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Asthma is a heterogeneous, chronic inflammatory disease of the airways. It is a complex 
disease with different clinical phenotypes and results in a substantial socioeconomic 
burden globally. Poor understanding of pathogenic mechanisms of the disease hinders 
the investigation into novel therapeutics. Emerging evidence of the unfolded protein 
response (UPR) in the endoplasmic reticulum (ER) has demonstrated previously unknown 
functions of this response in asthma development. A worsening of asthmatic condition 
can be brought on by stimuli such as oxidative stress, pathogenic infections, and aller-
gen exposure. All of which can induce ER stress and activate UPR leading to activation 
of different inflammatory responses and dysregulate the innate immune functions in the 
airways. The UPR as a central regulator of asthma pathogenesis may explain several 
unknown mechanism of the disease onset, which leads us in new directions for future 
asthma treatments. In this review, we summarize and discuss the causes and impact 
of ER–UPR in driving the pathogenesis of asthma and highlight its importance in clinical 
implications.
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iNTRODUCTiON

Asthma is considered as one of the top five respiratory diseases in the world, and it affects 334 million 
people globally (1). The World Health Organization estimates that nearly 250,000 people die from 
asthma each year, worldwide (2). Asthma is a chronic inflammatory airways disease, in which clini-
cal manifestations result from airway obstruction, airway hyperresponsiveness (AHR) and airway 
inflammation (3). It is associated with recurrent symptoms such as wheezing, dyspnea (shortness of 
breath), chest tightness, and cough. The asthmatic airway is characterized by an increased infiltration 
of eosinophils, neutrophils, macrophages, activated mast cells, and T helper cell type 2 (Th2) cells (4). 
The large airways manifest several structural changes that include a higher collagen deposition under 
the basal epithelium, increased airway smooth muscle, and an increased number of blood vessels (5). 
Asthma can be triggered by various stimulants such as indoor allergens (house dust mites), outdoor 
allergens (pollens and molds), tobacco smoke, chemical irritants, air pollution, virus infections, 
cold air, stressors causing emotions such as anger or fear, and physical exercise. Certain medications 
can also exacerbate asthma, such as aspirin and other non-steroid anti-inflammatory drugs, and 
beta blockers (6). Asthma is characterized with Th2 immune responses in a large proportion of 
patients. Th2 based cytokines, such as interleukin (IL)-4, IL-5, IL-9, and IL-13, are known to promote 
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eosinophilic inflammation and immunoglobulin E (IgE) produc-
tion by mast cells. IgE enhances the production of inflammatory 
mediators such as histamine, which triggers bronchospasm and 
mucus secretion from goblet cell, all of which are hallmark features 
of asthma (7, 8). The transcription factor GATA3 that promotes 
the expression of IL-4/-5/-13 from Th2 cells and facilitates the 
differentiation of naive T cells toward Th2 phenotype. GATA3+ 
T cells have been shown to be increased in the airways of stable 
asthmatic patients and were associated with increased levels of 
Th2 cytokines (9, 10). The alarmin IL-33 has also shown a role in 
promoting the differentiation of Th2 and type 2 innate lymphoid 
cells (11). In addition, recent studies have shown that Th17, Th9, 
and regulatory T cells (IL-10 and transforming growth factor-β 
(TGF-β) producing cells) also contribute to the pathogenesis of 
asthma (12–14).

The unfolded protein response (UPR) in the endoplasmic 
reticulum (ER) has been identified as a master regulator in 
several inflammatory diseases (15). It is an important adap-
tive response that provides protein translation and folding 
homeostasis, regulates immune responses to various exogenous 
stimuli such as allergens and pathogens, and serves as a deci-
sion point of flight-or-die response. The inflammation or cell 
death induced by UPR is a driving factor for neurodegen-
erative diseases (Alzheimer’s disease and Parkinson’s disease), 
metabolic diseases (type II diabetes), and inflammatory diseases 
(type I diabetes and inflammatory bowel disease), etc. (15). 
Manipulation of ER chaperon activity to regulate the protein 
folding and avoid protein aggregation has been used as a thera-
peutic approach for abovementioned diseases (15). While UPR 
has a decisive role in various molecular events, the role of UPR 
and how UPR dysregulation contributes to the pathogenesis 
of asthma remains unclear. The cells of the asthmatic airway, 
exposed to chronic inflammation with recurring cycles of dam-
age and repair, are likely to be exposed to high levels of ER/UPR. 
Emerging evidence of in vitro and in vivo experiments further 
suggests a robust correlation of UPR in asthma development. 
Therefore, insights into the UPR in the regulation of asthma 
would be important to reveal unknown function in disease 
development. In this review, we discuss the roles of UPR with 
the aim to better understand the dynamics of UPR in asthma 
and potentially identify novel therapeutic approaches.

eR STReSS AND iTS ROLe iN iMMUNiTY 
AND iNFLAMMATiON

eR–UPR Signaling Pathways
The ER is mainly responsible for the biosynthesis, trafficking, and 
posttranslational modification of secreted and transmembrane 
proteins. The ER ensures release of properly folded proteins via 
secretory pathways, while improperly folded proteins degrade 
through ER-associated degradation (ERAD), or autophagy 
(16). ER homeostasis can be disturbed by physiological and 
pathological insults such as high protein demand, viral infections, 
environmental toxins, and inflammatory cytokines (17) resulting 
in a high proportion of misfolded or unfolded proteins in the 
ER. Accumulation of misfolded or unfolded proteins inside the 

ER leads to a series of adaptive mechanisms termed the UPR, 
which restores protein folding homeostasis (18). There are three 
transmembrane proteins that exist in the ER lumen that detect 
ER stress; inositol-requiring protein 1α (IRE1α), protein kinase 
RNA-like endoplasmic reticulum kinase (PERK), and activating 
transcription factor 6α (ATF6α). These transmembrane proteins 
act as sensors of ER stress and are held in check by physical 
interaction with the chaperone protein immunoglobulin binding 
protein (BiP). Once ER stress is induced, the UPR is triggered 
to restore protein folding homeostasis by controlling protein 
translation, increasing folding capacity, or activating ERAD. If ER 
stress cannot be resolved, then apoptosis is triggered to remove 
stressed cells and avoid harmful effects of misfolded proteins (19).

