis acceleration

have a high peak value with a high standard deviation. Drivers

in Cluster 2 exhibit weaving behavior at high speeds. They have

a very high variation between x- and y-axis acceleration. The

standard deviation of acceleration is very high, and the mean

value of acceleration is high [3]. Cluster 6 reflects sudden

breaking and accounts for 4.3% of the driving events. x-

acceleration remains unchanged while y- acceleration

significantly decreases, and the standard deviation of the y-

acceleration is high [1]. Cluster 26 is characterized by high

variations in both x- and y-acceleration. The velocity range is

medium, and the standard deviation of acceleration is high with

low acceleration. In the above, we explained the top clusters

that account for the 50% of driving events to describe how the

clustering results are matched with a corresponding name in the

transportation research. Additional information about all the

other clusters, along with the statistical results for each group,

are provided in the Appendix.

VII. CONCLUSION AND FURTHER STUDY

Understanding driving patterns with unsupervised learning

techniques is an underexplored area of research and finding the

best clustering algorithm with the highest performance and the

optimal number of clusters is still problematic. In this paper, we

proposed a framework to extract unique driving behaviors from

smartphones generated data. Previous research on driving style

analytics is largely based on laboratory simulations, site

investigations, or questionnaires. These datasets are completely

different from real-world data, which are mostly unlabeled.

Further, when real data is used, it comes from in-vehicle

recorders, which are expensive to install and limits the take-up

of telematics. Our framework, however, was developed using

real smartphone data rather than in-vehicle data recorders or a

synthetic dataset, which is less expensive.

In our framework, we used the relative unconstrained least-

squares importance fitting (RuLSIF) model as a change

detection algorithm to detect the most informative time frames

for recognizing driving characteristics. We used this algorithm

to decrease the complexity of clustering algorithms by

removing unnecessary time frames. A two-stage clustering

framework comprising SOM and a deep auto-encoder to reduce

the complexity of input data, after which the data can be

clustered for analysis with a partitive clustering algorithm.

From an evaluation of k-means, MINIbatch k-means,

agglomerative clustering, spectral clustering, and Birch

clustering, we find that SOM + k-means clustering is the

optimal choice for extracting driving patterns according to the

result of the Davis Boulding and Calinski Harabasz indexes and

execution time. The final clustering results revealed 29 unique

driving categories. We found the most similar driving patterns

in the literature for each cluster to identify a label for all the

extracted driving categories.

In the future, we plan to propose an unsupervised decision

support system that uses extracted driving categories as the

criteria for automatic decision making. To ensure the system is

comprehensive and effective, we will need to design a risk

assessment framework that can evaluate the probability and

severity of each pattern and calculate a risk score for each

unique behavior and, in turn, each driver. Fuzzy inference

systems will be our starting point in this endeavor. Moreover,

one of the most vexing challenges with using machine learning

techniques for driving style analytics is the lack of labeled data.

Thus, researchers in the field of transportation and road safety

could also use this framework to label unlabeled driving

patterns in telematics data. Once labelled, the data could be used

with a supervised learning technique with the most state of art

machine learning algorithms for various applications.

APPENDIX

TABLE V

FREQUENT DRIVING BEHAVIORS - PART I

C
lu

st
er

n
u

m
b
er

F
re

q
u
en

cy

P
er

ce
n

ta
g
e

(%
)

A
v

er
ag

e

sp
ee

d
 (

k
m

/h
)

A
v

er
ag

e

ac
ce

le
ra

ti
o
n

(m
/s

2
)

A
cc

el
er

at
io

n

st
d

Name Patterns of behavior

17 16.49% 1.961 -0.108 0.088 Warm stopping
Drivers in this group drive at low speeds with low deceleration and are prone to

stopping.

29 9.08% 45.808 0.353 0.202
Cornering with
medium speed

During cornering behavior, y- acceleration is close to zero. x-acceleration is high
with significant standard deviation [2].

