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ABSTRACT Local delivery of anticancer drug in tumor using miniaturized implants over a prolonged
period of time is a powerful treatment strategy that provides lower toxicity and higher drug bioavailability
compared to conventional systemic chemotherapy. Prediction of anticancer drug distribution in tumor
following implantation of the drug implant is necessary to improve and optimize the implantable drug
delivery systems (IDDSs). In this paper, we develop mathematical and stochastic simulation models for
the prediction of spatiotemporal concentration of anticancer doxorubicin following implantation of a dual-
release implant in an isolated tumor microenvironment (TME). Our model utilizes mathematical convolution
of the channel impulse response (CIR) with the drug release function based on the abstraction of molecular
communication. The derived CIR can be used to obtain drug concentration profile in the surrounding tissue
for various release profiles and different anticancer drugs. We derive closed-form analytical expression for
anticancer drug concentration. The required release rates are obtained by fitting the experimental data on
dual-release implant available in the literature to a mathematical expression. In addition, we also present a
particle-based stochastic simulator and compare the results with those predicted by the analytical model. The
accuracy of predictions by both the models is further verified by comparing with the published experimental
data in the literature. Both the proposed models can be useful for the design optimization of the implantable
drug delivery systems (IDDSs) in tumors and other tissues and can potentially reduce the number of animal
experiments thus saving cost and time.

INDEX TERMS Cancer, concentration profile, drug delivery, doxorubicin, implant, molecular communica-
tion, stochastic simulation, tumor microenvironment.

I. INTRODUCTION
Cancer is a group of diseases characterized by uncon-
trolled growth and spread of abnormal cells [1]. Cancer can
be treated using many treatment modalities, e.g., surgery,
chemotherapy, etc. Although systemic drug delivery (conven-
tional chemotherapy) is a preferred and widely used tech-
nique for anticancer drug administration, it suffers from poor
drug bioavailability due to high elimination, enzymatic degra-
dation, and other barriers as well as toxic side-effects due to
accumulation in other healthy parts of the body [2]. Many
alternative techniques of drug delivery for cancer treatment
have already been introduced to overcome these limitations.

The associate editor coordinating the review of this manuscript and
approving it for publication was Mohammad Upal Mahfuz.

Drug delivery from a miniaturized implant is one such tech-
nique which not only offers an efficient alternative but also
can act as adjunctive therapy to other treatment techniques,
particularly when the conventional therapies fail or can’t
be applied [3]. Also, the implantable drug delivery systems
(IDDSs) have been found to offer lower toxicity and higher
drug bioavailability compared to systemic chemotherapy [4].
In IDDS approach, the anticancer drug will be gradually
delivered inside the tumor over a prolonged period of time,
that may range from days to years without having to pass
through the endothelial barrier of the tumor vasculature.
In addition, the same implant could release a combination
of different types of drugs. A polymeric membrane with
controlled drug release was first proposed by Folkman and
Long in 1964 who examined the use of silicone rubber
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(Silastic R©) for prolonged systemic drug administration [5].
Later, degradable polymer implants such as Gliadel R© poly-
mer and poly (lactic-co-glycolic acid) (PLGA) polymer have
been clinically approved [6], [7].

Cancer cell death depends on the concentration of anti-
cancer drug in its vicinity, where a minimum threshold level
of drug concentration is required to destroy the cells. Drug
concentration in tumor depends on the various biochemical
and biophysical processes, such as drug release rate, diffusion
properties of the environment, and drug elimination rate [8].
Knowledge of the spatiotemporal drug concentration profiles
inside human tissues would be useful to design the IDDS
and to minimize toxic levels at the healthy cells. Direct
measurement of drug concentration in human tissues could
be difficult and can’t be readily obtained. Mathematical and
stochastic models can be used to help understand and predict
spatiotemporal drug distribution following insertion of drug
implants in tumors. These models can be used together with
both the animal experiments and clinical trials to improve the
drug delivery system. Further, they may help to extend the
in vivo results from animal models directly to humans thus
offering a direct link between the laboratory experiments and
clinical applications.

Most of the mathematical and simulation models for the
transport and distribution of anticancer drugs in tumors are
limited to systemic administration, i.e., via blood. A number
of experimental studies have been reported on the measure-
ment of drug concentration due to insertion of drug implants
in tumors, e.g., [7], [9]–[21]. However, only a few studies
on mathematical modelling of drug distribution due to tumor
implants exist in the literature. A finite-difference numerical
(computational) model for drug distribution and elimination
in the vicinity of a polymer implant was developed in [22].
Analytical expressions for the prediction of the drug concen-
tration of Carmustine (BiCNU R©) in rat and monkey brain
tissues were derived analytically in [23]–[25]. However, these
models assume either a constant drug release pattern at the
implant/tissue interface or use steady-state approximations.
Numerical models for prediction of the transport parameters,
e.g., diffusivity and elimination rate, following the release
of doxorubicin (DOX) from dual-release polymer implant in
liver tissues were proposed in [14], [19], [20]. In [26], [27],
prediction of drug transport and clearance in the brain fol-
lowing drug release from polymers was obtained numerically
using the finite-element method. The effect of various fac-
tors on the delivery of BCNU drug to brain tumors using
polymers was examined using a computational finite-element
model in [28]. A computational fluid dynamic model was
developed for investigating the suitability of the transport of
various chemotherapeutic drugs using polymeric wafers in
brain tumor [29]. However, all these models use numerical
methods to obtain solutions, thus lending themselves to many
simplifying approximations that might reduce the accuracy
of their prediction. Also, most of the reported models resort
to unrealistic modelling of the release rate function; e.g.,
choosing either a constant or a simple decaying exponential