Activating transcription factor 6 is a leucine zipper protein 
and a type II ER transmembrane protein. When misfolded 
proteins accumulate inside the ER, BiP (also known as GRP78 
and HSPA5) dissociates from ATF6 allowing it to interact with 
misfolded proteins (20). Consequently, ATF6 translocates into 
the Golgi and is processed by proteases S1P and S2P (Figure 1). 
As a result, the N-terminal cytosolic domain of ATF6 translo-
cates to the nucleus and induces transcription of a number of 
UPR genes, including acute phase response (APR) associated 
genes (21).

Inositol-requiring protein 1 is a type 1 ER transmembrane 
protein that is activated by the dissociation of BiP from its 
luminal domain. Accumulated misfolded proteins associate with 
IRE1α resulting in oligomerization and autophosphorylation 
of the kinase domain and activation of RNase domain of IRE1α 
(Figure  1). This induces splicing of X-box binding protein 1 
(XBP1) mRNA to express transcriptional factors and upregulates 
UPR genes related to protein folding, protein secretion, and  
ERAD (22). Chronic persistence of ER stress activates IRE1 to 
interact with tumor necrosis factor associated factor 2 (TRAF2) 
leading to the activation of downstream apoptosis signal regulating 
kinase 1 (ASK1)–JNK signaling pathway to trigger apoptosis (23).

Protein kinase RNA-like endoplasmic reticulum kinase is 
the third arm of the UPR and is a type I ER transmembrane 
protein activated by recognizing misfolded proteins inside the 
ER, followed by oligomerization and autophosphorylation. This 
activation triggers phosphorylation of eukaryotic initiation fac-
tor 2α (eIF2α) that attenuates protein translation to control the 
protein load of the ER (Figure  1). In addition, eIF2α activates 
the translation of eIF2α-activating transcription factor 4 (ATF4) 
that in turn activates transcription of several UPR related genes, 
including ERAD, that then leads to autophagy, apoptosis, and 
redox homeostasis (24).

Recognition of ER stress by the aforementioned ER trans-
membrane proteins within the ER lumen has been described 
(19). Originally, it was believed that dissociation of BiP from 
ER transmembrane sensors during ER stress initiates the UPR 
(25). However, recent studies indicate that BiP is not the only 
chaperone initiating the UPR for all ER transmembrane sensors 
(26). This model of UPR activation showed that the unfolded 
proteins directly bind to either IRE1-α or PERK. This interac-
tion of unfolded proteins with these luminal domains induces 
conformational changes and oligomerization to also initiate the 
UPR. It is likely that direct binding of unfolded or misfolded 
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FigURe 1 | The unfolded protein response (UPR) signaling pathways. Upon endoplasmic reticulum (ER) stress, ER resident chaperon BiP dissociates from ER 
transmembrane sensors and binds with misfolded or unfolded proteins that accumulate within the ER. BiP dissociation activates UPR to correct the protein folding 
or if unresolved leads to cell death. The activation of three main signaling branches of the UPR; protein kinase RNA-like endoplasmic reticulum kinase (PERK), 
activating transcription factor 6α (ATF6α), and inositol-requiring protein 1α (IRE1α) lead to attenuate protein translation, increase the misfolded protein degradation 
(ER-associated degradation), increase protein folding via activating numerous protein chaperons, induce various inflammatory responses and if unresolved cell 
apoptosis and autophagy.
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proteins to IRE1/PERK determined by the nature of the protein as 
IRE1 is intolerance for acidic residues and favorable for basic and 
hydrophobic residues (27). The third model of UPR activation 
proposes that both BiP dissociation and direct binding of peptides 
cause the UPR activation (28), which could be a more reliable and 
efficient way of handling unfolded/misfolded proteins as it can 
detect wide range of unfolded proteins via BiP or direct binding.

UPR and immunity
The UPR is involved in regulating several innate and adaptive 
immune pathways. Classically, the UPR was considered an adap-
tive response triggered by ER stress to restore the protein folding 
inside the ER. However, recent findings have revealed a plethora 
of signaling pathways associated with UPR, which have been 
implicated in various developmental disorders, and immune 
responses.