13 6.68% 50.550 0.333 0.022
Driving at

normal speed

Drivers proceed at normal speed with very low acceleration and standard

deviation.

8 5.18% 39.130 0.011 1.288
Swerving at

medium speed
While swerving, x- and y-acceleration both have a high peak and high standard
deviation [1].

2 4.96% 80.925 0.002 2.225
Weaving at high

speed

There is high variation in between x- and y-acceleration. y-acceleration is very

smooth over an extended period. The standard deviation of acceleration is high,
but with a low mean [3].

11 4.59% 87.621 0.1114 0.163
Cornering at

high speed

During cornering, speeds are high and x-acceleration increases rapidly over a short

period of time, while y- acceleration is almost zero [3].

 12

REFERENCES

[1] Z. Chen, J. Yu, Y. Zhu, Y. Chen, and M. Li, "D 3: abnormal driving
behaviors detection and identification using smartphone sensors," in

2015 12th Annual IEEE International Conference on Sensing,

Communication, and Networking (SECON), 2015, pp. 524-532.

[2] M. Fazeen, B. Gozick, R. Dantu, M. Bhukhiya, and M. C. González,
"Safe driving using mobile phones," IEEE Transactions on Intelligent

Transportation Systems, vol. 13, pp. 1462-1468, 2012.

[3] J. Yu, Z. Chen, Y. Zhu, Y. J. Chen, L. Kong, and M. Li, "Fine-grained
abnormal driving behaviors detection and identification with

TABLE VI

FREQUENT DRIVING BEHAVIORS - PART II

C
lu

st
er

n
u

m
b
er

F
re

q
u
en

cy

P
er

ce
n

ta
g
e

(%
)

A
v

er
ag

e

sp
ee

d
 (

k
m

/h
)

A
v

er
ag

e

ac
ce

le
ra

ti
o
n

(m
/s

2
)

A
cc

el
er

at
io

n

st
d

Name Patterns of behavior

27 4.54% 70.784 -0.625 0.1769
Sideslipping

with high speed

y-axis acceleration fell down sharply, the minimum and average value of y-axis

acceleration is negative and x-axis acceleration is not near to zero[1].

23 4.49% 76.21 0.0315 2.2296
weaving with

high speed

There is high variation in between x- and y-acceleration. y-acceleration is very

smooth over an extended period. The standard deviation of acceleration is high,
but with a low mean [3].

27

6 4.37% 61.207 -2.258 1.257

Sudden braking

from a high
speed

During sudden braking, x-acceleration remains unchanged, and y- acceleration

decreases significantly. Standard deviation in y-acceleration is very high [1].

26 3.86% 56.389 0.190 2.039
Weaving at

medium speed

There is a high variation between x- and y-acceleration. y-acceleration is very

smooth over extended periods. The standard deviation of acceleration is high. The

mean value of acceleration is very low [3].

12 3.39% 65.784 -0.381 0.151
Cornering at

high speed

During cornering, speeds are high and x-acceleration increases rapidly over a short

period of time, while y- acceleration is almost zero [3].

18 3.10% 40.558 6.838 0.963

High

acceleration
behavior

Acceleration is high over a very short time reflective of sudden maneuvering

habits [2].

16 2.87% 95.259 0.242 0.123
Cornering at

very high speed

During cornering, speeds are very high and x-acceleration increases rapidly over a

short period of time, while y- acceleration is almost zero [3].

3 2.43% 8.499 -1.157 1.179
Cornering at

low speed
During cornering, speed is low and x-acceleration increases significantly for a
short period of time. y- acceleration is almost zero [3].

28 2.34% 26.679
0.27

8
1.307

Changing lanes

at low speed
Y-acceleration decreases before changing lanes and increases afterwards [2].

22 2.20% 32.458 -1.578 0.797
Sudden braking
from a medium

velocity

During sudden braking, x-acceleration remains unchanged, and y- acceleration
decreases significantly. Standard deviation in y-acceleration is very high [3].