function for the release rate. However, in most realistic drug
implants, the drug release rate decreases with time after the
insertion of the implant in the tissue. Thus, it is essential that
the drug release models closely follow the release patterns
revealed in the experimental investigations.

FIGURE 1. Molecular communication abstraction of implantable drug
delivery system in a spherical tumor microenvironment. Created with
BioRender.

In this paper, we propose novel analytical and stochastic
simulation models for anticancer drug delivery into tumors
using implantable drug delivery devices. Our models are
aided by the abstraction offered by the molecular commu-
nication paradigm. The main contributions of this paper can
be summarized as follows: (1) development of a new mathe-
matical model for drug release and distribution of anticancer
drug doxorubicin (DOX) following implantation of dual-
release drug-loaded implant in the tumor using the molecular
communication (MC) paradigm coupled with the convolution
approach. The convolution approach is more general than
the classical compartmental modeling approach [30]. The
anticancer drug (DOX) is chosen because it is widely used
in chemotherapy due to its efficacy in destroying a wide
range of cancers [31]. In the MC paradigm, the implant is
abstracted as a transmitter while the target site, i.e., malignant
cell, is treated as a molecular receiver, as shown in Fig. 1.
From the perspective of MC, DOX molecules represent the
information molecules which are transported from the trans-
mitter to the receiver. Here, the tumor microenvironment
(TME) represents the propagation channel in which DOX
molecules get randomly diffused from the transmitter to the
receiver. (2) Another original contribution made in this paper
is the modelling of the dynamics of drug release from the
polymer implant as well as the distribution and elimination of
drug molecules within the tumor tissue. (3) Development of
convolution modelling by the derivation of a channel impulse
response (CIR) to characterize the system components is
another contribution of this paper. In contrast to other existing
models, the analytical model proposed in this paper offers
a more general approach for obtaining the spatiotemporal
drug concentration profile to any drug release function of the
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implant based on the convolution with the derived CIR in the
time domain. (4) We employ realistic drug release rate func-
tion to develop a closed-form analytical expression for anti-
cancer drug concentration profile in the tumor. This is done by
fitting a mathematical function to the published experimental
release data of dual-release implant [7]. (5) A stochastic
random walk diffusion simulation model is also proposed for
tracking the random Brownian motion of the molecules. The
development of this stochastic model is completely indepen-
dent of the proposed analytical model. Hence the stochastic
model can be used to validate the analytical model. To the best
of our knowledge, no stochastic simulation models have been
reported so far for the release and distribution of anticancer
drug in tumors using IDDSs.

The proposed analytical and stochastic models can help to
predict the spatiotemporal drug concentration levels in the
tumor and the surrounding healthy tissues, which helps to
optimize the design of the IDDSs. Further, these models can
also potentially contribute to reducing the number of exper-
imental (or clinical) trials and thus will save time and cost.
The proposed models can also be generalized to include drug
transport in other tissues and even for delivering different
drug molecules just by incorporating the tissue and drug-
specific characteristic parameters.

The remainder of this paper is organized as follows. The
mathematical derivation of the CIR and the release kinetic
model are presented in section II. Also, the spatiotemporal
drug concentration profile in the tumor is obtained by apply-
ing the convolution integral between the CIR and the release
rate function. In section III, we describe the development
of the stochastic particle-based simulator for DOX drug dis-
tribution in the vicinity of the implant and the surrounding
tissue. Results obtained by both the analytical and stochastic
simulation models are presented in section IV. These results
are also compared with the experimental data extracted from
the published literature [19]. Finally, a discussion is presented
in section V, where the key contributions are highlighted.

II. DEVELOPMENT OF ANALYTICAL MODEL
In this section, we derive the spatiotemporal concentra-
tion profile in tumor tissues analytically. This is done by
convolving the implant release function with the derived
channel impulse response (CIR). Here, the drug source is
assumed to be a miniaturized spherical implant located inside
a spherically shaped isolated tumor, as shown schematically
in Fig. 1. The implant is surrounded by biological tumor
tissue, composed of cells and an extracellular space (ECS)
filled with extracellular fluid (ECF). The implant is assumed
to be loaded with anticancer drug doxorubicin (DOX) that is
immediately released from the polymer into the vicinity of
the implant after implantation. The released drug (DOX) will
transport through the ECS (via diffusion and convection) and
it may uptake by the cells through passive, active, or facil-
itated transport paths. Moreover, drugs could be eliminated
into the systemic circulation via diffusion across the semiper-
meable membranes of capillaries. Also, drug molecules may

be converted into other compounds due to various factors
such as enzymes. Some molecules could bind to immobile
elements in the surrounding tissue. All these processes could
affect therapeutic efficacy.

