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ABSTRACT

This paper considers object detection and 3D estimation using an
FMCW radar. The state-of-the-art deep learning framework is em-
ployed instead of using traditional signal processing. In preparing
the radar training data, the ground truth of an object orientation in 3D
space is provided by conducting image analysis, of which the images
are obtained through a coupled camera to the radar device. To en-
sure successful training of a fully convolutional network (FCN), we
propose a normalization method, which is found to be essential to
be applied to the radar signal before feeding into the neural network.
The system after proper training is able to first detect the presence of
an object in an environment. If it does, the system then further pro-
duces an estimation of its 3D position. Experimental results show
that the proposed system can be successfully trained and employed
for detecting a car and further estimating its 3D position in a noisy
environment.

Index Terms— FMCW radar, camera, U-Net, FCN, object de-
tection.

1. INTRODUCTION

Reliable object detection using one or more sensors is critical for ap-
plications like autonomous driving [1], interactive video games, and
surveillance tasks. Typical sensors for object detection include cam-
eras, radars, and LiDARs. In general, different sensors have their
unique sensing properties, which brings each type of sensor an ad-
vantage over others when performing object detection. For instance,
cameras are able to capture rich texture information of objects in
normal light conditions, which makes it possible to identify and dis-
tinguish objects from background. Radars attempt to detect objects
by continuously transmitting microwaves and then analyzing the re-
ceived signals reflected by the objects, which allow the sensors to
work regardless of bad weather conditions or dark environments.

In recent years, object detection based on cameras has made sig-
nificant progress by using deep learning framework. The basic idea
is to design and train a deep neural network (DNN) by feeding a
large number of annotated image samples. The training process en-
ables the DNN to effectively capture informative image features of
interested objects via multiple neural layers [2]. As a result, the
trained DNN is able to produce impressive performance for visual
object detection and other similar tasks such as object classification
and segmentation (e.g., Mask R-CNN [3], YOLO [4], and U-Net
[5]).

Research on exploiting DNNs for analyzing radar signals is
still at an early stage. [6] considered the problem of classifying 6
different vehicles using the frequency-modulated continuous-wave
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Fig. 1. Diagram of the proposed object detection and 3D estimation
system via an FMCW radar using an FCN. The background radar
signal only contains reflected noise introduced by the environment.
Information of interested objects is only embeded in the foreground
signal. The FCN exploited in this work is a variant of U-Net.
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Fig. 2. (a): radar (QR77SAW from Qamcom Research and Technol-
ogy AB) plus a coupled camera; (b) camera image; (c) range-doppler
spectrum from one antenna receiver. The camera assists the radar by
annotating the radar signals to allow for FCN training. The image
coordinates (xim, yim) are firstly estimated through image analysis,
and then treated as the ground truth of the object orientation when
training the FCN for analyzing the radar signal.

(FMCW) radar signals, where Short Time Fourier Transformation
(STFT) is firstly applied to the original radar signals to obtain spec-
trums as inputs to the DNN. In [7], the authors attempted to detect
the presence of vehicles using DNNs, which can be formulated as
a binary classification problem. The work of [8] considered com-
bining DNNs and support vector machine (SVM) for moving radar
target classification. The above classification tasks do not fully ex-
ploit the information embedded in radar signals for advanced object
detection such as range and velocity estimation of interested objects.
To the best of our knowledge, there is no prior work on using DNNs
to simultaneously detect the presence and estimate the 3D positions
of objects (e.g., vehicles) based on radar signals.

In this work, we attempt to fully exploit the FMCW radar signals



to detect the presence and estimate the 3D positions of objects based
on DNNs. It is known that for an FMCW radar with multiple antenna
receivers, 3D information (i.e., range, elevation and azimuth) of in-
terested objects is embedded in the received radar signals [9, 10].
Our motivation for exploiting the DNN-based approach is that radar
signals can be preprocessed and treated as images. By doing so, the
obtained knowledge of employing DNNs for successful image anal-
ysis in the literature could be transferred to radar signal analysis.