14 1.95% 12.707 -6.173 1.730
Sideslipping

with low speed
y-acceleration decreases sharply with a high range in x-acceleration and negative
value. All these behaviors occur within a very short period [1].

9 1.88% 12.576 -7.108 1.836

Sudden braking

from a low

velociy

During sudden braking, the x-acceleration remains unchanged, and the y-

acceleration decreases significantly. The standard deviation of the y-acceleration

is very high [3].

10 1.82% 19.547 0.575 1.030
Left lane

change

A left lane change is formed by a small decrease in the value of x-axis

acceleration, followed by an increase in x-axis acceleration [2].

25 1.81% 40.335 6.273 2.628 Sudden starting Very high acceleration starting from a stop up to a very high average speed.

15 1.80% 56.533 -7.213 1.447

Sideslipping

with medium

speed

y-acceleration decreases sharply with a high range in x-acceleration and negative
value. All these behaviors occur within a very short period [1].

7 1.71% 34.481 1.096 1.616
Right lane

change

A right lane change is formed by a small increase in the value of x-axis

acceleration, followed by a decrease in x-axis acceleration [2].

1 1.63% 37.197 -2.111 0.842 Safe cornering Drivers drive at medium speed and decrease their speed before turning.

5 1.50% 107.15 5.160 0.154
Turning with a

wide radius

High and rapid x-acceleration with a y-acceleration of close to zero. The x-

acceleration mean is far from zero [3]

19 1.37% 32.098 -9.408 2.055 Unknown Driving pattern in this group is unknown and is not understandable for experts.

24 1.29% 44.609 -10.51 2.087 Fast U-turn

A rapid rise in x-acceleration to a very high value followed by a rapid drop to a

very low value for a short period of time. The standard deviation acceleration is
high [1].

4 0.98% 52.887 -6.621 1.975 Sudden braking
Speed decreases over a very short time. This type of sudden braking is much more

dangerous than in Cluster 6 because the deceleration is much higher.

20 0.96% 29.389 -1.064 1.131
Turn right
cornering

Drivers decrease their speed and acceleration changes from the x-axis to the y-
axis. This group could be merged with cluster number 26.

21 0.73% 120.49 -0.106 0.152

Very high speed

with low

decleration

Driving at very high speed without any significant changes.

This table shows the 29 clusters extracted with SOM+ K-means, which represent the driving patterns within our dataset. The average speeds and acceleration

values are the means of the velocity and instantaneous acceleration figures for all driving patterns in each group. The names for each group were derived from
the patterns and values at each cluster center with reference to previous studies in transportation.

 13

smartphones," IEEE Transactions on Mobile Computing, vol. 16, pp.
2198-2212, 2017.

[4] J. Wahlström, I. Skog, and P. Händel, "Smartphone-based vehicle

telematics: A ten-year anniversary," IEEE Transactions on Intelligent
Transportation Systems, vol. 18, pp. 2802-2825, 2017.

[5] P. G. Malalur, H. Balakrishnan, and S. R. Madden, "Telematics using

personal mobile devices," ed: Google Patents, 2013.
[6] J. Wahlström, I. Skog, P. Händel, B. Bradley, S. Madden, and H.

Balakrishnan, "Smartphone Placement Within Vehicles," IEEE

Transactions on Intelligent Transportation Systems, 2019.
[7] P. Desyllas and M. Sako, "Profiting from business model innovation:

Evidence from Pay-As-You-Drive auto insurance," Research Policy, vol.

42, pp. 101-116, 2013.
[8] Y. Zhao, "Telematics: safe and fun driving," IEEE Intelligent systems,

vol. 17, pp. 10-14, 2002.

[9] Y. Zhao, "Mobile phone location determination and its impact on
intelligent transportation systems," IEEE Transactions on intelligent

transportation systems, vol. 1, pp. 55-64, 2000.