Tumor tissues can be treated as porous media because the
length scale of the intercapillary distances (i.e., the average
distances between the capillaries) is much smaller than the
length scale of the tumor radius [32]. Moreover, the tumor
is assumed to be isolated from the surrounding healthy tis-
sues [32]. We assume that the interstitial velocity field is
very small and can be neglected throughout most parts of
the tumor tissue. Therefore, drug transport in the interstitial
space (porous medium) and drug elimination in tumor tis-
sue are mathematically governed by the following diffusion
equation:

∂C
∂t
= D∇2C − γC (1)

where ∇2 is Laplacian operator, C is the spatiotemporal dis-
tribution (concentration) of drug molecules in tumor tissue,D
is the diffusion coefficient of the drug in tumor tissue in the
unit of (m 2/s), γ is the first-order elimination rate constant
of drug due to various elimination processes, and t is the time
after implantation.

When the binding/uptake process is much faster compared
to the diffusion process, the local equilibrium between the
free and bound molecules will be attained [33]. Therefore,
the apparent diffusion coefficient (ADC) and the apparent
first-order elimination rate constant can be expressed as fol-
lows, respectively, [20], [22]

D =
Dw

kbind + 1
(2)

γ =
γw

kbind + 1
(3)

where, Dw and γw is the drug diffusivity and lumped first-
order elimination rate constant without including the binding
effect. The parameter kbind is the first-order binding constant
of drug molecules with the target sites in the environment,
e.g., cells, proteins, etc.

In the implantable drug delivery systems (IDDSs),
the rapid elimination (perfusion) of drug molecules through
capillaries is the most significant factor that affects the drug
distribution. Assuming that the concentration of drug in the
blood is small compared to that in the tissue and that the drug
in the tissue is low enough for any enzymatic reactions, the
elimination kinetics can be approximated to follow a first-
order process [22], [26]. The elimination rate constant of the
drug in the tumor can be defined as

γw = γv + γe + γo (4)

where, γv is the drug loss rate constant due to perfusion
through the capillaries (circulatory system), γe is the drug
degradation rate constant due to the enzymatic reaction, and
γo is the drug degradation rate constant due to other non-
enzymatic factors. In this paper, we assume the drug loss
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rate due to lymphatic drainage to be equal to zero, due to a
lack of lymphatic system inside the tumors [13], [34]. The
chemical alteration or degradation of drug molecules due to
metabolism, such as enzymatic reaction, may convert drug
molecules into other inactive substances.

A. CHANNEL IMPULSE RESPONSE
Assuming the tumor to be spherically shaped, Eq. (1) can be
expressed in the spherically symmetric coordinate system, as

∂ (rC (r, t; r0, t0))
∂t

= D
∂2 (rC (r, t; r0, t0))

∂r2
− γ rC (r, t; r0, t0) (5)

where C (r, t; r0, t0) is the distribution of drug molecules at
time t at radial position r from the center of the implant due
to release of drug molecules at time t0 at a radial position
r0. This distribution represents the final channel impulse
response (CIR).

To obtain the CIR, the anticancer drug DOX is instanta-
neously released at the time t = t0 at the spatial location
r = r0 from the implant. Thus, the following initial condition
is applied:

C (r, t → t0) = δ (r − r0) δ (t − t0) (6)

where r0 is the implant radius and δ(·) is Dirac Delta function.
In this model, two boundaries must be characterized,

namely, the inner boundary at the center of the implant and
the outer boundary at the tumor surface. Drug concentration
is assumed to be finite at the center of the implant. This is
applied via the following additional boundary condition:

C (r, t; r0, t0) is finite at r → 0 (7)

Robin boundary condition [35], [36], is chosen as a general
flux boundary condition at the outer surface of the tumor.

−D∇C (r, t; r0, t0)|r=rt = ω C (r, t; r0, t0)|r=rt (8)

where ω is the loss rate at the tumor boundary in the units
of m/s. As a special case, by adjusting the loss rate ω, Robin
boundary condition can be reduced either to a fully permeable
(perfect-sink) case or an impermeable (no-flux) case.

The drug distribution at the location r and at the time t
due to an instantaneous drug release from a point-like source
at the position r = r0 and at the time t = t0 inside an
unbounded medium can be written following [37], but only
after the inclusion of a general initial releasing time and an
elimination rate term as

Cu =
1

(4πD(t − t0))3/2
exp

(
−
‖r − r0‖2

4D(t − t0)
− γ (t − t0)

)
(9)

where, ‖r − r0‖ is the separation distance between the drug
point source and the observation point.