The new DNN-based system is designed by following the dia-
gram in Fig. 1, which consists of a signal preprocessing block and a
fully convolutional network (FCN) block. A background radar signal
is processed together with a foreground signal to be able to combat
reflection noises introduced by the environment. The proposed sys-
tem aims to detect and estimate 3D information of one object only
appearing in the foreground.

In brief, we make three contributions towards successful usage
of an FCN for reliable radar-based object detection and 3D estima-
tion. Firstly, in preparation of training data, we use a coupled cam-
era to annotate radar signals (see Fig. 2). Suppose the radar training
signal is for estimating the range, azimuth and elevation of one ob-
ject. The ground truth of azimuth and elevation will be provided by
conducting image analysis, assuming that the radar signal and the
corresponding image sequence are well synchronized.

Secondly, we propose a normalization method for radar signal
which works together with 2D-FFT as the preprocessing block for
the system in Fig. 1. Suppose a foreground (or background) radar
signal segment is transformed to N range-doppler spectrums after
2D-FFT, one for each radar receiver. The normalization method op-
erates on each range-doppler cell of the N spectrums to cancel out
the effect of phase shift of radar signals due to range-difference in
space. The normalization is essential to ensuring successful training
of the FCN later on.

Thirdly, we propose a variant of U-Net (one type of FCN [5])
to analyze the normalized range-doppler spectrums obtained from
the signal preprocessing block. The proposed network firstly detect
presence of objects in the foreground. If an object is identified, the
network then further estimates its azimuth and elevation to fully de-
termine its 3D location. As an example, we successfully trained the
radar system for detecting and estimating the 3D position of a car in
a noisy environment.

2. PRELIMINARY

In this section, we briefly explain how the 3D information of an ob-
ject is embedded in the radar signals of an FMCW radar with N
receivers. The difference between range-doppler spectrums of radar
signals and camera images will also be briefly discussed.

Suppose an FMCW radar keeps transmitting a frequency mod-
ulated microwave signal in its front field. A stationary object in the
field would reflect back the signal to the radar device, which is actu-
ally a delayed and damped version of the transmitted signal. Infor-
mation of the range or distance between the radar and the object is
naturally embedded in the time delay. Considering a moving object
in the field, the delay would vary over time if the object has nonzero
radial velocity w.r.t. the radar device. In principle, the radial velocity
should be able to be computed by measuring the delay change over
time [9, 10].

It is found that the range and radial velocity of an object corre-
sponds to the vertical and horizontal axis of the spectrum obtained
by performing 2D FFT on a radar signal segment [9, 10], which is
usually referred to as the range-doppler spectrum. As shown for the
ideal case in Fig. 3, the range and radial velocity of an object can be
easily obtained by searching for the coordinates of the highest signal
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Fig. 3. N range-doppler spectrums of an FMCW radar with N
receivers, one spectrum for each receiver. Information of azimuth
and elevation of an object is embedded in the corresponding range-
doppler cell of the N spectrums.

magnitude in the spectrum. In practice, a noisy environment might
cause the object signal be masked by background noise, making it
challenging to obtain an accurate estimation.

Next we consider estimating the object orientation in the form
of azimuth and elevation. Suppose the radar device has N antenna
receivers, which are properly distributed inside its radome. Depend-
ing on the orientation of the object w.r.t. the radar device, the re-
flected radar signal from the object would arrive at the N receivers
with different time patterns. Therefore, the different time-of-arrivals
(TOAs) carry the azimuth and elevation information of the object.
After obtaining N range-doppler spectrums (one for each receiver),
information of the object orientation is naturally embedded in phase
domain of the spectrum (see Fig. 3 for demonstration).

As will be explained later on, spectrums of radar signals will
be treated as images to allow for using the FCN-based image anal-
ysis framework in the literature. While the pixel position from a
camera image roughly represents the orientation of an object in 3D
space, the cell position of radar spectrums represents the range and
radial velocity of an object. Furthermore, the azimuth and eleva-
tion information of an object is carried in the phase domain of the
corresponding range-doppler cells over N receivers. In brief, radar
spectrums are fundamentally different from camera images. Each
signal type provides a unique set of features which may benefit the
other in certain applications.

