
Per-Dereference Verification of Temporal Heap Safety
via Adaptive Context-Sensitive Analysis

Abstract. We address the problem of verifying the temporal safety of heap mem-
ory at each pointer dereference. Unlike separation-logic-based approaches, our
whole-program analysis approach is undertaken from the perspective of pointer
analysis, allowing us to leverage the advantages of and advances in pointer analy-
sis to improve precision and scalability. A dereference ω, say, via pointer q is un-
safe iff there exists a deallocation ψ, say, via pointer p such that on a control-flow
path ρ, p aliases with q (with both pointing to an object o representing an allo-
cation), denoted Aψ

ω(ρ), and ψ reaches ω on ρ via control flow, denoted Rψω(ρ).
Applying directly any existing pointer analysis, which is typically solved sepa-
rately with an associated control-flow reachability analysis, will render such veri-
fication highly imprecise, since ∃ρ.Aψ

ω(ρ)∧∃ρ.Rψω(ρ)⇏ ∃ρ.Aψ
ω(ρ)∧R

ψ
ω(ρ)

(i.e., ∃ does not distribute over ∧). For precision, we solve ∃ρ.Aψ
ω(ρ)∧R

ψ
ω(ρ),

with a control-flow path ρ containing an allocation o, a deallocation ψ and a
dereference ω abstracted by a tuple of three contexts (co, cψ, cω). For scalabil-
ity, a demand-driven full context-sensitive (modulo recursion) pointer analysis,
which operates on pre-computed def-use chains with adaptive context-sensitivity,
is used to infer (co, cψ, cω), without losing soundness or precision. Our evalu-
ation shows that our approach can successfully verify the safety of 81.3% (or
93,141

114,508
) of all the dereferences in a set of 10 C programs totalling 1,166 KLOC.

1 Introduction

Unmanaged languages such as C/C++ still remain irreplaceable in developing
performance-critical systems such as OSs, databases and web browsers. Such languages,
however, suffer from memory safety issues. While spatial errors (e.g., buffer overflows)
result in disastrous consequences (e.g., crashes, data corruption, information leakage,
privilege escalation and control-flow hijacking), their temporal counterparts have been
shown to be equally deadly [54,31]. In particular, verifying absence of dangling pointer
dereferences, an important temporal heap safety (TH-safety hereafter), is thus desirable.

A quite flourishing research thread in the recent literature focuses on separation
logic [44,19,58], which enables precise shape analysis for pointer-based data structures
such as linked lists and trees in C/C++ programs. Much research effort has been devoted
to improving scalability and automation of separation-logic-based verification [57,17].
In particular, bi-abduction [11] empowers separation-logic-based verification to gen-
erate program specifications automatically for large programs with millions of lines of
code, in a compositional manner rather than as a whole-program analysis. However, one
of its inevitable downsides (from the perspective of whole-program analysis) is the loss
of precision due to a maximum size limit imposed on disjunctions of pre-conditions ma-
nipulated in order to improve performance [12]. Indeed, balancing precision and scala-
bility is a never-ending battle. For practical purposes, Infer [10], a bi-abduction-based
verifier, has recently surrendered soundness and evolved into a precise bug-hunter.

Memory errors can also be found by other techniques, such as data-flow analy-
sis [43,18] and model checking [27,29,40]. Notably, pointer analysis [28,47,61,48,50]
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has recently made significant strides, providing a solid foundation for developing many
pointer-analysis-based static analyses for detecting memory errors [13,33,46,56,59]. In
this paper, we present a fully-automated pointer-analysis-based approach, called D3 (a
Disprover of Dangling pointer Dereferences), to verifying absence of (i.e., disproving
presence of) dangling pointers on a per dereference basis. Compared to separation-
logic-based approaches, our approach tackles this verification task from a different an-
gle. Instead of focusing on reasoning about a variety of pointer-based data structures
precisely in separation logic, we focus on reasoning about pointer aliasing and control-
flow reachability context-sensitively in a whole-program setting on-demand.

Challenges We highlight three challenges, from the perspective of pointer analysis:

Challenge 1: Modeling the Triple Troublemakers. A TH-safety violation involves
three distinct program locations, an allocation o (representing an allocation site), a
deallocation ψ and a dereference ω , which must be all modelled precisely.

Challenge 2: Resolving Aliases. A dereference ω (via pointer q) is unsafe iff there
exists a deallocation ψ (via pointer p) such that on a control-flow path ρ, p aliases
with q (with both pointing to an object o), denoted A

ψ
ω(ρ), and ψ reaches ω on ρ via

control flow, denoted R
ψ
ω(ρ). Pointer aliasing, a well-known difficult static analy-

sis problem, must be solved to guarantee both soundness and precision scalably
for large programs. For the TH-safety verification, this is particularly challeng-
ing. Any existing k-limited context-sensitive pointer analysis that scales for large
programs [47,28] (where k ≤ 3 currently) is not precise enough (as o, ψ and ω
can often span across more than three functions). In addition, off-the-shelf pointer
analyses provide the alias information between ψ and ω but are oblivious to the
control-flow reachability information from ψ to ω (even if solved flow-sensitively),
causing potentially a significant precision loss, since ∃ρ.Aψω(ρ) ∧ ∃ρ.Rψω(ρ) ⇏
∃ρ.Aψω(ρ)∧R

ψ
ω(ρ) (i.e., ∃ does not distribute over ∧). Thus, increasing precision

in our verification task requires pointer analysis to be not only more precise (with
longer calling-contexts) but also synergistic with control-flow reachability analysis.

Challenge 3: Pruning the Search Space. To achieve high precision, a fine abstrac-
tion of control-flow paths (e.g., with adequate context-sensitivity) is required, but
at a risk for causing path explosion. Furthermore, the presence of a large number of
deallocation-dereference (ψ, ω) pairs that need to be checked further exacerbates
the problem. Pruning the search space without any loss of precision is essential.

Our Solution In this paper, we present a whole-program analysis approach that verifies
TH-safety for each dereference ω. Specifically, ω is considered safe iff there exists no
deallocation ψ such that the pair (ψ, ω) causes a dangling pointer dereference at ω.

To meet Challenge 1, we model this verification problem context-sensitively with
three contexts. We identify an allocation o, a deallocation ψ (via pointer p) and a deref-
erence ω (via pointer q) by a context tuple (co, cψ, cω) so that ⟪co, o⟫ represents a
context-sensitive heap object, i.e, an object o created under co, (cψ, p) deallocates what
is pointed to by p under cψ , and (ω, q) dereferences pointer q under context cω . We
verify TH-safety with respect to (o, ψ, ω) by disproving the presence of a control-flow
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path that contains a context tuple, (co, cψ, cω), such that ⟪co, o⟫, once deallocated at
(cψ, p), is still accessed subsequently at (cω, q) along the path.

To meet Challenge 2, we introduce a demand-driven pointer analysis that auto-
matically infers the context information in pointer aliases so that the resulting alias
analysis can correlate with an associated control-flow reachability analysis as required.
Given a pointer p at a deallocation (resp. a pointer q at a dereference) without any
context given, our pointer analysis will infer a context cψ (resp. cω), together with a
context-sensitive object ⟪co, o⟫, such that the context-sensitive pointer (cψ, p) (resp.
(cω, q)) points to ⟪co, o⟫, implying that ∃ρ.Aψω(ρ). In addition, cψ and cω are also re-
quired to satisfy the control-flow reachability constraint ∃ρ.Rψω(ρ) simultaneously so
that ∃ρ.Aψω(ρ)∧R

ψ
ω(ρ) holds. This avoids false positives that satisfy R

ψ
ω and A

ψ
ω only

for two distinct paths, respectively, which happens when ∃ρ.Aψω(ρ) ∧ ∃ρ.Rψω(ρ) ⇏
∃ρ.Aψω(ρ)∧R

ψ
ω(ρ). Finally, points-to queries are raised on-demand by traversing pre-

computed def-use chains (in order to improve efficiency) and by supporting full context-
sensitivity (modulo recursion) to transcend k-limiting (in order to improve precision).

To meet Challenge 3, we make our context-sensitive analysis adaptive. A context
tuple (co, cψ, cω) is reduced to (c′o, c′ψ, c′ω) if co, cψ and cω share a common prefix cpre,
so that co=cons(cpre, c′o), cψ=cons(cpre, c′ψ), and cω=cons(cpre, c′ω), where cons
denotes string concatenation. This adaptive analysis aims to reduce exponentially many
prefixes starting from main(), which would otherwise significantly impede scalability.

Contributions This paper makes the following main contributions:

• We propose a fully automated approach to TH-safety verification on a per deref-
erence basis, with a precise context-sensitive model, which enables a control-flow
path to be abstracted by three contexts for its allocation, deallocation and derefer-
ence. This provides a balanced trade-off between precision and scalability.

• We present a static whole-program analysis that solves this three-point verification
problem in the presence of both data-dependence and control-flow constraints. To
this end, we develop a demand-driven pointer analysis with full context-sensitivity
(modulo recursion) that automatically infers the context information required.

• We present an adaptive context-sensitive policy for TH-safety verification that au-
tomatically truncates redundant context prefixes without losing soundness or pre-
cision. This enables our approach to scale to some large real-world programs.