We assume that the drug molecules are uniformly dis-
tributed and released on the implant surface [44]–[46].

Thus, the drug distribution due to instantaneous drug release
from the implant can be obtained by integrating Eq. (9) over
the implant surface area (A0) after transforming the parame-
ters to the spherical coordinate system, as shown below:

Cs =
1
A0
r20

2π∫
0

π∫
0

Cu (r, φ, θ, t) sin (φ0) dφ0dθ0 (10)

where (0 ≤ θ < 2π ) is the azimuth angle and (0 ≤ φ ≤ π )
is the polar angle.

By transforming Eq. (9) to a spherical coordinate sys-
tem recognizing that the medium is spherically symmetric
(i.e., φ = θ = 0), we get

Cu =
1

(4πDt (t − t0))3/2
exp

×

(
−
r20 + r

2
− 2rr0 cos(φ0)

4D(t − t0)
− γ (t − t0)

)
(11)

Substitution of Eq. (11) in (10) results in

Cs =
1

2(4πD(t − t0))3/2
exp

(
−

r20 + r
2

4D(t − t0)
− γ (t − t0)

)

×

π∫
0

exp
(
rr0 cos(φ0)
2D(t − t0)

)
sin(φ0)dφ0 (12)

Evaluating the integral in Eq. (12) using [38, eq. (3.915.1)],
Cs can be written as

Cs=
1

4πr0r(4πD(t−t0))1/2

[
exp

(
−

(r−r0)2

4D(t − t0)
−γ (t−t0)

)
− exp

(
−

(r + r0)2

4D(t − t0)
− γ (t − t0)

)]
(13)

Now apply the Laplace transform on Eq. (13) which can be
evaluated with the help of [39, eq. (29.3.84)] to get

C̃s =
eγ t0e−st0

4πr0rDζ
×

{
e−r0ζ sinh (rζ ) , r < r0
e−rζ sinh (r0ζ ) , r > r0

(14)

where C̃s is the Laplace transform of Cs and

ζ =

√
(s+ γ )

/
D (15)

The CIR due to an instantaneous (impulsive) drug release
from the implant can be expressed as a superposition of two
functions using a mathematical technique similar to that used
in [40], [41],

C = Cs + Cb (16)

Here, the parameters (r, t; r0, t0) are omitted to simplify the
mathematical notations. The total solution (16) can be written
in the Laplace domain as

rC̃ = rC̃s + rC̃b (17)

where, C̃ is the Laplace transform ofC and the multiplication
factor r used to simplify the mathematical derivation.
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The term Cb is the solution of the following diffusion
equation which vanishes at t = t0 and when it is added to
Cs will satisfy the boundary conditions (7)–(8).

∂ (rCb)
∂t

= D
∂2 (rCb)
∂r2

− γ rCb (18)

Converting Eq. (18) into an ordinary differential equation
(ODE) using Laplace transform to get

∂2
(
rC̃b

)
∂r2

− ζ 2rC̃b = 0 (19)

The diffusion equation (19) is a second-order ODEwhich has
two roots at ±ζ . Thus, its solution can be expressed as

rC̃b = A sinh(rζ )+ B cosh(rζ ) (20)

After substituting Eqs. (14) and (20) in (17) for the case of
r > r0, we get

rC̃ =
eγ t0e−st0 sinh (r0ζ ) e−rζ

4πr0Dζ
H (r − r0)

+A sinh(rζ )+ B cosh(rζ ) (21)

The general solution given by Eq. (21) should satisfy the
boundary conditions (7)–(8) in the Laplace domain given by

C̃ is finite at r → 0 (22)

−D
∂C̃
∂r

∣∣∣∣∣
r=rt

= ω C̃
∣∣∣
r=rt

(23)

We can rewrite the boundary condition (23) in an appropri-
ate form to make the derivation mathematically tractable.
Thus, using product rule of differentiation, we mathemati-
cally manipulate to get

∂
(
rC̃
)

∂r

∣∣∣∣∣∣
r=rt

= C̃
∣∣∣
r=rt
+ rt

∂C̃
∂r

∣∣∣∣∣
r=rt

(24)

Combining (23) and (24), we get

∂
(
rC̃
)

∂r

∣∣∣∣∣∣
r=rt

= rtλC̃
∣∣∣
r=rt

(25)

where,

λ =
D− ωrt
Drt

(26)

After applying the boundary conditions (22) and (25) to (21),
we obtain the following expressions for A and B as

A = −
e−st0

4πr0Dζ
e−rt ζ sinh (r0ζ ) (ζ + λ)

(λ sinh (rtζ )− ζ cosh (rtζ ))
(27)

B = 0 (28)

The CIR is obtained by substituting (27)-(28) in (21) as

C̃ =
e−st0 sinh (r0ζ )

4πr0rDζ (λ sinh (rtζ )− ζ cosh (rtζ ))
×
[
e−rζ (λ sinh (rtζ )− ζ cosh (rtζ ))