[10] B. F. Bowne, N. R. Baker, D. L. Marzinzik, M. E. Riley, N. U.
Christopulos, B. M. Fields, et al., "Methods to Determine a Vehicle

Insurance Premium Based on Vehicle Operation Data Collected Via a

Mobile Device," ed: Google Patents, 2013.
[11] Y. Song, J. Lu, H. Lu, and G. Zhang, "Fuzzy clustering-based adaptive

regression for drifting data streams," Accepted by IEEE Transactions on

Fuzzy Systems, 2019.
[12] H. Guo, Y. Ji, T. Qu, and H. Chen, "Understanding and modeling the

human driver behavior based on MPC," IFAC Proceedings Volumes,
vol. 46, pp. 133-138, 2013.

[13] J. Lee and K. Jang, "A framework for evaluating aggressive driving

behaviors based on in-vehicle driving records," Transportation Research
Part F: Traffic Psychology and Behaviour, 2017.

[14] M. Basseville and I. V. Nikiforov, Detection of abrupt changes: theory

and application vol. 104: Prentice Hall Englewood Cliffs, 1993.
[15] N. Itoh and J. Kurths, "Change-point detection of climate time series by

nonparametric method," in Proceedings of the world congress on

engineering and computer science, 2010, pp. 20-23.
[16] S. Liu, M. Yamada, N. Collier, and M. Sugiyama, "Change-point

detection in time-series data by relative density-ratio estimation," Neural

Networks, vol. 43, pp. 72-83, 2013.

[17] T. Kohonen, "The self-organizing map," Proceedings of the IEEE, vol.

78, pp. 1464-1480, 1990.

[18] J. Vesanto and E. Alhoniemi, "Clustering of the self-organizing map,"
IEEE Transactions on neural networks, vol. 11, pp. 586-600, 2000.

[19] H.-k. Du, J.-x. Cao, Y.-j. Xue, and X.-j. Wang, "Seismic facies analysis

based on self-organizing map and empirical mode decomposition,"
Journal of Applied Geophysics, vol. 112, pp. 52-61, 2015.

[20] P. Mangiameli, S. K. Chen, and D. West, "A comparison of SOM neural

network and hierarchical clustering methods," European Journal of
Operational Research, vol. 93, pp. 402-417, 1996.

[21] H. Zhang, T. W. Chow, and Q. J. Wu, "Organizing books and authors by

multilayer SOM," IEEE transactions on neural networks and learning
systems, vol. 27, pp. 2537-2550, 2016.

[22] Q. Zhang, L. T. Yang, Z. Chen, and P. Li, "A survey on deep learning

for big data," Information Fusion, vol. 42, pp. 146-157, 2018.

[23] Y. Xiao and J. Yu, "Partitive clustering (K‐means family)," Wiley

Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol.

2, pp. 209-225, 2012.

[24] A. Fahad, N. Alshatri, Z. Tari, A. Alamri, I. Khalil, A. Y. Zomaya, et al.,
"A survey of clustering algorithms for big data: Taxonomy and empirical

analysis," IEEE transactions on emerging topics in computing, vol. 2, pp.

267-279, 2014.
[25] A. Namvar, M. Ghazanfari, and M. Naderpour, "A customer

segmentation framework for targeted marketing in telecommunication,"

in Intelligent Systems and Knowledge Engineering (ISKE), 2017 12th
International Conference on, 2017, pp. 1-6.

[26] N. Lu, H. Lin, J. Lu, and G. Zhang, "A customer churn prediction model

in telecom industry using boosting," IEEE Transactions on Industrial
Informatics, vol. 10, pp. 1659-1665, 2014.

[27] K. Wang, X. Qi, H. Liu, and J. Song, "Deep belief network based k-

means cluster approach for short-term wind power forecasting," Energy,
2018.