• We have implemented D3 in LLVM and evaluated it using a suite of 10 real-world
programs. Our results show that D3 scales to hundreds of KLOC, with a capability
of verifying 81.3% of all the 114,508 dereferences to be safe.

2 Preliminaries
We describe our techniques using a small language in Figure 1. Function definitions
and statements are identified by their labels or line numbers. The language is standard.
Pointers are propagated via copy (x = y), load (x=∗y), store (∗x= y) and address-
taking (x=&y) statements; heap objects are allocated and deallocated by malloc()
and free(), respectively; the callee of a function call (x = fp( #»y )) is specified by
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Program P ∶∶= F
+ Function F ∶∶= ldef f( #»x ) { S; }

Statement S ∶∶= l
x = y ∣ l

x = ∗y ∣ l ∗ x = y ∣ l
x = &y ∣ l

x = malloc() ∣ lfree(y)
∣ l
x = fp( #»y ) ∣ lret x ∣ lif (∗) S1 else S2 ∣ lwhile (∗) S ∣ S1;S2

Fig. 1. A small unmanaged imperative language.

a function pointer (fp) with its parameters ( #»y ) passed by value (as in LLVM-IR); and
ret,if and while represent standard return, branching and looping statements. As
with previous work [11,57,38,36], we currently do not handle concurrent programs.

Inter-Procedural Control-Flow Graph (ICFG) This is a directed graph (N,E),
where each node n ∈ N represents a statement and each edge e = (src, dst) ∈ E
represents the control flow from statement src to statement dst. In particular, if e rep-
resents a function call/return, then e is labeled with the corresponding call-site ID κ.

Contexts Given any statement in function f , a calling context (or context, for short) c =
[κ1, κ2, ..., κn] is a sequence of n call-site IDs in their invocation order that uniquely
specifies an abstract call-path to f on the ICFG of the program.

Allocation, Deallocation and Dereference A context-sensitive (abstract) object, de-
noted ⟪co, o⟫, represents the set of concrete objects created at allocation site o under
context co. We write ψ(cψ, lψ, p) to signify a context-sensitive deallocation of the ob-
ject pointed to by p at line lψ under context cψ . Similarly, a context-sensitive deref-
erence ω(cω, lω, q) accesses the object pointed to by q at line lω under context cω .
Context-insensitively, these are identified by o, ψ(lψ, p) and ω(lω, q), respectively.

Pointer Analysis A context-sensitive pointer analysis conservatively computes a func-
tion ptcs ∶ C × V → 2

C×O that relates each context-sensitive pointer (c, v) ∈ C × V
to the set of context-sensitive objects ⟪co, o⟫ ∈ C × O pointed to by (c, v). A pointer
analysis is formulated by a set of inference rules that can be solved using a standard
fixed-point algorithm. Andersen-style [6] subset-based context-insensitive pointer anal-
ysis pt ∶ V → 2

O is given in Figure 2. PJsK denotes that s appears in program P .
We consider only field-sensitive pointer analysis techniques. As with previous tech-

niques [8,25,41,57], we assume that our programs are ANSI-compliant that are devoid
of buffer overflows and data misalignments. Arrays are handled monolithically. Any ac-
cess to a member of an array or struct object with a statically unknown offset is viewed
to be a non-deterministic operation on the given object (soundly but imprecisely).

TH-Safety Violation A context-sensitive TH-safety violation, denoted ⧼⟪co, o⟫,
ψ(cψ, lψ, p), ω(cω, lω, q)⧽, occurs when ⟪co, o⟫, which is deallocated at lψ under cψ , is
accessed later at lω under cω . Our context-insensitive notation is ⧼o, ψ(lψ, p), ω(lω, q)⧽.

3 Illustrating Examples
In Section 3.1, we explain why aliasing and control-flow reachability must be solved
synergistically rather than separately in order to achieve high precision in our verifica-
tion task, no matter how precise pointer analysis is. In Section 3.2, we describe how our
synergistic approach works on top of a demand-driven pointer analysis, by taming path
explosion with full context-sensitivity (modulo recursion) adaptively.
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[Addr]
PJx = &yK

y ∈ pt(x)
[Alloc]

PJox = malloc()K

o ∈ pt(x)
[Copy]

PJx = yK

pt(y) ⊆ pt(x)

[Load]
PJx = ∗yK o ∈ pt(y)

pt(o) ⊆ pt(x)
[Store]

PJ∗x = yK o ∈ pt(x)
pt(y) ⊆ pt(o)

Fig. 2. Andersen-style subset-based, flow- and context-insensitive pointer analysis [6]. Passing
arguments into and returning results from functions are handled as copy statements.

1: def alloc() {
2: x=malloc(); // o2
3: ret x; }

4: def dealloc(y) {
5: free(y); } //ψ(l5,y)

6: def deref(z) {
7: temp=∗z; } //ω(l7,z)

8: def Reach But NoAlias() {
9: a=alloc(); //κ9 , ⟪[κ9 ], o2⟫

10: b=alloc(); //κ10, ⟪[κ10], o2⟫
11: dealloc(a); //κ11

12: deref(b); } //κ12

13: def Alias But NoReach() {
14: c=alloc(); //κ14, ⟪[κ14], o2⟫
15: deref(c); //κ15

16: dealloc(c); } //κ16

(a) Safe code, with a dereference in line 7

Reach_But_NoAlias()

𝝍(𝒍𝟓, 𝐲)

𝝎 𝒍𝟕, 𝐳

dealloc()

deref()

𝜿𝟏𝟏

Alias_But_NoReach()

𝜿𝟏𝟐

𝜿𝟏𝟓

𝜿𝟏𝟔

ret

call ret

call

(b) ICFG (with relevant edges given), showing that ψ(l5,y) reaches ω(l7,z) on the blue path
but ψ(l5,y) aliases with ω(l7,z) on the orange path, implying that the dereference at l7 is safe

Fig. 3. An example without any TH-safety violation.

3.1 Aliasing and Control-Flow Reachability: Separately or Synergistically

Figure 3(a) gives a program, in which ψ(l5, y) does not cause a TH-safety violation at
ω(l7, z) (Figure 3(b)). The wrappers, alloc(), dealloc() and deref(), allocate
o2, deallocate the object pointed by y at ψ(l5,y) and dereference z at ω(l7,z), re-
spectively. In Reach But NoAlias(), ⟪[κ9], o2⟫ is first deallocated in l11 and then
another object ⟪[κ10], o2⟫ is accessed indirectly in l12. In Alias But NoReach(),
⟪[κ14], o2⟫ is first accessed indirectly in l15 and then deallocated in l16.

If aliasing and control-flow reachability for ψ(l5, y) and ω(l7, z) are solved sepa-
rately, a TH-safety violation will be reported (but as a false positive), no matter how
precise the underlying pointer analysis is used. As illustrated in Figure 3(b), aliasing
(the orange path) and reachability (the blue path) happen along two different paths in
the ICFG, and consequently, cannot be satisfied simultaneously in the same path.

To avoid false positives like this, aliasing and control-flow reachability must be
solved together. In our synergistic approach, we identify o2, ψ(l5,y) and ω(l7,z)
by their respective contexts co, cψ and cω , and disprove the presence of a context
tuple (co, cψ, cω), such that ⟪co, o2⟫ is first deallocated in l5 under cψ and subse-
quently accessed in l7 under cω along the same path. Therefore, our approach will
report no TH-safety violation for this program. Note that any context-insensitive anal-
ysis that merges ⟪[κ9], o2⟫ and ⟪[κ10], o2⟫ into o2 would report a false violation as
⧼o2, ψ(l5,y), ω(l7,z)⧽.
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17: def foo() {
18: d=bar(); //κ18

19: deref(d); } //κ19

20: def bar() {
21: e=alloc(); //κ21, ⟪[κ21], o2⟫
22: dealloc(e);//κ22

23: ret e; }

24: def baz() {
25: f=alloc(); //κ25, ⟪[κ25], o2⟫
26: qux(f); } //κ26

27: def qux(g) {
28: dealloc(g);//κ28

29: deref(g); }//κ29

(a) Allocation and deallocation (via wrap-
pers) in the same function bar()

(b) Deallocation and dereference (via wrap-
pers) in the same function qux()

𝜿𝟐𝟏
𝜿𝟐𝟐

𝒐𝟐

𝝍(𝒍𝟓, 𝐲)

𝝎 𝒍𝟕, 𝐳

𝜿𝟏𝟖
𝜿𝟏𝟗

…

main()
foo()

bar() alloc()

dealloc()

deref()

𝒐𝟐

𝝍(𝒍𝟓, 𝐲)

𝝎 𝒍𝟕, 𝐳

𝜿𝟐𝟓
𝜿𝟐𝟔

…

main()
baz()

alloc()

dealloc()

deref()
𝜿𝟐𝟖
𝜿𝟐𝟗

qux()

(c) ICFG for (a) (d) ICFG for (b)

Fig. 4. Two representative TH-safety violations caused by ψ(l5, y) and ω(l7, z) appearing in
Figure 3, where the three wrappers, alloc(), dealloc() and deref() are defined.