Although in most of cells UPR signaling cascades activate in 
conditions of ER stress, in some cells the UPR is activated as a 
normal cellular process regardless of ER stress (29). For instance, 
the IRE1–XBP-1 signaling pathway has been shown to play an 

essential role in the differentiation of B  cells to plasma cells. 
Knockdown of XBP-1 in B cells drastically minimizes immuno-
globulin production. The plasma cell population in lymph nodes, 
spleen, bone marrow, or the lamina propria of the gut were all 
reduced in the absence of XBP-1, suggesting XBP-1 is an essential 
molecular switch for plasma cell generation (30). Further, the 
absence of XBP1 has been shown to enhance the expression of 
IRE1, which triggers regulated IRE1-dependent decay (RIDD). 
This activation cleaves the mRNA of secretory μ chains in plasma 
cells and consequently reduces IgM levels (31). In addition, in 
both conventional and plasmacytoid dendritic cells, XBP-1 play 
a central role in cell development and survival (32). Lymphoid 
chimeras lacking XBP-1 demonstrated decreased numbers of 
both conventional and plasmacytoid DCs with reduced survival 
both at baseline and in response to TLR signaling. By contrast, 
overexpression of XBP-1 in hematopoietic progenitors rescued 
and enhanced DC development (32). IRE1–XBP-1 axis has also 
been shown to be critical in the biology of CD8α+ conventional 
DCs (cDCs). A deficiency of XBP-1 affects antigen presentation, 
phenotypes and ER homeostasis of CD8α+ cells but curiously not 
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in the closely related CD11b+ cDCs, highlighting the importance 
of XBP-1 in a subset of specific DCs (33). Brunsing et al. dem-
onstrated that IRE arm is activated in the CD8+ cytotoxic T-cell 
population; however, it was not detected in mature CD4+ T-cell 
populations, suggesting that XBP1 splicing is important during 
early stages of both B and T cell development (34). In addition, 
XBP-1 splicing is upregulated in antigen-specific CD8+ T  cells 
during viral and bacterial infection. XBP-1 splicing enhances the 
level of killer cell lectin-like receptor G1 in CD8+ T cells during 
viral infection and contributes to the differentiation of end-stage 
effector CD8+ T cells (35). Therefore, UPR activation is a require-
ment of several components of immune system and dysregulation 
of UPR could results various immunological disorders.

eR Stress Regulates inflammation
The ER stress has been shown to be an important regulator 
for numerous chronic diseases including: inflammatory bowel 
diseases, atherosclerosis, type II diabetes, cancer, liver diseases 
such as non-alcoholic fatty liver disease, alcoholic liver disease, 
hepatitis C virus (HCV)/HBV infection, and neurodegenera-
tive diseases such as Alzheimer’s disease, Parkinson’s disease, 
and amyotrophic lateral sclerosis (36–39). ER stress regulates 
inflammation by activating numerous inflammatory signaling 
pathways, and increased inflammation can reciprocally induce 
the ER stress (40). These inflammatory signaling pathways 
converge at NF-κB, the master transcriptional factor of pro-
inflammatory cytokines. In response to ER stress, IRE1α 
interacts with TRAF2 and recruits IκB kinase, which leads to 
phosphorylation and degradation of IκB and the subsequent 
nuclear translocation of NF-κB. The IRE1α–TRAF2 complex 
can also recruit ASK 1, and subsequent activation of JNK 
and AP1 also interacts with nuclear NF-κB and induce the 
expression of pro-inflammatory cytokines (41). In addition, 
the spliced XBP1 in IRE1α arm can directly induces the tran-
scription activation of pro-inflammatory genes such as IL-6 
and TNF (42).

The PERK–eIF2α branch of UPR activates NF-κB via an 
alternative mechanism. Activation of the PERK–eIF2α affects 
protein translation, resulting in downstream effects of the NF-κB 
to IκB ratio, favoring NF-κB-dependent transcription (43). In 
addition, the ATF4, downstream of PERK activation, directly 
acts as a transcription factor for IL-6 (44). The ATF6α branch of 
the UPR also activates NF-κB through an alternative mechanism, 
via phosphorylation of the serine/threonine kinase Akt (Akt) 
(PI3K pathway) and degrading NF-κB inhibitor, IκB (Figure 1)  
(45, 46). In addition, ATF6α can trigger an APR, which amplifies 
the pro-inflammatory response upon infection (40).

Activation of NLRP3 inflammasome by the UPR has been 
reported (47–49). Chronic irremediable ER stress has been 
shown to induce thioredoxin-interacting protein via IRE1α to 
activate NLRP3 inflammasome and promote apoptosis (49). 
Moreover, Bronner et al. demonstrated that ER stress modulates 
the inflammasome by initiating mitochondrial damage via 
IRE1α pathway. IRE1α induces the release of mitochondrial 
danger-associated molecular patterns by NLRP3–caspase2–bid 
signaling, which activates inflammasome (50). By contrast, 

Menu et  al. showed that ER stress induced NLRP3 inflamma-
some is independent of UPR (47). Absence of UPR effectors 
IRE1α, PERK, ATF6, or CHOP did not affect the activation of 
NLRP3 by ER stress. However, it shared the same requirement 
for reactive oxygen species (ROS) production and potassium 
efflux to activate the NLRP3 inflammasome. Therefore, they sug-
gest ER stress activates NLRP3 inflammasome via mitochondria 
without the involvement of the classical UPR signaling cascade 
(47). These variable observations could be due to different sever-
ity and longevity of ER stress exposure in different cell types used 
in different experiments. Therefore, further investigations would 
be important to understand how different conditions of UPR 
regulate inflammasome.

The link between ER–UPR and the induction of type I and 
III IFNs is not as clear. UPR-inducing agents tunicamycin and 
thapsigargin treatment do not induce the expression of these 
IFNs. However, when tunicamycin or thapsigargin treated cells 
were then treated with lipopolysaccharide (LPS) or a synthetic 
RNA poly I:C, IFN-β production was substantially increased. 
This increase was also accompanied with inductions of pro-
inflammatory cytokines including IL-6 and TNF-α (51, 52).