[28] S. Khanmohammadi, N. Adibeig, and S. Shanehbandy, "An improved

overlapping k-means clustering method for medical applications,"
Expert Systems with Applications, vol. 67, pp. 12-18, 2017.

[29] G. Vaia, E. Carmel, W. DeLone, H. Trautsch, and F. Menichetti,
"Vehicle Telematics at an Italian Insurer: New Auto Insurance Products

and a New Industry Ecosystem," MIS Quarterly Executive, vol. 11,

2012.
[30] P. Handel, I. Skog, J. Wahlstrom, F. Bonawiede, R. Welch, J. Ohlsson,

et al., "Insurance telematics: Opportunities and challenges with the

smartphone solution," IEEE Intelligent Transportation Systems
Magazine, vol. 6, pp. 57-70, 2014.

[31] Z. Shou and X. Di, "Similarity analysis of frequent sequential activity

pattern mining," Transportation Research Part C: Emerging
Technologies, vol. 96, pp. 122-143, 2018.

[32] C. Saiprasert, T. Pholprasit, and S. Thajchayapong, "Detection of driving

events using sensory data on smartphone," International journal of
intelligent transportation systems research, vol. 15, pp. 17-28, 2017.

[33] W. Wang and J. Xi, "A rapid pattern-recognition method for driving

styles using clustering-based support vector machines," in American
Control Conference (ACC), 2016, 2016, pp. 5270-5275.

[34] M. Henriksson, "Driving context classification using pattern

recognition."
[35] W. Dong, J. Li, R. Yao, C. Li, T. Yuan, and L. Wang, "Characterizing

Driving Styles with Deep Learning," arXiv preprint arXiv:1607.03611,

2016.
[36] W. Dong, T. Yuan, K. Yang, C. Li, and S. Zhang, "Autoencoder

regularized network for driving style representation learning," in

Proceedings of the 26th International Joint Conference on Artificial
Intelligence, 2017, pp. 1603-1609.

[37] M. Siami, M. Naderpour, and J. Lu, "A Choquet Fuzzy Integral Vertical
Bagging Classifier for Mobile Telematics Data Analysis," in 2019 IEEE

International Conference on Fuzzy Systems (FUZZ-IEEE), 2019, pp. 1-

6.
[38] L. Moreira-Matias and H. Farah, "On developing a driver identification

methodology using in-vehicle data recorders," IEEE Transactions on

Intelligent Transportation Systems, vol. 18, pp. 2387-2396, 2017.
[39] H. Liu, T. Taniguchi, Y. Tanaka, K. Takenaka, and T. Bando,

"Visualization of driving behavior based on hidden feature extraction by

using deep learning," IEEE Transactions on Intelligent Transportation
Systems, 2017.

[40] O. Shouno, "Deep unsupervised learning of a topological map of vehicle

maneuvers for characterizing driving styles," in 2018 21st International

Conference on Intelligent Transportation Systems (ITSC), 2018, pp.

2917-2922.

[41] T. T. Nguyen, P. Krishnakumari, S. C. Calvert, H. L. Vu, and H. van
Lint, "Feature extraction and clustering analysis of highway congestion,"

Transportation Research Part C: Emerging Technologies, vol. 100, pp.

238-258, 2019.
[42] Z. Zhou, W. Dou, G. Jia, C. Hu, X. Xu, X. Wu, et al., "A method for real-

time trajectory monitoring to improve taxi service using GPS big data,"

Information & Management, vol. 53, pp. 964-977, 2016.
[43] G. L. Foresti, M. Farinosi, and M. Vernier, "Situational awareness in

smart environments: socio-mobile and sensor data fusion for emergency

response to disasters," Journal of Ambient Intelligence and Humanized
Computing, vol. 6, pp. 239-257, 2015.

[44] Y. Kawahara and M. Sugiyama, "Sequential change‐point detection

based on direct density‐ratio estimation," Statistical Analysis and Data

Mining: The ASA Data Science Journal, vol. 5, pp. 114-127, 2012.