3.2 Synergizing Pointer Analysis and Control-Flow Reachability Analysis:
On-Demand with Adaptive Context-Sensitivity

Let us illustrate our approach further by expanding Figure 3 into Figure 4 by examin-
ing how it detects two representative TH-safety violations caused now by ψ(l5, y) and
ω(l7, z) considered earlier. In Figure 4(a) (with its relevant ICFG given in Figure 4(c)),
o2 and ψ(l5, y) are reached transitively via the two call sites in the same function,
bar(), which is called by foo(), in which ω(l7, z) is reached via a call to deref()
transitively. In Figure 4(b) (with its relevant ICFG given in Figure 4(d)), ψ(l5, y) and
ω(l7, z) are reached transitively via the two call sites in the same function, qux(),
which is called by baz(), in which o2 is reached via a call to alloc() transitively.

We will only discuss Figure 4(a) as Figure 4(b) can be understood similarly.

Verifying TH-Safety by Synergizing Pointer and Reachability Analyses On-Demand
Our approach relies on ptddcs , a demand-driven version of pointer analysis ptcs intro-
duced in Section 2. For Figure 4(a), we report a TH-safety violation ⧼⟪[κ18, κ21], o2⟫,
ψ([κ18, κ22], l5,y), ω([κ19], l7,z)⧽. To obtain this, we check to see if y aliases z by
querying ptddcs for the points-to sets of y and z, i.e., ptddcs ([ ],y) and ptddcs ([ ],z), re-
spectively, where their initial unknown contexts [ ] will be eventually filled up by ptddcs .
On-demand, ptddcs traces backwards the flow of objects along the pre-computed def-use
chains (obtained by a pre-analysis) in the program. To compute ptddcs ([ ],y), for exam-
ple, starting from l5, ptddcs traces back to l4 where y is defined; moves to the call-site κ22
where y receives the value of e via parameter passing; reaches l21 where e is defined;
encounters l3 where x is returned (by entering alloc() from its exit at κ21); and fi-
nally, arrives at l2 where x is defined, giving rise to ⟪[κ21], o2⟫∈ ptddcs ([κ22],y). Note
that the initial unknown context [ ] has been inferred to be [κ22] as desired. This implies
that ⟪[κ18, κ21], o2⟫ ∈ pt

dd
cs ([κ18, κ22],y). Similarly we obtain ⟪[κ18, κ21], o2⟫ ∈
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pt
dd
cs ([κ19],z). Thus, ψ([κ18, κ22], l5,y) aliases with ω([κ19], l7,z) (with y and z

both pointing to ⟪[κ18, κ21], o2⟫), and in addition, the former also reaches the latter
along the same path identified by [κ18, κ21], [κ18, κ22] and [κ19]. As a result, our ap-
proach reports this violation as ⧼⟪[κ18, κ21], o2⟫, ψ([κ18, κ22], l5,y), ω([κ19], l7,z)⧽.

Taming Path Explosion with Adaptive Context-Sensitivity In our approach, ptddcs ap-
plies context-sensitivity adaptively without analyzing the callers of foo(), avoiding
the possible path explosion that may occur between main() and foo() in Figure 4(c).
Soundness is still guaranteed, since the context elements between main() and foo()
do not affect the value-flows of ⟪[κ18, κ21], o2⟫ and are thus redundant. To see this,
if we extend the two contexts in ψ([κ18, κ22], l5,y) and ω([κ19], l7,z) with two dis-
tinct prefixes, [κa1] and [κa2], we will fail to obtain any additional violation witness,
since both are no longer aliased: ptddcs ([κa1, κ18, κ22],y) = {⟪[κa1, κ18, κ21], o2⟫} ≠

{⟪[κa2, κ18, κ21], o2⟫} = pt
dd
cs ([κa2, κ19],z). If we use the the same prefix instead,

we will end up with a finer abstraction, yielding the results already subsumed.

4 Our Approach

The workflow of our four-stage approach is given in Figure 5. To start with ( 1©), we
perform a fast but imprecise pre-analysis for a program using Andersen’s pointer anal-
ysis pt (Figure 2). Then ( 2©), we build a value-flow graph to capture the flow of val-
ues across the program based on the points-to information obtained in the pre-analysis
(Section 4.1). Next ( 3©), we obtain the points-to set at each dereference by querying
pt
dd
cs , a demand-driven version of ptcs (discussed in Section 2) that now operates on

the value-flow graph (Section 4.2). This way, ptddcs will traverse pre-computed def-use
chains rather than control-flow, achieving better efficiency. Finally ( 4©), we verify ab-
sence of a TH-safety violation at a dereference by considering aliasing and control-flow
reachability synergistically with adaptive context-sensitivity (Sections 4.3 and 4.4).

Context-Insensitive
Pointer Analysis

Value-Flow Graph 
Construction

Context-Sensitive 
Pointer Analysis

Synergistic Aliasing-
Rechability Analysis

1 2 3 4

Fig. 5. The workflow of our approach on synergizing pointer analysis with reachability analysis.

4.1 Value-Flow Graph Construction

We construct a value-flow graph for a program, following [16,50,46], based on the
points-to information discovered during the pre-analysis to capture the flow of values
across the program. This entails building the def-use chains for its top-level variables
(which are conceptually regarded as register variables) and address-taken variables
(which are all referred to as memory objects or objects for short in this paper).

The def-use chains for top-level variables are readily available. However, those for
address-taken variables (accessed indirectly at loads, stores and call sites) are implicit.
To make such indirect memory accesses explicit, we resort to the rules in Figure 6. For
an address-taken variable o, there are two types of annotations: Jµ(o)K, which represents
a potential use of o, and Jo=χ(o)K, which represents both a potential definition and a
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[Mu]
PJl x = ∗yK o ∈ pt(y)

Jµ(o)K ∈ ∆(l,≺)
[Chi]

PJl ∗x = yK o ∈ pt(x)
Jo=χ(o)K ∈ ∆(l,≻)

[Ref]

PJl = fp( )K f ∈ pt(fp)
PJlfdef f( ){...}K ls ∈ L(f)

Jµ(o)K ∈ ∆(ls,≺)
Jµ(o)K ∈ ∆(l,≺) Jo=χ(o)K ∈ ∆(lf ,≺)

[Mod]

PJl = fp( )K f ∈ pt(fp)
PJlfdef f( ){...}K ls ∈ L(f)

Jo=χ(o)K ∈ ∆(ls,≻)
Jµ(o)K ∈ ∆(l,≺) Jo=χ(o)K ∈ ∆(lf ,≺)
Jµ(o)K ∈ ∆(lf ,≻) Jo=χ(o)K ∈ ∆(l,≻)

Fig. 6. Rules for adding two types of annotations, Jµ(o)K and Jo = χ(o)K, to make explicit the
accesses of a memory object o. L(f) denotes the set of statement labels in function f . ∆(l,≺)
and ∆(l,≻) represent the sets of annotations added just before and after l, respectively.

1: def mkFd() {
2: fd=malloc(); // o2
3: ret fd;

}

4: def mkCtn() {
5: ctn=malloc(); // o5
6: ret ctn;

}

7≺: Jo15 = χ(o05)K
7: def put(pfd, pctn) {
8: ∗pctn=pfd;
8≻: Jo25 = χ(o15)K

}
7≻: Jµ(o25)K

9: def feedPets() {
10: bone=mkFd(); //⟪[κ10], o2⟫
11: fish=mkFd(); //⟪[κ11], o2⟫
12: tray=mkCtn(); //⟪[κ12], o5⟫
13: bowl=mkCtn(); //⟪[κ13], o5⟫
14≺: Jµ(o05)K
14: put(bone, tray);//κ14

14≻: Jo15 = χ(o05)K

15≺: Jµ(o15)K
15: put(fish, bowl);//κ15

15≻: Jo25 = χ(o15)K

16≺: Jµ(o25)K
16: feedDog=∗tray;

}

9

8

6

3

1

4

7

2

5

Fig. 7. A program (referred to in Example 1 (annotations), Example 2 (value-flow edges) and
Example 3 (pointer analysis)), decorated with µ and χ annotations and all the value-flow edges
1 – 9 that capture the flow of o2 from bone in line 10 through to feedDog in line 16.

potential use of o. We define ∆ ∶ L × ORD → 2
ANNOT, where ANNOT is the set of

annotations (shown in brackets), L is the set of statement labels, and ORD = {≺,≻}
indicates if an annotation appears immediately before (≺) or after (≻) a statement.

Let us go through the rules in Figure 6. For a load statement x = ∗y at l, if y
points to o, then Jµ(o)K is added before l to indicate that o may be used at this load
(Rule [Mu]). For a store statement ∗x = y at l, if x points to o, then Jo = χ(o)K
is added after l to indicate that o (LHS) may be redefined in terms of o (RHS) in the
case of a weak update and y at this store (Rule [Chi]). Rules [Ref] and [Mod] prescribe
the standard inter-procedural MOD/REF analysis. Let a function f be defined at lf and
called at a call site l via a function pointer fp. Consider [Ref] first. If Jµ(o)K is annotated
inside f , then Jµ(o)K is added before l (as o may be used in f directly or indirectly),
and Jo = χ(o)K is added before f ’s definition at lf (as o may be passed indirectly as a
parameter to f ). Consider [Mod] now. If Jo = χ(o)K is annotated inside f , then we add
not only the same annotations at l and lf as in [Ref], but also Jµ(o)K after lf (as o may
be returned to its call sites) and Jo = χ(o)K after l (as o may be modified at l).