This was in contrast with another study that showed that ER 
stress was sufficient to activate IRF3 phosphorylation. ER stress/
UPR-mediated phosphorylation of IRF3 appears to be depend-
ent on the type of the ER stress (53, 54). Dysregulated Ca2+ 
signaling (by thapsigargin, an SERCA pump inhibitor) appears 
to activate intracellular DNA sensing STING–TBK1–IRF3 path-
way, whereas tunicamycin (N-linked glycosylation inhibitor) 
activates IRF3 in a STING-independent, but ATF6-dependent 
pathway (54). The exact molecular signaling pathways that con-
nects the UPR to STING is currently unclear, but may involve 
cGAS–cGAMP–STING pathway if ER stress/UPR is induced by 
DNA viruses. Therefore, this emphasizes the dynamics of UPR in 
response to various stimuli, and may potentially induce different 
arms of UPR in response to different stimuli.

eR STReSS iN ASTHMA

Chemical Chaperones inhibit eR Stress 
and Control Asthma Pathogenesis
Ova-induced mouse models of allergic asthma, have implicated 
ER stress playing a role along with heightened NF-κB-mediated 
inflammation in the airways (55, 56). Mice sensitized with 
ovalbumin (OVA) and LPS, followed by another challenge with 
OVA (OVALPS–OVA mice), showed enhanced ER stress/UPR 
markers; BiP, CHOP, ATF6α, XBP1 and p-eIF2α in lung tissue, 
increased infiltration of inflammatory cells, and enhanced 
inflammatory cytokines in BAL fluid. Interestingly, 4-phe-
nylbutyric acid (4-PBA) treatment, a chemical chaperone that 
inhibits ER stress/UPR, reduces NF-κB activity, inflammatory 
cytokines production (IFN-γ, IL-4, IL-5, IL-13, TNF-α, IL-1β, 
and IL-17), inflammatory cell infiltration in the lung, TLR4 
expression, and bronchial hyperresponsiveness in OVALPS–OVA 
mice. Induction of ER stress by tunicamycin exposure enhances 
asthma like responses in OVALPS–OVA mice, suggesting that 
accumulation of misfolded/unfolded proteins in ER could be 
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FigURe 2 | ORMDL3 induced unfolded protein response (UPR) signaling in airway epithelium. ORMDL3 is highly induced by allergens and interleukin (IL)-4/13 via 
STAT6 activation. Upregulated ORMDL3 negatively regulates the Ca2+ influx in endoplasmic reticulum (ER) by inhibiting the sarco-endoplasmic reticulum Ca2+ 
ATPase 2b (SERCA2b) activity and reducing the uptake of cytoplasmic Ca2+ into the ER. This results in activation of the protein kinase RNA-like endoplasmic 
reticulum kinase (PERK) signaling branch of the UPR leading to the attenuation of protein translation. SERCA dysfunction increases the cytoplasmic Ca2+ level and 
thereby and thereby initiate cellular apoptosis via Bax/Bak signaling. Increased ORMDL3 and Lyn kinase activity have also been show to activate the ATF6 branch of 
UPR resulting in increases of inflammatory cytokines secreted and mucus hypersecretion.
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aggravating the asthmatic condition. In addition, upregulated 
UPR in human asthmatic patient samples, specifically in BALF 
and PBMC, was also identified (55). These results suggest that 
ER stress may play an important role in asthma pathogenesis, 
at least in part by regulating NF-κB activity. Concluding the 
overall results with neutrophilic asthma mice models, authors 
suggest that pharmacological interventions such as 4-PBA may 
prove to be a better strategy to control neutrophilic-dominant 
severe asthma (55).

A UPR was also seen to be significantly increased in the 
lungs of OVA sensitized and challenged mice (OVA–OVA 
mice) (56). This UPR was characterized by the initial increase 
in ER resident chaperones, such as GRP78, GRP94, and sub-
sequent expression of the maladaptive UPR marker CHOP. 
Interestingly, the asthma like phenotype characterized by 
histological/biochemical markers and AHR become more 
prominent under maladaptive UPR conditions, indicating the 
presence of chronic ER stress in asthma. Pretreatment (pre-
ventive regimen) in mice with chemical chaperones [glycerol, 
trehalose, and trimethylamine-N-oxide (TMAO)] that increase 
the protein folding capacity of the ER reduced the maladap-
tive UPR, resulting in less severe AHR, inflammation, mucus 
metaplasia, and collagen deposition. Moreover, the therapeutic 
application of chaperones (4-PBA and TMAO) with ongoing 
allergen challenge, effectively controlled the maladaptive 
UPR response and abovementioned asthmatic features. This 

highlights the potential of targeting ER/URP as therapeutic 
intervention for asthma (56).