[45] S. Aminikhanghahi, T. Wang, and D. J. Cook, "Real-time change point

detection with application to smart home time series data," IEEE

Transactions on Knowledge and Data Engineering, 2018.

[46] M. Saraee, S. Vahid Moosavi, and S. Rezapour, "Application of Self

Organizing Map (SOM) to model a machining process," Journal of
Manufacturing Technology Management, vol. 22, pp. 818-830, 2011.

[47] X. Zhang, X. Zhao, and J. Rong, "A study of individual characteristics

of driving behavior based on hidden markov model," Sensors &
Transducers, vol. 167, p. 194, 2014.

[48] R. Céréghino and Y.-S. Park, "Review of the self-organizing map (SOM)

approach in water resources: commentary," Environmental Modelling &
Software, vol. 24, pp. 945-947, 2009.

[49] T. Caliński and J. Harabasz, "A dendrite method for cluster analysis,"

Communications in Statistics-theory and Methods, vol. 3, pp. 1-27,
1974.

[50] D. L. Davies and D. W. Bouldin, "A cluster separation measure," IEEE

transactions on pattern analysis and machine intelligence, pp. 224-227,
1979.

 14

[51] Z. Halim, M. Waqas, A. R. Baig, and A. Rashid, "Efficient clustering of
large uncertain graphs using neighborhood information," International

Journal of Approximate Reasoning, vol. 90, pp. 274-291, 2017.

[52] U. Maulik and S. Bandyopadhyay, "Performance evaluation of some
clustering algorithms and validity indices," IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 24, pp. 1650-1654, 2002.

[53] Y. Liu, Z. Li, H. Xiong, X. Gao, and J. Wu, "Understanding of internal
clustering validation measures," in 2010 IEEE International Conference

on Data Mining, 2010, pp. 911-916.

Mohammad Siami is currently pursuing a

PhD with the Decision Systems and e-

Service Intelligent (DeSI) Research

Laboratory, Center for Artificial

Intelligence, Faculty of Engineering and

Information Technology, University of

Technology Sydney, Australia. He has ten

years of experience in solving risk

assessment with artificial intelligence and machine learning

techniques in financial service companies including banking

and insurance. His current research interests include artificial

intelligence, machine learning, and smartphone data analytics.

Mohsen Naderpour (M’16) received his

PhD from the University of Technology

Sydney and currently is a Lecturer at the

School of Information, Systems and

Modelling. He is also a core member of the

Centre for Artificial Intelligence and the

Center for Advanced Modelling and

Geospatial Information Systems. Mohsen

began his professional life as a safety professional in high risk

industries including transportation and oil before taking up a

position in academia as a research fellow with the Global Big

Data Technologies Centre at UTS. His research areas include

decision support systems, risk analysis, uncertain information

processing, and data analytics.

Jie Lu (F’18) received her PhD in

information systems from Curtin

University, Australia, in 2000. She is

currently a Distinguished Professor,

Director of the Center for Artificial

Intelligence, and the Associate Dean

(Research Excellence) of the Faculty of

Engineering and Information Technology, University of

Technology Sydney, Australia. She has published 10 research

books and over 400 papers in refereed journals and conference

proceedings, with over 170 papers in IEEE Transactions and

other international journals. She has received over 20

Australian Research Council Discovery Project grants and

many other research projects. Her current research interests

include fuzzy transfer learning, decision support systems,

recommender systems, and concept drift. Prof. Lu is a fellow of

the International Journal of Fuzzy Systems. She has served as a

guest editor of 12 special issues and general/PC/organization

chairs for 10 international conferences and delivered 20

keynote/plenary speeches at the IEEE and other international

conferences. She serves as an Editor-in Chief for Knowledge-

Based Systems (Elsevier, the International Journal on

Computational Intelligence Systems (Atlantis) and is an

Associate Editor for IEEE Transactions on Fuzzy Systems.