Once a program has been annotated, its top-level variables and objects appearing in
the annotations are put into SSA form [15], with their versions denoted in superscripts.
Example 1. Let us see how to add o5-related annotations in Figure 7. For now, the
value-flow edges shown are irrelevant. In line 8, Jo25 = χ(o15)K is added after l8, i.e.,
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[DT]
PJl x = K

l ∈ D(x)
[UT

Copy]
PJl = xK

l ∈ U(x)
[UT

Load]
PJl = ∗xK

l ∈ U(x)
[UT

Store]
PJl ∗x = K

l ∈ U(x)

[UT
Addr]

PJl = &xK

l ∈ U(x)
[UT

Free]
PJlfree(x)K
l ∈ U(x)

[UT
Call]

PJl = fp( #»x )K x∈ #»x

l ∈ U(x)
[DA]

Jo= K ∈ ∆(l,≻)
l
≻
∈ D(o)

[UA
χ]

J =χ(o)K ∈ ∆(l,≻)
l
≻
∈ U(o)

[UA
µ]

Jµ(o)K ∈ ∆(l,≺)
l
≺
∈ U(o)

[VFIntra]
ld∈ D(o) lu∈ U(o) F (ld) = F (lu)

⟨ld, o⟩⟶ ⟨lu, o⟩

[VFT
Call]

PJl = fp( #»x )K xi ∈
#»x yi ∈

#»y

PJlfdef f( #»y ){...}K f ∈ pt(fp)
⟨l, xi⟩⟶ ⟨lf , yi⟩

[VFT
Ret]

PJl y = fp( )K f ∈ pt(fp)
PJlfdef f( ){... lr ret x; }K

⟨lr, x⟩⟶ ⟨l, y⟩

[VFA
Call]

PJl = fp( )K Jµ(oi)K ∈ ∆(l,≺)
PJlfdef f( ){...}K f ∈ pt(fp)

J = χ(oj)K ∈ ∆(lf ,≺)
⟨l≺, oi⟩⟶ ⟨l≺f , oj⟩

[VFA
Ret]

PJl = fp( )K Jµ(oi)K ∈ ∆(lf ,≻)
PJlfdef f( ){...}K f ∈ pt(fp)

J = χ(oj)K ∈ ∆(l,≻)
⟨l≻f , oi⟩⟶ ⟨l≻, oj⟩

Fig. 8. Rules for building the value-flow graph Gvfg for an annotated program in SSA form (with
the version of a SSA variable omitted when it is irrelevant to avoid cluttering). D(v) (U(v))
denotes the set of definition (use) sites of a variable v. F (l) identifies the function containing l.

as 8≻, in put() as pctn is found to point to o5 by the pre-analysis in Figure 2 (Rule
[Chi]). As a result, this inter-procedural MOD/REF effect needs to be reflected at its
definition and call sites, by adding 7

≺, 7≻, 14≺, 14≻, 15≺, and 15
≻ (Rule [Mod]). In

line 16, Jµ(o25)K is added before l16 since tray is found to point to o5 (Rule [Mu]).

Given an annotated program in SSA form, we build its value-flow graph, Gvfg =
(L×V,E), to capture the flow of values through its def-use chains and inter-procedural
call/return edges, by using the rules in Figure 8 to construct its value-flow edges. We
make use of two mappings, D ∶ V → 2

L and U ∶ V → 2
L that map a variable v ∈ V

to the set of its definition sites ldef ∈ L and use sites luse ∈ L, respectively. We write
⟨lsrc, v⟩ ⟶ ⟨ldst, v′⟩ to denote the flow of a value initially in v at lsrc to v′ at ldst.
For a top-level variable x ∈ VT, Rule [DT] adds the definition site l to D(x) and Rules
[UT

Copy], [UT
Load], [UT

Store], [UT
Addr], [UT

Free] and [UT
Call] add the use site l to U(x). For an

address-taken variable o ∈ VA, Rules [DA] and [UA
χ]/[UA

µ] simply collect its definition
and use sites intoD(o) and U(o), respectively. The last five rules construct the edges in
Gvfg by connecting a definition site with all its use sites. [VFIntra] adds intra-procedural
value-flow edges while other four add inter-procedural value-flow edges (with [VFT

Call]
and [VFT

Ret] for top-level variables and [VFA
Call] and [VFA

Ret] for address-taken variables).
Once Gvfg has been constructed, the SSA versions of a variable will be ignored.

Example 2. Figure 7 shows all the value-flow edges 1 – 9 capturing the flow of o2
via fd, bone, pfd, o5 and feedDog. We obtain these edges by applying the fol-
lowing rules (Figure 8): 1 for ⟨l2,fd⟩ ⟶ ⟨l3,fd⟩ ([VFIntra]); 2 for ⟨l3,fd⟩ ⟶
⟨l10,bone⟩ ([VFT

Ret]); 3 for ⟨l10,bone⟩⟶ ⟨l14,bone⟩ ([VFIntra]); 4 for ⟨l14,bone⟩
⟶ ⟨l7,pfd⟩ ([VFT

Call]); 5 for ⟨l7,pfd⟩ ⟶ ⟨l8,pfd⟩ and 6 for ⟨l≻8 , o25⟩ ⟶
⟨l≻7 , o25⟩ ([VFIntra]); 7 for ⟨l≻7 , o25⟩ ⟶ ⟨l≻14, o05⟩ ([VFA

Ret]); and 8 for ⟨l≻14, o15⟩ ⟶
⟨l≻15, o15⟩ and 9 for ⟨l≻15, o25⟩⟶ ⟨l≺16, o25⟩ ([VFIntra]).

In Figure 13 (Appendix A), we give a version of Figure 7 with all value-flow edges.
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[QRY]
pt
dd
cs (c, l, v) =⟐

⟐⟿ ⟨c, l, v⟩
[PT]

⟪co, o⟫⟿ ⟨c, l, v⟩
⟪co, o⟫ ∈ ptddcs (c, l, v)

[DDBack]
⟨c, l, v⟩⟿
⟐⟿ ⟨c, l, v⟩

[VFAddr]
PJl x = &yK ⟐⟿ ⟨c, l, x⟩

⟪c, y⟫⟿ ⟨c, l, x⟩
[VFAlloc]

PJo x = malloc()K ⟐⟿ ⟨c, l, x⟩
⟪c, o⟫⟿ ⟨c, l, x⟩

[DDLoad]
PJl x = ∗yK ⟐⟿ ⟨c, l, x⟩

⟐⟿ ⟨c, l, y⟩
[VFLoad]

PJl x = ∗yK ⟐⟿ ⟨c, l, x⟩
⟪co, o⟫⟿ ⟨c, l, y⟩

⟨c, l≺,⟪co, o⟫⟩⟿ ⟨c, l, x⟩

[DDStore]
PJl ∗x = yK ⟐⟿ ⟨c, l≻,⟪co, o⟫⟩

⟐⟿ ⟨c, l, x⟩
[VFStore]

PJl ∗x = yK ⟐⟿ ⟨c, l≻,⟪co, o⟫⟩
⟪co, o⟫⟿ ⟨c, l, x⟩

⟨c, l, y⟩⟿ ⟨c, l≻,⟪co, o⟫⟩

[VFCopy]
PJl x = yK ⟐⟿ ⟨c, l, x⟩

⟨c, l, y⟩⟿ ⟨c, l, x⟩
[VFTrans]

⟨c′, l′, v′⟩⟿ ⟨c′′, l′′, v′′⟩
⟨c′′, l′′, v′′⟩⟿ ⟨c′′′, l′′′, v′′′⟩
⟨c′, l′, v′⟩⟿ ⟨c′′′, l′′′, v′′′⟩

[VFT]

⟨l′, x⟩⟶ ⟨l, x⟩ x ∈ V
T

⟐⟿ ⟨c, l, x⟩
⟨c, l′, x⟩⟿ ⟨c, l, x⟩

[VFA]

⟨l′, o⟩⟶ ⟨l, o⟩ o ∈ V
A

⟐⟿ ⟨c, l,⟪co, o⟫⟩
⟨c, l′,⟪co, o⟫⟩⟿ ⟨c, l,⟪co, o⟫⟩

[VFT
Call]

PJl = fp( #»x )K PJlfdef f( #»y ){...}K
⟐⟿ ⟨c, lf , y⟩ c

−−−
= c⊖ l

⟨l, x⟩⟶ ⟨lf , y⟩
⟨c−−−, l, x⟩⟿ ⟨c, lf , y⟩

[VFT
Ret]

PJl x = fp( )K PJlr ret yK
⟐⟿ ⟨c, l, x⟩ c

+++
= c⊕ l

⟨lr, y⟩⟶ ⟨l, x⟩
⟨c+++, lr, y⟩⟿ ⟨c, l, x⟩

[VFA
Call]

PJl = fp( )K PJlfdef f( ) {...}K
⟐⟿ ⟨c, l≺f ,⟪co, o⟫⟩ c

−−−
= c⊖ l

⟨l, o⟩⟶ ⟨l≺f , o⟩
⟨c−−−, l,⟪co, o⟫⟩⟿ ⟨c, l≺f ,⟪co, o⟫⟩

[VFA
Ret]

PJl = fp( )K PJlfdef f( ) {...}K
⟐⟿ ⟨c, l,⟪co, o⟫⟩ c

+++
= c⊕ l

⟨l≻f , o⟩⟶ ⟨l, o⟩
⟨c+++, l≻f ,⟪co, o⟫⟩⟿ ⟨c, l,⟪co, o⟫⟩

Fig. 9. Rules for demand-driven context-sensitive pointer analysis ptddcs (with ⟐ denoting a de-
mand query issued and nsrc ⟿ ndst denoting the flow of a value from nsrc to ndst on Gvfg).