Upregulated ORMDL3 Activity induces  
the eR Stress in Asthma
ORMDL3 is an ER resident transmembrane protein that can 
be induced by allergens, IL-4/-13 via STAT6 activation (57) 
and has been associated with asthma susceptibility (58–60). 
ORMDL3 negatively regulates calcium (Ca2+) influx in the ER 
and promotes UPR activation. ORMDL3 directly interacts and 
inhibits the activity of sarco-endoplasmic reticulum Ca2+ ATPase 
2b, impeding the uptake of cytoplasmic Ca2+ into ER, therefore 
leading to increased PERK–eIF2a and UPR activity (Figure  2) 
(61). The reduced activity of SERCA by ORMDL3 may contribute 
to airway remodeling in asthma as Ca2+ homeostasis in airway 
smooth muscles is important for airway remodeling, regulating 
cell proliferation, cell spreading, and pro-inflammatory cytokine 
release (62). Overexpression of ORMDL3 results in a decrease in 
Ca2+ levels in the ER, leading to increased cytosolic Ca2+, which 
in turn activates apoptosis, via Bax and Bak (Figure 2) (63). Cells 
deficient in both Bax and Bak are resistant to ER stress/UPR-
mediated apoptosis. The asthmatic bronchial epithelium has 
been shown to have increased expression of ORMLD3, and this 
is associated with dysregulated Ca2+ homeostasis and increased 
ER stress/UPR (64).
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eR Stress and Mucus Hypersecretion  
in Asthma
Asthma is characterized by mucus hypersecretion. The mucin 
gene, MUC5AC, a low-charge glycoform of MUC5B, and MUC2 
are highly expressed in the asthmatic epithelium (65). Martino 
et al. demonstrated that the ER stress transducer IRE1-β is crucial 
for mucin production in the human primary bronchial epithelial 
cells. This IRE1-β-dependent mucin production relies on XBP-1 
splicing and transcriptional activation of anterior gradient 
homolog 2, which is a key initiative factor in airway and intes-
tinal mucin production. Intriguingly, the expression of IRE1-β 
in human asthmatic epithelium is significantly higher than the 
non-asthmatic epithelium suggesting that the increased IRE1-β 
expression in asthma is associated with increased mucus produc-
tion and goblet cell metaplasia (66). Knockdown of IRE1-β con-
siderably reduced the number of goblet cells, MUC5B/MUC5AC 
expression, and IL-13 expression in mouse OVA model. IRE1-β 
does not regulate BiP, ATF4, or CHOP activity, but it specifically 
enhances the XBP-1 splicing and this regulates the transcriptional 
activity of mucin genes. Drugs specifically targeting IRE1-β activ-
ity may be potential anti-mucus therapeutic agents, to reduce 
mucus overproduction in asthma and other inflammatory airway 
diseases (66).

Kaempferol is a natural plant-derived flavonol, which is an 
antioxidant and a possible cancer treatment. Kaempferol has 
been shown to act as an inhibitor of ER stress induced mucus 
production in the airway epithelium (67). An epithelial cell line 
(BEAS-2B cells) when treated with tunicamycin or TGF-β showed 
increased UPR and MUC5AC induction. Similarly, OVA sensi-
tized BALB/c mice showed goblet cell hyperplasia, mucus hyper-
secretion, enhanced XBP1, and IRE1-α activity suggesting the 
direct link between UPR and mucin upregulation. Interestingly, 
treatment with kaempferol significantly reduced the ATF6 and 
IRE1-α branches of the UPR and blocked IRE1α–TRAF2–JNK 
activation. As a result, this impaired the XBP1 splicing and tran-
scriptional activation of MUC5AC (67).

Upregulation of Lyn kinase activity has been shown to 
suppress mucus hypersecretion by downregulating the IL-13 
induced ER stress in a mouse OVA model. Lyn overexpressed 
transgenic mice sensitized and challenged with OVA displayed 
reduced airway inflammation mucus production, goblet cell 
population and UPR (68). Similarly, Lyn kinase overexpression 
in IL-13 treated bronchial epithelial cells also showed reduced 
UPR, inflammation, and mucin markers. These effects are 
comparable to the effect of 4-PBA, which is a well-known ER 
stress inhibitor suggesting that Lyn kinase worked similarly 
to 4-PBA to alleviate ER stress. Lyn overexpression or 4-PBA 
treatment reduces the activation of PI3K p85α and Akt and con-
sequently limits the UPR. Reduced UPR downregulates NF-κB 
p65 expression and its transcriptional activation of MUC5AC 
and subsequent mucus production (68). Thus, increased UPR 
in asthma models, particularly via the IRE1 pathway, may 
contribute to the heightened inflammatory response and mucus 
hypersecretion. Inhibition of IRE1 therefore poses as a potential 
therapeutic option to reduce these two important hallmark 
features of asthma.

eR Stress is evident in Allergic Lung 
inflammation in Fungal Asthma
Airborne fungal species such as Alternaria, Aspergillus, 
Cladosporium, and Penicillium may trigger worsened asthma.  
It is reported that globally more than 6.5 million people have severe 
asthma with fungal sensitizations, up to 50% of adult asthmatics 
attending secondary care have fungal sensitization, and 4.8 mil-
lion adults have allergic bronchopulmonary aspergillosis (69–71).  
A mouse model was used to demonstrate that Aspergillus fumigatus 
(AF) could induce eosinophilic steroid refractory asthma associ-
ated with increased ER stress (72). AF exposed mice and murine 
primary tracheal epithelial cells demonstrated an increased 
expression of UPR markers; GRP78, CHOP, p-IRE1-α, p-eIF2α, 
XBP1, ATF4, and enhanced PI3K-δ activity. Interestingly, inhibi-
tion of PI3K-δ reduced the AF induced UPR and inflammation. 
Treatment with 4-PBA significantly reduced the AF induced lung 
inflammation. These results suggest that AF exposure in lungs 
induces allergic inflammation by activating PI3K-δ pathway and 
UPR. Similar to what was seen with OVA and LPS, enhanced 
UPR upregulates the nuclear translocation of NF-κB ultimately 
increasing the inflammatory response (72). Alternaria-induced 
allergic airway disease has been associated with ORMDL3 activity. 
Upon Alternaria exposure, ORMDL3 activates the UPR via the 
ATF6 pathway by increasing the transcription of ER-associated 
protein degradation pathway specific genes (Edem-1). This in 
turn upregulates the expression of the inflammatory cytokine 
IL-6. ORMDL3 deficiency protected mice from developing 
Alternaria-induced AHR, the cellular stress, while overexpression 
of ORMDL3 enhanced allergic symptoms (73).