− e−rt ζ sinh (rζ ) (ζ + λ)
]

(29)

The Inverse Laplace transform of (29) can be obtained using
Cauchy’s residue theorem [42],

C =
∑

poles of C̃

Res
(
C̃est

)
(30)

where Res(C̃) is the residue of C̃ .
The expression (29) has a simple pole at s = −γ with

zero residue and an infinite number of simple poles at s =
−(Dκ2n

/
r2t + γ ) for n = 1, 2, . . . ,∞. The parameter κn

gives the real positive roots of the following equation:

ϕ(κn) = λrt tan (κn)− κn (31)

Thus, the Inverse Laplace transform of (29) can be written as

C =
1

2πr0rtr

∞∑
n=1

e−
(
Dκ2n

/
r2t +γ

)
(t−t0)e−iκn

×
sin
(
r0κn

/
rt
)
sin
(
rκn

/
rt
)
(iκn + rtλ)

(cos (κn) (λrt − 1)+ κn sin (κn))
(32)

At the roots of Eq. (31), we get the following identity

sin (κn) =
κn

λrt cos (κn)
(33)

Substituting (33) in (32) after applying Euler’s formula on the
complex exponentials (e−iκn ), we get

C =
1

2πr0rtr

∞∑
n=1

sin
(
κnr0

/
rt
)
sin
(
κnr

/
rt
)

κ2n + λrt (λrt − 1)

×

(
κ2n + λ

2r2t
)
e−
(
Dκ2n

/
r2t +γ

)
(t−t0) (34)

The equation (34) represents the CIR due to drug release
instantaneously from a spherical drug implant following
insertion inside an isolated spherical tumor. The equation
(34) is an infinite series and has an infinite number of roots.
However, this infinite series converges for a finite number of
roots while the remaining roots have negligible effect and can
be ignored. It must be recognized that the roots of ϕ(κn) have
a significant impact on the evaluation of Eq. (34). In order
to evaluate (34) with higher accuracy, we have developed an
accurate algorithm to find the roots of ϕ(κn). The roots that
have a negligible contribution to the final result have been
discarded.

B. DRUG RELEASE KINETICS
The main design parameter for the implant is the release rate
across the polymer surface. The release rates can be adjusted
during the design phase by selecting appropriate materials
and varying thickness of the polymer coating as well as the
physicochemical variable properties of the loaded drug [43].
Moreover, the rate of drug release may also depend on the
interactions between the drug and the tissue surrounding the
implant as well as on the polymer-drug interaction, which
in turn may affect the therapeutic process. In this release
kinetic model, we assume that the implant releases DOX
over two phases, viz., burst and sustained releases. During
the burst release phase, the drug will be released with a fast
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release rate over a short time followed by slow release over an
extended period of time during the sustained release phase.
For example, both the in-situ forming implants (ISFIs) [7],
and the double-layer polymer implants [15] have dual release
patterns. Thus, the cumulative amount of released DOX at
time t can be mathematically modeled using the first-order
bi-exponential kinetic model as

W (t) = W∞
(
1− f1 · e−kf t − f2 · e−kst

)
(35)

where, W (t) is the percentage of cumulative DOX released
at time t, andW∞ is the total percentage of DOX released at
steady state. The parameters f1 and f2 are the DOX fractions
released during the burst and sustained phases, respectively.
The constants kf and ks are the release rate constants of burst
and sustained release processes, respectively. We can also
obtain a model only for the sustained release implant by just
removing the burst release phase, i.e., f1 = 0 in Eq. (35).
For an accurate representation of the release rate in the

analysis, we use the bi-exponential kinetic model to fit
the experimental release data of PLGA implants extracted
from [7]. Using the nonlinear least-squares fitting method,
we obtain the release rate constants as listed in Table 1.
As shown in Fig. 2, the fitted curve shows good agreement
with the experimental data with R2

= 0.9956.

TABLE 1. Drug implant parameters.

The cumulative amount of released DOX at time t can be
expressed as

M (t) = M0W (t) (36)

where M0 is the total amount of loaded DOX in the implant
in the unit of mg.

FIGURE 2. Percentage cumulative release of doxorubicin from the
implant fitted to the published experimental data in [7], R2 = 0.9956.

The drug release profile can be considered spatially uni-
form from the implant surface [44]–[46]. The drug release
rate from the implant at time t can be expressed as

Mr (t) =
dM
dt
= M0W∞

(
kf f1e−kf t + ks f2e−kst

)
(37)

The drug release rate can be approximated as [24],

Mr (t) ≈
M (t, t +1t)

1t
=
M (t +1t)−M (t)

1t
(38)

In this model, the size variation of the implant due to polymer
biodegradation is assumed to be negligible during the obser-
vation time [7], [47].