4.2 Demand-Driven Context-Sensitive Pointer Analysis

Our context-sensitive pointer analysis ptddcs operates on the value-flow graph Gvfg of a
program. We write ptddcs (c, l, v) = ⟐ to signify a demand query for the points-to set
of variable v at statement l under context c. In the case of ptddcs ([ ], l, v) = ⟐ with an
empty context [ ], ptddcs will find all pointed-to objects ⟪co, o⟫ ∈ pt

dd
cs (c, l, v), where c

is also inferred automatically. This automatic context inference is essential for achiev-
ing high precision as it provides a mechanism for us to synergize alias and control-flow
reachability analyses as needed. As ptddcs (c, l, v) = ⟐ is solved on-demand (with pos-
sibly many other points-to queries raised along the way), by traversing backwards only
the value-flow edges inGvfg established on the fly, imprecision inGvfg (due to spurious
value-flow edges) will affect only the efficiency but not precision of ptddcs .

Figure 9 gives the rules for answering pt
dd
cs (c, l, v) = ⟐, where ⟿, which is

transitive by [VFTrans], represents the flow of a value across one or more value-flow
edges in Gvfg actually traversed. Note that ⟪co, o⟫ is essentially ⟨co, o, o⟩ since o is
the line number for the corresponding allocation site. We say that x flows to y if
⟨ , , x⟩ ⟿ ⟨ , , y⟩. To solve ptddcs (c, l, v) = ⟐, we solve ⟐⟿ ⟨c, l, v⟩, i.e., find
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what flows to ⟨c, l, v⟩ (Rule [QRY]). If ⟪co, o⟫ flows to ⟨c, l, v⟩, then ⟨c, l, v⟩ points to
⟪co, o⟫ (Rule [PT]). If ⟨c, l, v⟩ has been reached, we need to continue exploring back-
wards what may flow to ⟨c, l, v⟩ on-demand (Rule [DDBack]).

Rules [VFAddr] and [VFAlloc] handle allocation statements that allocate memory for
an address-taken variable on the stack and in the heap, respectively.

For a load l
x = ∗y with a query ⟐ ⟿ ⟨c, l, x⟩, ptddcs first checks to see if

⟪co, o⟫⟿ ⟨c, l, y⟩ holds by issuing a demand query⟐⟿ ⟨c, l, y⟩ (Rule [DDLoad]),
and if this is the case, then ⟨c, l≺, ⟪co, o⟫⟩⟿ ⟨c, l, x⟩ is established (Rule [VFLoad]).
Similarly, for a store l∗x = y with a query⟐⟿ ⟨c, l≻, ⟪co, o⟫⟩, ptddcs checks to see if
⟪co, o⟫⟿ ⟨c, l, x⟩ holds by issuing a demand query⟐⟿ ⟨c, l, x⟩ (Rule [DDStore]),
and if this is the case, then ⟨c, l, y⟩⟿ ⟨c, l≻, ⟪co, o⟫⟩ is established (Rule [VFStore]).

Rules [VFCopy], [VFT] and [VFA] simply propagate values across assignments (with
the former for copy statements and the latter two for def-use chains). In particular,
[VFA] performs a weak update at a store. Note that ptddcs is also flow-sensitive with
strong updates performed for singleton objects as is standard [32,22,50].

To support the inter-procedural analysis at the function calls and returns, [VFT
Call]

and [VFT
Ret] handle top-level variables while [VFA

Call] and [VFA
Ret] handle address-taken

variables. Context-sensitivity is achieved by maintaining a context with push (⊕) and
pop (⊖) operations in a stack-like manner. When handling a function call at a call site
l, a new context c−−− is generated by popping off l from the current context c, denoted
c
−−−
= c ⊖ l, to track the value-flow backwards outside the callee (c−−−) from inside the

callee (c). Conversely, when handling a callee function’s return statement that returns
to a call site l, a new context c+++ is created by pushing l to the top of the current context
c, denoted c+++ = c ⊕ l, to represent the fact that the backward analysis will now enter
the callee (c+++) at its return statement from the call-site l outside the callee (c).
Example 3. Given ptddcs ([ ], 16,feedDog) = ⟐ for the program in Figure 7, ptddcs
yields the following facts related to the nine value-flow edges marked as 1 – 9 :

⟪[κ10], o2⟫ ⟿ ⟨[κ10], 2,fd⟩
1
⟿ ⟨[κ10], 3,fd⟩

2
⟿ ⟨[ ], 10,bone⟩

3
⟿ ⟨[ ], 14,bone⟩

4
⟿ ⟨[κ14], 7,pfd⟩

5
⟿ ⟨[κ14], 8,pfd⟩ ⟿ ⟨[κ14], 8≻, ⟪[κ12], o5⟫⟩

6
⟿ ⟨[κ14], 7≻, ⟪[κ12], o5⟫⟩

7
⟿ ⟨[ ], 14≻, ⟪[κ12], o5⟫⟩

8
⟿ ⟨[ ], 15≻, ⟪[κ12], o5⟫⟩

9
⟿ ⟨[ ], 16≺, ⟪[κ12], o5⟫⟩ ⟿ ⟨[ ], 16,feedDog⟩

.
This means that ⟪[κ10], o2⟫⟿ ⟨[ ], 16,feedDog⟩ by Rule [VFTrans]. Finally, we
can conclude that ⟪[κ10], o2⟫ ∈ ptddcs ([ ], 16,feedDog) by Rule [PT].

In Appendix A, Table 2 gives a step-by-step trace of ptddcs ([ ], 16, feedDog) = ⟐
when operating on Figure 13, a version of Figure 7 with a complete value-flow graph.

4.3 Synergizing Aliasing and Control-Flow Reachability

Given a pair of deallocation ψ(lψ, p) and dereference ω(lω, q), we proceed to prove
absence of ⧼⟪co, o⟫, ψ(cψ, lψ, p), ω(cω, lω, q)⧽ on all the control-flow paths ρ across
the ICFG of the program, where cψ ∈ Cψ and cω ∈ Cω are calling contexts for lψ and
lω , respectively. We abstract ρ with a context tuple (co, cψ, cω), which is shortened to
(cψ, cω), since co can be automatically inferred by ptddcs from cψ and cω . Two properties
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[AliasingAndReaching]
R
ψ
ω(cψ, cω) A

ψ
ω(cψ, cω)

S
ψ
ω(cψ, cω)

[Aliasing]

pt
dd
cs (cψ, lψ, p) =⟐ ⊢ ⟪hcψ, o⟫ ∈ pt(cψ, lψ, p)

pt
dd
cs (cω, lω, q) =⟐ ⊢ ⟪hcω, o⟫ ∈ pt(cω, lω, q)
cons( , hcψ) = hcω ∨ cons( , hcω) = hcψ

A
ψ
ω(cψ, cω)

[Reaching]

lψ = car(cons(cψ, lψ))
lω = car(cons(cω, lω))

RIntra(lψ, lω)
R
ψ
ω(cψ, cω)

Fig. 10. Rules for synergizing aliasing and control-flow reachability.

are checked context-sensitively: 1© aliasing, Aψω ∶ Cψ ×Cω → {true, false}, indicating
if (cψ, p) aliases (cω, q), and 2© reachability, Rψω ∶ Cψ×Cω → {true, false}, indicating
if lψ reaches lω on the ICFG by going through first the return edges specified by cψ and
then the call edges specified by cω . We consider aliasing and reachability together, Sψω ∶
Cψ × Cω → {true, false}, by requiring A

ψ
ω and R

ψ
ω to be satisfied for the same context

pair (cψ, cω). We report a TH-safety violation at the dereference iff S
ψ
ω is satisfied,

thereby avoiding false-positives that satisfy both constraints on two different paths only.
Figure 10 gives our rules. Rule [Aliasing] computes an abstract path, (cψ, cω), on

which p aliases q. Note that ⟪hcψ, o⟫ and ⟪hcω, o⟫ may represent the same (con-
crete) object if one of these two contexts is a suffix of (i.e., coarser than) the other.
Rule [Reaching] computes an abstract path, (cψ, cω), on which lψ reaches lω , which
happens if lψ first reaches lψ inter-procedurally via the return edges specified by cψ ,
then lψ reaches lω intra-procedurally in the same function (denoted RIntra(lψ, lω)),
and finally, lω reaches lω inter-procedurally via the call edges specified by cω .