Allergens induce eR Stress  
in the Airway epithelium
House dust mite (HDM) is a frequent and important, trigger 
of allergic asthma and exposure results in activation of innate 
immune responses, the production of cytokines that can regulate 
subsequent activation of T  cells, mucus metaplasia, inflamma-
tion, AHR, and fibrosis (74, 75). HDM exposure to primary nasal 
epithelial cells, BECs or mice challenged with HDM elicited a 
robust ER stress/UPR (76, 77) via increasing the phosphorylation 
of IRE1 (p-IRE), and expression of ER chaperone BiP, GRP94, 
and ERp57. HDM also activates the ATF6α pathway, its down-
stream transcriptional effector CHOP, caspase-3 activity and 
consequently leads to apoptosis. Knockdown of ATF6α or ERp57 
significantly reduced HDM-induced apoptosis by decreasing 
CHOP expression, caspase-3 activity, and partially reduced 
airway inflammation and AHR. However, GRP78/GRP98 path-
ways of UPR were not affected by ATF6α/ERp57 knockdown. 
Similarly, human asthmatic airway epithelial cells were shown 
to have increased activity of ERp57, which was further elevated 
following HDM exposure. In murine model of HDM sensitized 
allergic asthma, elevated ERp57 in the epithelial cells was associ-
ated with heightened airway inflammation, AHR, and fibrosis  
(by increased collagen depositions) (76).

Chemical chaperones have been tested to control the UPR and 
reduce HDM-induced asthmatic features. Tauroursodeoxycholic 
acid (TUDCA) is an inhibitor of ER stress/UPR and is clinically 
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used in the treatment of cholelithiasis and cholestatic liver diseases 
(78). Siddesha et al. demonstrated that TUDCA administration 
to HDM challenged mice markedly attenuates the HDM-induced 
airway inflammation, mucus metaplasia, ER stress markers, AHR, 
and airway fibrotic remodeling (79). While the molecular mecha-
nisms of TUDCA-mediated reduction of ER–URP in asthma is 
unclear, a study showed that TUDCA inhibited H2O2-induced 
PERK and IRE1 signaling, which led to reduced ROS production 
and apoptosis in a mouse models of ischemia (80).

Cigarette Smoke induces eR Stress  
in Airway epithelium
Exposure to cigarette smoking is a significant factor in the devel-
opment of poor asthma control and acute exacerbations (81). 
Cigarette smoke results in oxidative damage, inducing the release 
of pro-inflammatory cytokines and epithelial permeability, all of 
which contributes to the exacerbations and worsening of airway 
inflammation in asthma.

Cigarette smoke has been shown to activate the PERK–eIF2α 
pathway, CHOP induction, and upregulation of BiP (82, 83).  
In addition, cigarette smoke-induced phosphorylation of ERK1/2 
and activation of NF-κB that leads to the induction of several 
inflammatory signaling pathways (84). It is currently unclear if 
cigarette smoke causes heightened UPR and contributes to the 
pathogenesis of asthma, further investigations are needed to 
delineate the roles of cigarette smoke-induced UPR in asthma 
pathogenesis.

virus-induced UPR in Asthma
Viral infections are known to induce ER stress/UPR. Viruses 
hijack the host cellular machineries to produce viral proteins; 
this places a heavy demand on the protein folding mechanisms 
in ER, resulting in high ER stress and UPR (85). Hassan et al. 
showed that influenza A virus (IAV) infection in human tracheo-
bronchial epithelial cells induces ER stress and the IRE1α arm 
of UPR (86). It increased the expression of CHOP and XBP1 
splicing but did not affect PERK or ATF6α signaling, therefore 
leading to the activation of inflammation and apoptosis, but 
not protein translation inhibition and ERAD. Treatment with 
TUDCA or IRE1α inhibitor significantly reduced viral protein 
synthesis and viral replication (86). This indicates that enhanced 
ER stress is favorable for IAV infection.

Activation of PERK and consequent UPR by vesicular stoma-
titis virus and HCV has been shown to result in degradation of 
interferon-alpha/beta receptor alpha chain (IFNAR1) in a ligand-
independent manner. Infection activated PERK and increased 
ligand and Jak-independent phosphorylation of IFNAR1, 
resulting in IFNAR1 ubiquitination and degradation. This led to 
inhibition of IFN signaling and increased viral replication (87).

As PERK activation results in the arrest of protein translation, 
viruses such as IAVs have evolved to inhibit PERK activation to 
promote viral protein production. IAV produces a non-structural 
1 protein that not only inhibits type I and III IFN production (88), 
but has also been shown to activate p58IPK, an inhibitor of pIF2α 
phosphorylation and activation (89–91). NS1–p58IPK interac-
tion therefore suppresses PERK-mediated inhibition on protein 

translation, and it is likely that the asthmatic bronchial epithelial 
cells are more vulnerable to the immunomodulatory effect of 
NS1. Picornaviruses, such as rhinovirus, however, have been 
suggested to benefit from autophagy because they require double-
membraned vesicles such as autophagosomes as sites of RNA 
replication. Activation of IRE1α and autophagy by these viruses 
such as rhinoviruses (RVs) is therefore likely to promote their 
infection and replication (92) in asthmatic bronchial epithelium.