C. DRUG CONCENTRATION PROFILE
Using the linear system analysis technique [ 30], drug concen-
tration profile at any location inside the tumor can be obtained
by applying the convolution between the CIR (34) and the
release rate expression (37). After applying the convolu-
tion, we get the following spatiotemporal drug concentration
profile,

P (r, t)

=
M0W∞
2πr0rtr

∞∑
n=1

sin
(
κnr0

/
rt
)
sin
(
κnr

/
rt
)

κ2n + λrt (λrt − 1)

×

(
κ2n + λ

2r2t
) ∞∫
−∞

e−
(
Dκ2n

/
r2t +γ

)
(τ−t0)H (τ − t0)

×

(
kf f1e−kf (t−τ)+ksf2e−ks(t−τ)

)
H (t−τ−t0) dτ (39)

where H (t) is the unit (or Heaviside) step function.
By solving the integral in (39) assuming the initial release

time t0 is equal to zero, we get

P (r, t) =
M0W∞
2πr0rtr

∞∑
n=1

αn sin
(
κnr0

/
rt
)
sin
(
κnr

/
rt
)

αn − λrt

×

(
Efne−kf t + Esne−kst

)
(40)
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where,

Efn =
kf f1
βfn

(
eβfnt − 1

)
(41)

Esn =
ksf2
βsn

(
eβsnt − 1

)
(42)

αn = κ
2
n + (λrt)

2 (43)

βfn = kf − Dκ2n
/
r2t − γ (44)

βsn = ks − Dκ2n
/
r2t − γ (45)

III. STOCHASTIC SIMULATION MODEL
Stochastic simulations play an important role in under-
standing random diffusion and modelling of drug transport
and interaction mechanisms. We implement a particle-based
stochastic simulator in MATLAB for predicting drug release
from a miniature spherical implant and for monitoring drug
transport through the surrounding tissue in a spherically
bounded 3-D tumor microenvironment. The total simulation
time is divided into many small time-steps 1t .
The release process is performed according to experimen-

tally fitted bi-exponential model following insertion of the
implant inside the tumor. The amount of the released drug
during each time-step, i.e., [t, t +1t], can be expressed as

M (t, t +1t) = M (t +1t)−M (t) (46)

Substituting (35)-(36) in (46), we get

M (t, t +1t) = M0W∞
[
f1
(
e−kf t − e−kf (t+1t)

)
+ f2

(
e−kst − e−ks(t+1t)

)]
(47)

The number of released molecules can be expressed as
N0M (t, t +1t)

/
(M0W∞). However, to obtain the CIR using

stochastic simulation, all the molecules must be released
instantaneously, i.e., at the first-time step.

The movement of molecules in the extracellular matrix
(ECM) of the tumor depends on the physiochemical prop-
erties of both the molecules and the ECM. The ECM is
composed of networks of collagen fibers and other cells.
Molecules diffuse through the spaces between network struc-
tures according to Brownian random walks. This random
motion of molecules is influenced by the components of
the ECM whose aggregate influence can be represented by
using an apparent (or effective) diffusion coefficient (ADC).
In the literature, it is common to use ADC to determine the
diffusion of drugs in the ECM where ADC is equal to that in
the real restricted extracellular matrix [48]. This allows us to
use the ADC together with time-step to calculate the spatial
displacements of molecules that follow random Brownian
motion. Therefore, the released drug molecules will diffuse
according to an independent randomwalk process (Brownian
motion) in the simulation environment, i.e., tumor. The new
position of each molecule is tracked and stored using the
following equation [49]:

(xi, yi, zi) = (xi−1, yi−1, zi−1)+ (1xi,1yi,1zi) (48)

where, the index i refers to the current time-step, (xi, yi, zi)
are the coordinates of the current location of drug molecules
at ith time-step, (xi−1, yi−1, zi−1) are the coordinates of the
previous location of drug molecules at (i-1)th time-step, and
(1xi,1yi,1zi) is the random displacements which follow the
normal distribution N (0, σ 2) with zero mean and variance
equal to σ 2

= 2D1t .
The elimination of drug molecules in the simulation envi-

ronment due to cellular uptake/binding, perfusion through
blood vessels, and degradation are modelled using a first-
order degradation reaction mechanism [22], [25]. At each
time step, a uniformly distributed random numberR1 between
zero and one is generated for each molecule. Then, the gen-
erated random numbers are compared with the elimination
probability in Eq. (49) [50]:

Pγ = 1− exp(−γ1t) (49)

If the elimination probability is larger than the random num-
ber R1, the molecule will be removed from the simulation
environment.

The outer surface of the simulation environment (tumor) is
modelled as a general partially reflecting boundary, which is
mathematically equivalent to the Robin boundary condition
used in our analytical model given in section II. Some of
the molecules will be reflected when they reach the bound-
ary and others will be removed from the environment. This
condition can represent the effect of DOX elimination to the
neighboring tissue or leakage into the exchange blood and
lymphatic vessels at the outer boundary of the tumor where
many exchange vessels exist that may act as sinks for drug
molecules [32]. The partially reflecting boundary condition
can be reduced to other special cases, e.g., no-flux (fully
reflecting) boundary.