4.4 Adaptive Context-Sensitivity

To guarantee soundness, all context pairs (cψ, cω) ∈ Cψ × Cω in the program must be
considered, making [Aliasing] in Figure 10 prohibitively costly to verify. To tame path
explosion, we use the two rules in Figure 11 instead with adaptive context-sensitivity,
thereby reducing significantly the number of context pairs considered without losing
soundness or precision. We explain these two rules, illustrated in Figure 12, below.

The key insight behind is that ptddcs ([ ], l, v), when asked to compute the points-to
set of (l, v) with an empty context [ ], which represents an abstraction of all possible
contexts (from main()), will return ⟪hc, o⟫ ∈ pt

dd
cs (c, l, v), where the contexts c and

hc are automatically inferred. In particular, c and hc are appropriately k-limited (with
any unnecessary context prefix cpre from main() truncated), since

pt
dd
cs ([ ], l, v) =⟐ ⊢ ⟪hc, o⟫ ∈ ptddcs (c, l, v) ⟺ ⟪cons(cpre, hc), o⟫ ∈ ptddcs (cons(cpre, c), l, v)

In [Aliasing], there are three possibilities for ⟪hcψ, o⟫ and ⟪hcω, o⟫ to be aliases:
(1) hc = hcψ = hcω . This case, illustrated in Figure 12(a), is handled by [Aliasing-
EqHeapCtx], which says that it suffices to consider only (cψ, cω) by removing any
common prefix cpre from cψ and cω , since (cψ, cω) is coarser than (cψ, cω). In ad-
dition, all context pairs (cons(c1pre, cψ), cons(c2pre, cω)), where c1pre ≠ c

2
pre, can also
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[Aliasing-EqHeapCtx]

pt
dd
cs ( [ ] , lψ, p) =⟐ ⊢ ⟪hc, o⟫ ∈ ptddcs (cψ, lψ, p) cψ = cons(cpre, cψ)

pt
dd
cs ( [ ] , lω, q) =⟐ ⊢ ⟪hc, o⟫ ∈ ptddcs (cω, lω, q) cω = cons(cpre, cω)

A
ψ
ω(cψ, cω)

[Aliasing-NeqHeapCtx]

pt
dd
cs ( [ ] , lψ, p) =⟐ ⊢ ⟪hcψ, o⟫ ∈ ptddcs (cψ, lψ, p) cψ = cons(cpre, cψ)

pt
dd
cs ( [ ] , lω, q) =⟐ ⊢ ⟪hcω, o⟫ ∈ ptddcs (cω, lω, q) hcω = cons(cpre, hcψ)

A
ψ
ω(cψ, cω)

Fig. 11. Two rules for replacing [Aliasing] in Figure 10 with adaptive context-sensitivity.

𝒄𝝍

𝒐

𝒍𝝍

𝒍𝝎

𝒄𝝍

𝒐

𝒍𝝍

𝒍𝝎

…

…

main()
…

…

main()

……

(a) [Aliasing-EqHeapCtx] (hcψ=hcω) (b) [Aliasing-NeqHeapCtx] (hcψ≠hcω)

Fig. 12. An illustration of the two rules in Figure 11, where a fat dot represents a function and an
arrow represents a sequence of (transitive) function calls across the functions in the program.

be soundly removed, since ⟪cons(c1pre, hc), o⟫ is not aliased with ⟪cons(c2pre, hc), o⟫.
By construction, car(cons(cψ, lψ)) and car(cons(cω, lω)) are guaranteed to be in the
same function, allowing R

ψ
ω in [Reaching] to be checked trivially.

(2) hcω = cons(c, hcψ). To check R
ψ
ω in [Reaching] efficiently, [Aliasing-NeqHeapCtx],

as shown in Figure 12(b), constructs cψ by extending cψ such that car(cons(cψ, lψ))
and car(cons(cω, lω)) reside in the same function. As in [Aliasing-EqHeapCtx], all
context-pairs (cons(c1pre, cψ), cons(c2pre, cω)), where c1pre ≠ c

2
pre, are ignored soundly.

In addition, car(cons(cψ, lψ)) and car(cons(cω, lω)) always reside in the same func-
tion, allowing R

ψ
ω in [Reaching] to be checked trivially as above.

(3) hcψ = cons(c, hcω). This case, which indicates a use-before-free, is always safe.
Our approach D3 is adaptive since its search space exploration selects calling con-

texts with appropriate lengths adaptively without losing soundness or precision.

Example 4. Let us apply our rules to Figure 4(a) to detect the TH-safety violation
⧼⟪[κ18, κ21], o2⟫, ψ([κ18, κ22], l5,y), ω([κ19], l7,z)⧽. Consider [Aliasing-NeqHeapCtx]
first. For the two points-to queries ptddcs ([ ], l5,y) =⟐ and ptddcs ([ ], l7,z) =⟐ issued,
we obtain ⟪[κ21], o2⟫ ∈ pt

dd
cs ([κ22], l5,y) and ⟪[κ18, κ21], o2⟫ ∈ pt

dd
cs ([κ19], l7,z).

As hcω = [κ18, κ21] = cons([κ18], [κ21]) = cons(cpre, hcψ), we have cψ =

cons(cpre, cψ) = [κ18, κ21]. By [Aliasing-NeqHeapCtx], Aψω([κ18, κ21], [κ19]) holds.
Let lψ = κ18 and lω = κ19. By [Reaching], Rψω([κ18, κ21], [κ19]) holds. By [Aliasin-
gAndReaching], S([κ18, κ21], [κ19]) holds, triggering this as a TH-safety violation.

4.5 Soundness

For a program P considered in Section 2, D3 (Figure 5) is sound. First, Gvfg con-
structed for P , based on the rules in Figure 8, over-approximates the flow of any value
in P as Andersen’s analysis (Figure 2) is sound. Second, ptddcs (Figure 9) is sound as it
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over-approximates the points-to information in P . Third, we suppress a TH-safety vi-
olation warning soundly according to [AliasingAndReaching] (Figure 10). Finally, our
adaptive analysis (Figure 11) is sound as the context pairs (cψ, cω) pruned for [Aliasin-
gAndReaching] during the search space exploration are redundant (Section 4.4).

5 Evaluation
We strive to show that D3 can accomplish our TH-safety verification task for reasonably
large C programs efficiently with good precision in the context of the prior work.

5.1 Methodology
We have implemented D3 in the open-source program analysis framework, SVF [51],
which is implemented in LLVM [30]. Given a program, its source files are first compiled
individually into LLVM IR by the Clang compiler front-end, before linked together into
a single whole-program IR file by the LLVM Gold Plugin. Our TH-safety verification
task is then performed statically on the whole-program LLVM IR file.

Two sets of benchmark are used. One set consists of 138 test cases with the ground
truth for use-after-free vulnerabilities (CWE-416) from the NIST Juliet Test Suite for
C [1], which are all TH-safety violations extracted from real-world scenarios, with one
per test case. The other set consists of 10 popular open-source C programs (with 40 –
260 KLOC) given in Table 1, containing a total of 114,508 pointer dereferences.

We compare D3 with a C bounded model checker, CBMC (version 5.11) [29].
CBMC, as confirmed by the authors, does not provide an option to verify TH-safety
only by disabling other types of memory errors. Thus, we have configured it with the
“pointercheck” option to detect all pointer-related errors and then manually extracted
all the TH-safety violations reported. For the small test cases in the NIST Juliet Test
Suite, loops are not bounded. For the 10 real-world programs, loops are unwound by
using ”unwind 2” to accelerate termination (at the expense of losing soundness).

Infer [10] (i.e., Abductor earlier [11]) has evolved into a bug detector by sacrific-
ing soundness, with its older verification-oriented versions no longer available (as con-
firmed by its authors). So we will not compare such separation-logic-based verifiers, as
Infer, for example, will now lower its false positive rate by tolerating for false negatives.

In addition, we also evaluate D3 against a version of D3, denoted DSEP, for which
aliasing and control-flow reachability are considered separately.

As ptddcs is demand-driven, the time budget for a points-to query issued from [Alias-
ing] (Figure 11) is set to be a maximum of 10,000 value-flow edges traversed. On
time out, ptddcs will fall back to the result computed by Andersen’s pointer analysis, pt,
soundly (Figure 2). We have done our experiments on a machine with a 3.5 GHz Intel
Xeon 16-core CPU and 256 GB memory, running Ubuntu OS (version 16.04 LTS). The
analysis time of a program is the average of five runs. For D3/DSEP, the analysis times
from all its stages (Figure 5) are included, except the pre-analysis, since Andersen’s
analysis is expected to be reused by many other static analyses for the program.