Individuals with asthma are highly vulnerable to the effects of 
viral infections such as RV and IAV, and virus-induced exacerba-
tions causes exaggerated airway inflammation, mucus hypersec-
tion and AHR. Despite heightened inflammatory response, 
asthmatic patients have been shown to have impaired antiviral 
response, particularly the production of type I and III IFNs, and 
apoptosis (93, 94). The molecular mechanisms underpinning 
these abnormal immune responses in asthma are currently 
unclear, and UPR could be at the core of this imbalanced immune 
responses. In asthmatic bronchial epithelium, increased UPR 
may result in increased ATF6 and IRE1-mediated NF-κB activa-
tion and inflammation, while activated PERK leads to IFNAR1 
ubiquitination and degradation, thereby reducing antiviral 
responses. This could prime the epithelial microenvironment to 
be more susceptible to viral infections.

Indeed, allergens such as HDM and cigarette smoke extracts 
have all been shown to activate the UPR in the airways. As 
asthmatic bronchial epithelial cells have increased expression/
activity of ATF6α and XBP1, it is possible that asthmatic bron-
chial epithelium is primed to respond more vigorously in terms 
of inflammation. ORMDL3 expression has also been found to 
be increased in asthmatic bronchial epithelial cells, contributing 
to the enhanced ATF6α-driven inflammatory responses while 
increasing protein folding capabilities to RV infection (58–60). 
PERK-activation-mediated IFNAR1 degradation could con-
tribute to impaired antiviral immunity in asthma during viral 
infection (87, 95). Nevertheless, molecular mechanisms of the 
impaired antiviral immunity in asthma remain to be determined.

eR STReSS/UPR RegULATeS OXiDATive 
STReSS AND MiTOCHONDRiAL 
FUNCTiON iN ASTHMA

Oxidative stress is heightened in the asthmatic airways (96–99). 
Endogenous and exogenous ROS such as superoxide anion, 
hydroxyl radical, hypohalite radical, and hydrogen peroxide, and 
reactive nitrogen species (RNS), such as nitric oxide, peroxynitrite, 
and nitrite, play a major role in the airway inflammation (100). 
Activated airway inflammatory cells and resident airway cells can 
equally contribute the pool of ROS production (101, 102).

The ER provides a unique oxidizing environment for protein 
folding. During disulfide bond formation, ROS are produced 
inside the ER, and it has been suggested that oxidation of cysteine 
residues during disulfide bond formation may significantly 
contribute to oxidative stress (103). Accumulation of unfolded 
(due to high demand) or misfolded (due to oxidation) proteins 
inside the ER lumen can produce large amount of H2O2 and 
can lead to depletion of glutathione (GSH) that is essential for 
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redox homeostasis (104). In addition, the mitochondria produce 
more ROS by taking up Ca2+ released from the ER under stress. 
Excessive Ca2+ results in the release of cytochrome C from the 
mitochondria that then inhibits complex III of electron transport 
chain (ETC), leading to increased production of ROS. Moreover, 
Ca2+ stimulates the Krebs cycle dehydrogenases and enhances 
the production of ROS. It activates nitric oxide synthases, which 
disrupt the ETC and produce ROS (105, 106). Activation of 
CHOP as a proapoptotic regulator of the UPR also increases ROS 
by upregulating Ero1α, an oxidoreductase that relays disulfide 
bonds to protein disulfide isomerase (107). Activation of the 
PERK arm of the UPR subsequently activates ATF4 and NRF2, 
both transcription factors that trans-activate antioxidative stress 
response genes, including SODs, hemeoxygenase-1, glutathione 
transferase, and uncoupling mitochondrial protein 2 (108). 
Treatment with antioxidants has been shown to inhibit ER stress, 
suggesting a reciprocal relationship between ROS and ER stress 
(109, 110).

Recurrent exposure to oxidative stress may lead a serious 
damage to the asthmatic airways and the dysregulation of vari-
ous biological functions (111–118). Heightened oxidative stress 
could result in mitochondrial dysfunction in asthma (119–121). 
Notably, ROS and RNS play a major role in airway inflammation 
and the pathogenesis of asthma (122, 123). Mitochondria closely 
associate with ER through mitochondrial-associated membranes, 
which are important for many cellular functions such as the regu-
lation of Ca2+ signaling, lipid transport, energy metabolism, and 
cell survival (124). Activation of different branches of the UPR 
can interfere with mitochondrial function. For example, ATF4 
regulates the ubiquitin ligase Parkin, a crucial regulator of mito-
chondria function and dynamics (125). ATF6 is also associated 
with the activation of PCG1α (peroxisome proliferator-activated 
receptor gamma, coactivator 1 alpha), a master regulator of 
mitochondrial biogenesis (126). Similarly, enhanced UPR pro-
motes degradation of deSUMOylating enzyme SENP3, leading 
to enhanced SUMOylated Drp-1 that promotes cytochrome C 
release and caspase-mediated cell death (127). In addition, some 
of mitochondrial proteins regulate UPR signaling. For instance, 
mitochondrial fusion protein Mfn2 deficiency leads to enhanced 
PERK activity and mitochondrial dysfunction. Silencing of PERK 
results in reduced ROS production, normalized mitochondrial 
Ca2+ and improved mitochondrial morphology, suggesting that 
PERK is a key regulator of mitochondrial morphology and 
function (128). Given the close connection between ER and 
mitochondria, activation of UPR could lead to mitochondrial 
dysfunction and worsen the disease process in asthma.