A uniformly distributed random number R2, between zero
and one, is assigned to each molecule that hits the medium
boundary. Then, if the forward reaction probability, given
by Eq. (50), is larger than the random number R2, the drug
molecule will be removed from the simulation environ-
ment [41]:

Pω = ω

√
π1t
D

(50)

Otherwise, the drug molecule will reflect back to the previous
location inside the environment.

The impermeable (no-flux) boundary condition can be
usedwhen nomolecule transmission takes place at the bound-
ary, i.e., ω = 0. On the other hand, when each collision
between molecule and boundary leads to transmission, a fully
permeable boundary condition can be applied, i.e., ω→∞.
The interaction of drug molecules with the medium boundary
occurs within a short period of time. Therefore, the time step
should be small enough for modelling the interaction and
permeation of drug molecules at the medium boundary.

The spatiotemporal drug concentration profile inside the
simulation environment can be estimated using a virtual
spherical observer that does not hinder movements of
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the molecules. At each time step, the drug molecules that
enter the observer volume will contribute to the total received
molecules. Then, the drug concentration profile can be
obtained as follows

Psim (r, t) = M0W∞
N

N0Vrx
(51)

where N is the total number of the received molecules, N0 is
the total number of released molecules from the implant, and
Vrx is the receiver (or observer) volume.

IV. RESULTS
In this section, we will first examine the accuracy of the
CIR, given in (34), which is the basis for deriving the drug
concentration profile. Then, we examine the effect of various
system parameters on the transport of anticancer drug DOX
in terms of the drug concentration profile and the maximum
concentration after implantation of the dual-release implant
in the tumor. The results are obtained using both the proposed
models, viz., analytical model and stochastic particle-based
simulator. Also, accuracy of the predicted results by our
proposed models is verified by comparing with the published
experimental data onDOXbio-distribution in tumor extracted
from [19]. The system parameters used in our computations
are listed in Tables 1 and 2.

TABLE 2. System parameters (unless stated otherwise).

The diffusivity of DOX inside the tumor is chosen to
fall within the range of the experimentally measured data
published in [14], [51]. To choose optimal values for the
simulation parameters, we first conduct a trial and error run
with different values of the time-step and the number of
transmitted molecules to examine the concentration profile
variations. For example, when the time-step is less than 0.1h,
we found no significant change and variation in the sim-
ulation results. We chose the tumor radius in our models
to be equal to 1 cm. This value falls within the range of
different tumor sizes encountered in reality, e.g., the diameter
of tumors in rat and rabbit ranges from 0.5 to 2 cm [52]. The
radius of the virtual observer (rrx) is chosen to be 0.5 mm
so that enough molecules can contribute to estimating the

concentration within the receiver volume. The elimination
rate constant (γ ) also has a range of values, and thus different
values are chosen for the calculations to examine its effect on
the drug distribution profile [14].

FIGURE 3. (a) Channel impulse response and (b) drug concentration
profile for various values of drug elimination (loss) rate in the tumor.

In Fig. 3, we plot the CIR and the drug concentration
profile for different values of the elimination rates. The results
in this figure indicate a similar trend. The analytical results
obtained using the expressions (34) and (40), match well with
the stochastic simulation results. Thus, the agreement of the
results obtained from the two independent models demon-
strates the validation of themodelling approaches proposed in
this paper. As expected, an increase in the elimination rate due
to different factors, e.g., vascular perfusion, cellular uptake,
enzymatic and non-enzymatic metabolisms, etc., will result
in a decrease of the drug concentration in the tumor. The
drug metabolisms and drug clearance through the capillaries
reduce the amount of the drug in the tissue. Therefore, fast
metabolic rate leads to higher biotransformation of drug in
the tissue compared to low metabolic rate Moreover, drug
concentration increases with the time until reaching the peak
concentration and then it decreases gradually to a minimal
value.
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FIGURE 4. Maximum drug concentration versus distance from the
implant center for different elimination rate constants when ω = 1µm/s
and rt = 5mm.

FIGURE 5. Maximum drug concentration versus distance from the implant
center for various diffusion coefficients when ω = 1µm/s and rt = 5mm.

The maximum (or peak) drug concentration Cmax and the
corresponding peak time tmax at a specified location in the
tissue represent important pharmacokinetic metrics. In this
section, these metrics are obtained from the drug concen-
tration profile using the analytical and simulation models
presented in the previous sections. Figures 4 and 5 show the
maximum drug concentration as a function of the separation
distance from the implant center For the simulation model,
since the radius of the virtual observer rrx = 0.5 mm,
we need to start recording the concentration at a distance
0.5mm from the implant surface (i.e., 1.5 mm from the centre
of the implant) to avoid intersection of the virtual observer
(receiver) with the implant. The results in this figure are
obtained using both the proposed models for various drug
elimination rates. Drug concentration decreases as the dis-
tance from the implant increases and finally reach zero at
the tumor boundary. Moreover, the higher elimination rate
will lead to lower maximum drug concentration as shown
in Fig. 4. Also, the effective drug diffusivity has an impact
on transport and distribution of drug in the tumor, as shown
in Fig. 5, where the higher diffusivity leads to lower peak
concentration.