5.2 Results and Analysis
5.2.1 Juliet Test Suite: Soundness Both CBMC and D3 report soundly all the 138
use-after-free bugs without any false positives. Each test case is small, with a few hun-
dreds of LOC, costing less than one second to verify by either tool.
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Program Characteristics Value-Flow Graph DSEP D3

KLOC #Derefs #Nodes #Edges Time (s) #Safe %Safe Time (s) #Safe %Safe %Impr
a2ps-4.14 65 12,601 35,201 58,255 428 7,000 55.6% 5,653 9,944 78.9% 52.6%
cpio-2.12 94 5,211 13,486 23,379 10 3,805 73.0% 180 4,964 95.3% 82.4%
ctags-5.8 42 14,628 56,320 152,846 54 10,538 72.0% 520 14,014 95.8% 85.0%
MCSim-6.0.1 60 8,718 17,914 28,365 64 5,233 60.0% 1,010 8,105 93.0% 82.4%
parted-3.2 138 1,493 7,703 16,415 9 1,133 75.9% 14 1,371 91.8% 66.1%
patch-2.7.6 88 5,334 16,926 35,269 50 4,065 76.2% 480 4,961 93.0% 70.6%
sendmail-8.15 260 21,536 128,312 328,892 1,332 12,368 57.4% 3,277 15,570 72.3% 34.9%
tar-1.31 191 11,671 54,594 109,269 225 7,741 66.3% 7,672 9,200 78.8% 37.1%
tmux-2.8 54 24,877 91,373 185,594 166 12,366 49.7% 12,295 18,266 73.4% 47.2%
wget-1.20 174 8,439 31,460 63,738 100 5,957 70.6% 1,920 6,746 79.9% 31.8%
Avg. 117 11,451 45,329 100,202 244 7,021 65.7% 3,302 9,314 85.2% 59.0%
Total 1,166 114,508 453,289 1,002,022 2,438 70,206 61.3% 33,022 93,141 81.3% 51.8%

Table 1. Results for verifying 10 open-source C programs. DSEP is a version of D3 with aliasing

A
ψ
ω and reachability Rψω checked separately. %Impr is computed as D3

.#Safe−DSEP
.#Safe

#Deref−DSEP
.#Safe

× 100%.

5.2.2 10 Open-Source Programs: Precision and Scalability For any of these pro-
grams, CBMC, which is bounded by even “unwind 2”, cannot terminate within a 1-day
time budget. We have decided to evaluate D3 against a version, DSEP, in which both
aliasing and control-flow reachability are considered separately, as shown in Table 1.
Precision. For a total of 114,508 dereferences in the 10 programs, D3 proves success-
fully 81.3% (or 93,141

114,508
) to be safe. This translates into an average of 85.2% per pro-

gram, ranging from 72.3% in sendmail to 95.8% for ctags. In contrast, DSEP finds
only 61.3% of all the dereferences to be safe, with an average of 65.7% per program,
ranging from 49.7% for tmux to 76.2% for patch.

D3 is significantly more precise than DSEP (as measured by %Impr). For a total of
44,302 dereferences that cannot be verified to be safe by DSEP, D3 recognizes 51.8%
of these (i.e., 22,935

44,302
) as being safe. The largest improvements are observed for ctags

(85.0%), cpio (82.4%) and MCSim (82.4%), which contain many cases as in Figure 3,
causing DSEP to fail but D3 to succeed, since aliasing and reachability must be consid-
ered together. On the other hand, the precision improvements for wget (31.8%) and
sendmail (34.9%), where linked lists are heavily used, are the least impressive.
Scalability. For a program, the size of its value-flow graph affects the time complexity
of our approach. D3 scales reasonably well to these programs, spending a total of 33,022
seconds on analyzing a total of 1,166 KLOC, while DSEP is faster (finishing in 2,438
seconds) but less precise. For sendmail (the largest with 260 KLOC), D3 takes 3,277
seconds to complete. For ctags (the smallest with 42 KLOC), D3 finishes in 520
seconds. D3 is the fastest for parted, which has the smallest value-flow graph with
the smallest number of dereferences. D3 is the slowest for tmux, which has the second
largest value-flow graph with the largest number of dereferences.

6 Related Work

As a static verifier, D3 differs fundamentally from static bug detectors that trade sound-
ness for precision. In designing D3, it appears crucial to synergize aliasing and reach-
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ability analyses to achieve high precision while maintaining soundness. In comparison
with separation-logic-based approaches that emphasize compositional and modular rea-
soning, D3 is demand-driven, by analyzing also only the code relevant to a TH-safety
query (although it can be accelerated by a fast but imprecise pre-analysis).
Pointer Analysis Substantial progress has been made for whole-program [35,26,49]
and demand-driven [23,48,52] pointer analyses, with flow-sensitivity [22,34], call-site-
sensitivity [42,60], object-sensitivity [39,55] and type-sensitivity [47,28]). These re-
cent advances in both precision and scalability have resulted in their widespread adop-
tion in detecting memory bugs [3,21], such as memory leaks [13,53], null derefer-
ences [38,36], uninitialized variables [59,37] and buffer overflows [33,14], and typestate
verification [20,16]. Recent pointer-analysis-based tools [46,56] can detect TH-safety
violations with low false-positive rates, but at the expense of missing true bugs. In con-
trast, D3 is designed to be a verifier for finding TH-safety violations with good precision
soundly by considering aliasing and control-flow reachability synergistically.
Separation Logic As an extension of Hoare logic for heap-manipulating programs,
separation logic [44] provides the basis for a long line of research on memory safety
verification. At its core is the separating conjunction ∗ that splits the heap into disjoint
heaplets, allowing program reasoning to be confined in heaplets [58,19]. For separation-
logic-based verification, scalability has considerably improved with techniques like bi-
abduction at the expense of sacrificing some precision [11,57], leading to industrial-
strength tools such as Microsoft’s SLAyer [8] and Facebook’s Infer [10]. By giving up
also some soundness, many industrial-strength static analyzers, such as Clang Static
Analyzer [5,45] and Infer (the current release 0.15.0) are bug detectors, which reduce
false positives at the expense of exhibiting false negatives as well. Unlike separation-
logic-based approaches that support compositional and modular reasoning, D3 takes a
pointer-analysis-based approach by analyzing also only the relevant code on-demand.
Model Checking Model checking represents a powerful framework for reasoning about
a wide range of properties [27]. To analyze pointer-intensive C programs, model check-
ers like SLAM [7] and BLAST [24] rely on pre-computed pointer analysis. However,
as pointed out in [29], model checking still suffers from limitations in fully automated
TH-safety verification for large-sized programs, partly due to complex pointer aliasing.
Dynamic Analysis TH-safety violations can be detected soundly and completely at
runtime by enforcing full (i.e., both spatial and temporal) memory safety with program
instrumentation [41]. To avoid high overheads (116% [41]), weaker security policies,
including various flavors of control-flow integrity [2], have been proposed. Whenever
a TH-safety violation is detected, the execution of the program is aborted to protect
against exploits. Alternatively, one can resort to safe allocators [9,4], which disallow
deallocated heap chunks from being reused, to mitigate memory corruption errors.

7 Conclusion
This paper presents D3, a novel approach for addressing the TH-safety verification
problem based on a demand-driven context-sensitive pointer analysis. D3 achieves its
precision (by considering both aliasing and control-flow reachability simultaneously)
and scalability (with adaptive context-sensitivity). In future work, we plan to empower
D3 by also considering (partial) path-sensitivity and shape analysis.
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A Tracing a Points-to Query

In Example 3, we provide a partial trace of ptddcs ([ ], 16,feedDog) = ⟐ for the pro-
gram given in Figure 7, explaining how to infer ⟪[κ10], o2⟫ ∈ ptddcs ([ ], 16,feedDog)
by restricting us to the⟿ facts obtained for the nine value-flow edges shown. Here,
we give a full trace for obtaining this pointed-to object in Table 2, including the ⟿
facts obtained for all the value-flow edges traversed in the complete value-flow graph
of this program given in Figure 13.

1: def mkFd() {
2: fd=malloc(); // o2
3: ret fd;

}

4: def mkCtn() {
5: ctn=malloc(); // o5
6: ret ctn;

}

7≺: Jo15 = χ(o05)K
7: def put(pfd, pctn) {
8: ∗pctn=pfd;
8≻: Jo25 = χ(o15)K

}
7≻: Jµ(o25)K

9: def feedPets() {
10: bone=mkFd(); //⟪[κ10], o2⟫
11: fish=mkFd(); //⟪[κ11], o2⟫
12: tray=mkCtn(); //⟪[κ12], o5⟫
13: bowl=mkCtn(); //⟪[κ13], o5⟫
14≺: Jµ(o05)K
14: put(bone, tray);//κ14

14≻: Jo15 = χ(o05)K

15≺: Jµ(o15)K
15: put(fish, bowl);//κ15

15≻: Jo25 = χ(o15)K

16≺: Jµ(o25)K
16: feedDog=∗tray;

}

Fig. 13. The program given in Figure 7 decorated with all the value-flow edges.

For the step-by-step trace in Table 2, we intend to highlight the following aspects:

(1) Value-Flow Transitivity. The flow of ⟪[κ10], o2⟫ into ⟨[ ], 16,feedDog⟩, i.e.,
⟪[κ10], o2⟫ ⟿ ⟨[ ], 16,feedDog⟩, discussed in Example 3, is obtained by Steps
#11 – #13 – #32 – #34 – #36 – #51 – #53 – #55 – #57 – #59 – #61 – #63.

(2) Generating Demand Points-to Queries. In addition to ptddcs ([ ], 16,feedDog) =
⟐, the other demand queries⟐ are issued in by firing 1© Rule [DDBack] (e.g., Steps #4,
#6 and #8) to start a new backward traversal, and 2© Rules [DDLoad] and [DDStore] (e.g.,
Steps #2 and #19) at a load or store statement to resolve a dereferenced pointer.