APOPTOSiS, UPR, AND ASTHMA

Apoptosis is a form of programmed cell death, which cells 
activate intracellular pathways to terminate themselves in a 
systematic fashion. Apoptosis occurs as a normal cellular func-
tion in response to various stimuli such as virus infection (129). 
Apoptosis is crucial for development, and for maintaining cel-
lular homeostasis in multicellular organisms. It is considered to 
be a fundamental pathway of the host innate immune response 
to virus infections. Failure of a cell to undergo apoptosis, when 

necessary, leads to several neurological and immunological 
disorders and infectious diseases (130). Apoptosis is induced by 
either an extrinsic or intrinsic pathways. The extrinsic pathway is 
triggered by the binding of death ligands to their receptors such as 
TNFα and TFNR1, and TNF-related apoptosis-inducing ligand 
and DR4/5, leading to activation of caspase 9. The intrinsic path-
way is initiated by the mitochondria in response to death stimuli 
generated within the cell, resulting in the release of cytochrome 
C into the cytoplasm (131).

Prolonged activation of ER stress induces apoptosis when 
adaptive UPR is unable to resolve the ER stress. Chronic non-
resolving ER stress has been reported to be a key feature of 
numerous chronic conditions; such as neurodegenerative disease, 
diabetes, atherosclerosis, and renal disease (132). In asthma, the 
non-resolving ER-UPR stress is likely causing chronic activation 
of IRE1 and CHOP signaling.

Dysregulated apoptosis has been identified as a key driver in 
asthma pathogenesis. Loss of the normal bronchial pseudostrati-
fied epithelium and thickened basement membrane with few 
basal cells has been reported to be a feature of asthmatic epithe-
lium. Trautmann et  al. demonstrated that asthmatic bronchial 
epithelium is characterized by heightened apoptosis triggered by 
IFN-γ, and TNF-α secreted by activated eosinophils and T cells. 
Moreover, TNF receptors, but not Fas, have been shown to play a 
role in triggering apoptosis in the asthmatic bronchial epithelium 
(133). Further, this epithelial apoptosis could be associated with a 
loss of E-cadherin in asthmatic patients (134). Cohen et al. dem-
onstrated increased apoptosis in severe asthmatics but not in mild 
asthmatics (135). White further suggested that bronchial epithe-
lial cell apoptosis was associated with the chronicity and severity 
of asthma (136). Therefore, the normal regulation of apoptosis is 
important for disease control in asthma. However, the ER stress 
induced apoptosis in asthma is poorly studied. Further studies 
are required to elucidate the role of ER stress induced apoptosis 
in different asthma phenotypes.

CONCLUSiON AND FUTURe DiReCTiONS

The ER is a dynamic organelle that ensures cellular homeostasis 
is established in protein translation/folding, inflammation, and 
apoptosis, particularly in response to allergen and pathogens. 
The signaling arms of the ER and their sophisticated functions 
position ER as an important stress sensor and reactor. Abnormal 
ER function and UPR may well contribute to the disease process 
in asthma. Asthma is a chronic airways disease with features 
including heightened inflammation, increased cellular oxidative 
stress, mucus hypersecretion, and impaired antiviral response. 
All of these responses may be adversely influenced by ER–UPR 
in asthma (Figure 3).

It is unclear if UPR signaling is abnormally regulated in 
asthma, although ORMDL3 has been shown to be increased in 
asthmatic bronchial epithelial cells, which leads to increased 
ATF6-mediated ER stress and UPR. Chronic ER stress/UPR 
could prime the airway cells to be more responsive to allergens or 
pathogens, leading to exaggerated inflammation, heightened oxi-
dative stress, and reduced antiviral responses. Upon exposure to 
these stimuli, the activation of the UPR signaling arms may then 
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cause a vicious cycle of continuous UPR–stress–inflammation– 
mucus production (Figure 3). Impaired antiviral responses would 
also prime the epithelial environment to be more beneficial for 
viral replication, which would further increase ER load. When ER 
fails to regain homeostasis, UPR–apoptosis is then triggered.

While the ER and UPR have been taken the attention of 
investigators in the areas of diabetes and cancer, the roles of 
many of these signaling activities in asthma have received less 
attention. In, particularly how the ER may prime the cellular 
environment to be hyperresponsive to external stimuli and cause 
acute exacerbations. Chemical chaperones such as TUDCA and 
4-PBA have been shown to have promising effects in reducing 
ER–UPR and airway inflammation, mucus metaplasia in asthma 
models. The Food and Drug Administration has approved 
TUDCA and 4-PBA for the treatment of primary biliary cir-
rhosis and urea cycle disorders, respectively (137). Small scale 
clinical trials demonstrate that treatment of TUDCA might have 
an effect on improving the liver and muscle insulin sensitivity by 

modulating ER stress (138) and oral 4-PBA treatment provides 
benefits by alleviating the lipid-induced insulin resistance and 
β-cell dysfunction caused by ER stress in humans (139). Thus, 
pharmacological inhibitors based on TUDCA and 4-PBA could 
be safe potential therapeutic agents for small scale clinical trials 
for asthma in near future.

In summary, ER stress may play a central role in regulation 
of pathogenesis of asthma; further investigations of role of ER 
stress/UPR in asthma would be inevitably helpful to identify 
potential therapeutic strategies in the asthma development or 
treatment.
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