FIGURE 6. Drug concentration profile as a function of time for different
loss rates at the tumor boundary.

Figure 6 shows the impact of the loss rate at the
tumor boundary on the drug concentration profile inside the
tumor tissue. Drug concentration decreases as the loss rate
increases. This happens because the probability of drug elim-
ination through the boundary will increase with the increase
in the loss rate. Adding the loss rate ω to our model via
Robin boundary condition allows us to select the appropriate
boundary condition at the tumor boundary by adjusting the
value of ω, e.g., ω = 0 leads to no-flux at the boundary.
Impact of the sustained release rate on both the maximum

drug concentration and the corresponding time instant is
plotted versus the separation distance from the implant center
in Fig. 7. As shown in Fig. 7a, the maximum drug concerta-
tion increases as the sustained release rate increases because
more drug will be released from the implant within a shorter
time. Impact of the sustained release rate on the maximum
drug concentration decreases as the distance from the implant
increases and finally the maximum concentration converges
for all the release rates because the distance becomes the
main dominant factor. On the other hand, the time at which
the concentration is maximum becomes shorter with the
increase in sustained release rate as shown in Fig. 7b, since
a higher amount of drug will be released within a shorter
time.

To verify the accuracy and validity of our proposed mod-
els we compare the results predicted by both of our pro-
posed models with the published experimental data extracted
from [19]. The experimental data provides measured DOX
concentration with the distance from polymer implant placed
in a liver tumor. Drug transport from this implant to the
surrounding tissue is symmetric around the implant axis due
to the geometry of the implant. To compare the results from
our models with the measured data on DOX distribution,
we use the same diameter of the implant and the tumor as
that used in [19], i.e., 1.6 mm and 1.1cm, respectively. We
estimate the implant release rate constant (0.5341 day−1)
by curve fitting the releasing rate characteristics given in
[19]. The amount of loaded DOX in the implant is 2.99 mg
and 93.7% of the loaded drug is released on the fourth day,
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FIGURE 7. (a) Maximum drug concentration and (b) peak time versus
distance from the implant center for various sustained release rate
constants.

FIGURE 8. Drug concentration (on the fourth day) versus the distance
from the implant/tumor interface compared to the mean value of
published experimental data taken from [19].

i.e., 2.8 mg. These data are extracted from the experimental
data given in literature and are used to compute our results
[16], [19].

The apparent diffusivity and apparent elimination rate con-
stant of DOX in liver tumor tissue are given asD = 50 µm2/s

and γ = 0.58 × 10−4 s−1 respectively [14]. The density of
tumor and liver tissues is equal to ∼1.04 g/cm3; therefore
volume can be replaced with mass for obtaining the concen-
tration in unit of (µg/g) [53], [54].
Figure 8 shows a comparison of DOX concentration

obtained using our proposed models with the published
experimental data as a function of the radial distance from
the implant surface on the fourth day after implantation in
the tumor. It can be seen that the results obtained using our
analytical and stochastic models agree well with the results
extracted from the published experimental data in [19].
As expected, the measured concentration shows a decreasing
trend with the radial distance from the implant. In general,
our proposed models can predict the DOX concentration
in the tumor at different radial distances from the implant
accurately. Moreover, the experimental data extracted from
the literature and plotted in this figure represent the mean
values, and the predicted results by our models fall within
the standard deviation of the mean.

V. CONCLUSION
In this paper, we have proposed analytical and stochastic sim-
ulation models based on molecular communication paradigm
for predicting the release and distribution of anticancer drug
doxorubicin (DOX) in an isolated tumor following implanta-
tion of a dual-release implant. We derive a closed-form ana-
lytical expression of DOX concentration profile in the tumor
by applying the convolution between the implant release
function and the derived channel impulse response (CIR).
In addition, we develop a stochastic simulation approach to
model the DOX drug release from the implant and for mon-
itoring the distribution of drug molecules in the surrounding
tumour tissue. Accuracy and validity of the proposed models
can be seen from the comparison with the experimental data
given in the literature. Impact of the various parameters on
the drug concentration profile and the CIR, i.e., elimination
rate, diffusivity, loss rate at the tumor boundary, and the
implant release rates, are examined. Also, the analytical and
simulation results of the peak time and drug peak concen-
tration are obtained with respect to the radial distance from
the centre of the implant. The proposed models can help to
optimize the design and deployment of the implantable drug
delivery systems (IDDSs) in tumors or any other tissues by
adjusting the system parameters. Althoughwe derive the drug
concentration profile for the first-order bi-exponential kinetic
model, the CIR can be used for modelling other implants that
may have different drug release patterns.
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