(3) Context-sensitivity. Starting with pt
dd
cs ([ ], 16,feedDog) = ⟐, i.e., ⟐ ⟿

⟨[ ], 16,feedDog⟩ at Step #1, we obtain ⟪[κ12], o5⟫⟿ ⟨[ ], 16,tray⟩ in Steps
#2 – #10. There are two call sites, κ14 and κ15, for put(). Once we know what tray
points to, we can enter put() backwards from its exit at line 7≻ in two different ways,
depending on whether it is called from κ15 or κ14 or not.

By performing Steps #11 – #18 (with the assumption that put() is called from
κ15), we reach line 8, where we issue a demand query at Step #19,
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⟐ ⟿ ⟨[κ15], 8,pctn⟩, but only to find that ⟪[κ13], o5⟫ ⟿ ⟨[κ15], 8,pctn⟩,
i.e., ⟪[κ12], o5⟫Ä ⟨[κ15], 8,pctn⟩ at the end of Steps #19 – #31.

Alternatively, after having performed Steps #32 – #37 (with the assumption that
put() is called from κ14), we reach line 8 again, where we issue another query at
Step #38, ⟐ ⟿ ⟨[κ14], 8,pctn⟩. This time, however, we obtain ⟪[κ12], o5⟫⟿
⟨[κ14], 8,pctn⟩, i.e., at the end of Steps #38 – #50. By completing Steps #51 – #64, as
already demonstrated in Example 3, we obtain ⟪[κ10], o2⟫ ∈ ptddcs ([ ], 16,feedDog).

Step # ⟿ Rule

1 ⟐⟿ ⟨[ ], 16,feedDog⟩ [QRY]

2 ⟐⟿ ⟨[ ], 16,tray⟩ [DDLoad]

3 ⟨[ ], 12,tray⟩⟿ ⟨[ ], 16,tray⟩ [VFT]

4 ⟐⟿ ⟨[ ], 12,tray⟩ [DDBack]

5 ⟨[κ12], 6,ctn⟩⟿ ⟨[ ], 12,tray⟩ [VFT
Ret]

6 ⟐⟿ ⟨[κ12], 6,ctn⟩ [DDBack]

7 ⟨[κ12], 5,ctn⟩⟿ ⟨[κ12], 6,ctn⟩ [VFT]

8 ⟐⟿ ⟨[κ12], 5,ctn⟩ [DDBack]

9 ⟪[κ12], o5⟫⟿ ⟨[κ12], 5,ctn⟩ [VFAlloc]

10 ⟪[κ12], o5⟫⟿ ⟨[ ], 16,tray⟩ [VFTrans]

11 ⟨[ ], 16≺,⟪[κ12], o5⟫⟩⟿ ⟨[ ], 16,feedDog⟩ [VFLoad]

12 ⟐⟿ ⟨[ ], 16≺,⟪[κ12], o5⟫⟩ [DDBack]

13 ⟨[ ], 15≻,⟪[κ12], o5⟫⟩⟿ ⟨[ ], 16≺,⟪[κ12], o5⟫⟩ [VFA]

14 ⟐⟿ ⟨[ ], 15≻,⟪[κ12], o5⟫⟩ [DDBack]

15 ⟨[κ15], 7≻,⟪[κ12], o5⟫⟩⟿ ⟨[ ], 15≻,⟪[κ12], o5⟫⟩ [VFA
Ret]

16 ⟐⟿ ⟨[κ15], 7≻,⟪[κ12], o5⟫⟩ [DDBack]

17 ⟨[κ15], 8≻,⟪[κ12], o5⟫⟩⟿ ⟨[κ15], 7≻,⟪[κ12], o5⟫⟩ [VFA]

18 ⟐⟿ ⟨[κ15], 8≻,⟪[κ12], o5⟫⟩ [DDBack]

19 ⟐⟿ ⟨[κ15], 8,pctn⟩ [DDStore]

20 ⟨[κ15], 7,pctn⟩⟿ ⟨[κ15], 8,pctn⟩ [VFT]

21 ⟐⟿ ⟨[κ15], 7,pctn⟩ [DDBack]

22 ⟨[ ], 15,bowl⟩⟿ ⟨[κ15], 7,pctn⟩ [VFT
Call]

23 ⟐⟿ ⟨[ ], 15,bowl⟩ [DDBack]

24 ⟨[ ], 13,bowl⟩⟿ ⟨[ ], 15,bowl⟩ [VFT]

25 ⟐⟿ ⟨[ ], 13,bowl⟩ [DDBack]

26 ⟨[κ13], 6,ctn⟩⟿ ⟨[ ], 13,bowl⟩ [VFT
Ret]

27 ⟐⟿ ⟨[κ13], 6,ctn⟩ [DDBack]

28 ⟨[κ13], 5,ctn⟩⟿ ⟨[κ13], 6,ctn⟩ [VFT]

29 ⟐⟿ ⟨[κ13], 5,ctn⟩ [DDBack]

30 ⟪[κ13], o5⟫⟿ ⟨[κ13], 5,ctn⟩ [VFAlloc]

31 ⟪[κ13], o5⟫⟿ ⟨[κ15], 8,pctn⟩ [VFTrans]

32 ⟨[ ], 14≻,⟪[κ12], o5⟫⟩⟿ ⟨[ ], 15≻,⟪[κ12], o5⟫⟩ [VFA]

Step # ⟿ Rule

33 ⟐⟿ ⟨[ ], 14≻,⟪[κ12], o5⟫⟩ [DDBack]

34 ⟨[κ14], 7≻,⟪[κ12], o5⟫⟩⟿ ⟨[ ], 14≻,⟪[κ12], o5⟫⟩ [VFA
Ret]

35 ⟐⟿ ⟨[κ14], 7≻,⟪[κ12], o5⟫⟩ [DDBack]

36 ⟨[κ14], 8≻,⟪[κ12], o5⟫⟩⟿ ⟨[κ14], 7≻,⟪[κ12], o5⟫⟩ [VFA]

37 ⟐⟿ ⟨[κ14], 8≻,⟪[κ12], o5⟫⟩ [DDBack]

38 ⟐⟿ ⟨[κ14], 8,pctn⟩ [DDStore]

39 ⟨[κ14], 7,pctn⟩⟿ ⟨[κ14], 8,pctn⟩ [VFT]

40 ⟐⟿ ⟨[κ14], 7,pctn⟩ [DDBack]

41 ⟨[ ], 14,tray⟩⟿ ⟨[κ14], 7,pctn⟩ [VFT
Call]

42 ⟐⟿ ⟨[ ], 14,tray⟩ [DDBack]

43 ⟨[ ], 12,tray⟩⟿ ⟨[ ], 14,tray⟩ [VFT]

44 ⟐⟿ ⟨[ ], 12,tray⟩ [DDBack]

45 ⟨[κ12], 6,ctn⟩⟿ ⟨[ ], 12,tray⟩ [VFT
Ret]

46 ⟐⟿ ⟨[κ12], 6,ctn⟩ [DDBack]

47 ⟨[κ12], 5,ctn⟩⟿ ⟨[κ12], 6,ctn⟩ [VFT]

48 ⟐⟿ ⟨[κ12], 5,ctn⟩ [DDBack]

49 ⟪[κ12], o5⟫⟿ ⟨[κ12], 5,ctn⟩ [VFAlloc]

50 ⟪[κ12], o5⟫⟿ ⟨[κ14], 8,pctn⟩ [VFTrans]

51 ⟨[κ14], 8,pfd⟩⟿ ⟨[κ14], 8≻,⟪[κ12], o5⟫⟩ [VFStore]

52 ⟐⟿ ⟨[κ14], 8,pfd⟩ [DDBack]

53 ⟨[κ14], 7,pfd⟩⟿ ⟨[κ14], 8,pfd⟩ [VFT]

54 ⟐⟿ ⟨[κ14], 7,pfd⟩ [DDBack]

55 ⟨[ ], 14,bone⟩⟿ ⟨[κ14], 7,pfd⟩ [VFT
Call]

56 ⟐⟿ ⟨[ ], 14,bone⟩ [DDBack]

57 ⟨[ ], 10,bone⟩⟿ ⟨[ ], 14,bone⟩ [VFT]

58 ⟐⟿ ⟨[ ], 10,bone⟩ [DDBack]

59 ⟨[κ10], 3,fd⟩⟿ ⟨[ ], 10,bone⟩ [VFT
Ret]

60 ⟐⟿ ⟨[κ10], 3,fd⟩ [DDBack]

61 ⟨[κ10], 2,fd⟩⟿ ⟨[κ10], 3,fd⟩ [VFT]

62 ⟐⟿ ⟨[κ10], 2,fd⟩ [DDBack]

63 ⟪[κ10], o2⟫⟿ ⟨[κ10], 2,fd⟩ [VFAlloc]

64 ⟪[κ10], o2⟫⟿ ⟨[ ], 16,feedDog⟩ [VFTrans]

Table 2. A step-by-step trace of ptddcs ([ ], 16,feedDog) = ⟐, for computing ⟪[κ10], o2⟫ ∈

pt
dd
cs ([ ], 16,feedDog), with ptddcs operating on the value-flow graph of the program in Figure 13

by applying the rules given in Figure 9.
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