3. ON RADAR SIGNAL ANNOTATION USING
A COUPLED CAMERA

Radar signal annotation is the key step to allow for the FCN training
in the later stage. To do so, we need to provide the ground truth of 3D
position (i.e., range, azimuth ϕ and elevation θ ) of an object as well
as its cell location (see Fig. 3) in the range-doppler spectrums. The
range and cell location can be simultaneously obtained by manually
marking the range-doppler spectrums. It is challenging to acquire
the ground truth of the azimuth ϕ and elevation θ of the object by
using the radar device alone.

To facilitate radar signal annotation, we propose a novel solution
to obtain the ground truth for the orientation of an object. As shown
in Fig. 2, we propose to use a coupled camera of the radar device to
estimate the orientation of the object. It is known that under good
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Fig. 4. The FCN structure, which is a variant of U-Net. The input tensor I includes information of both foreground and background radar
signals. The neural network produces three outputs: the object presence map Cp, and the two maps Cx and Cy for estimating the image
coordinates (xim, yim) of the object.

light conditions, image analysis can often provide an accurate esti-
mation of the image coordinates (xim, yim) of the object (see Fig. 2
(b) for demonstration). Suppose the camera is fixed w.r.t. the radar
device, it is straightforward that the image coordinates (xim, yim)
hold a one-to-one mapping to (ϕ, θ). If the coordinates of the radar
and the camera are probably calibrated, (ϕ, θ) can then be easily
computed from (xim, yim), which can then be taken as the ground
truth for the FCN training later on.

Radar-camera calibration is usually time consuming and re-
quires special equipments and computing programs. In this work,
we avoid the step of radar-camera calibration. Instead, the image
coordinates (xim, yim) of the object is taken directly as the ground
truth of the object orientation. The FCN in Fig. 1 is designed to
predict (xim, yim) of the object directly instead of (ϕ, θ).

Our motivation for estimating the image coordinates (xim, yim)
instead of (ϕ, θ) is based on the hypothesis that the FCN would be
able to implicitly learn the coordinate-mapping between camera and
radar. As will be discussed in Section 5, the experimental results
justify our hypothesis nicely.

The ability of estimating the image coordinates (xim, yim) di-
rectly from the neural network makes our system simple and practi-
cal. Firstly, there is no need to calibrate the radar and camera w.r.t.
a common coordinate system. The range and image coordinates to-
gether are able to determine 3D position of an object. Secondly, it
simplifies the annotation procedure of radar training samples using
the coupled camera. Once the image coordinates of an object are
obtained using the camera system, they will be used directly to label
the training samples.

4. ON SIGNAL PREPROCESSING AND FCN TRAINING

4.1. System description

As depicted in Fig. 1, the proposed system consists of two blocks.
The first block performs preprocessing to both a background and
foreground time-domain radar signal segments. The background sig-
nal only contains noise from the environment. It is introduced to
assist the system in detecting an object that only appears in the fore-
ground. As shown in Fig. 5, the first block includes two basic opera-
tions which are 2D FFT and phase-normalization per range-doppler
cell. After the two operations, each segment yields N normalized
range-doppler spectrums in the complex domain, one for each radar
receiver. In total, there are 2N normalized range-doppler spectrums.

The second block is an FCN to further analyze the 2N spectrums
and perform object detection and 3D estimation. In particular, it first
detects the presence of an object in the foreground. If an object is
identified in the foreground, the neural network further estimates the
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Fig. 5. Elaboration of the signal preprocessing block in Fig. 1.

range, and the image coordinates (xim, yim) in the image of the
coupled camera.

4.2. Phase-normalization

In this subsection, we present the phase-normalization step on the
obtained range-doppler spectrums as shown in Fig. 5. We first briefly
clarify the approximate independence between object distance and
orientation. Suppose an object is at the far field of the radar device,
where the object distance is significantly larger than the microwave
length sent out by the radar device. In this case, the object orientation
(ϕ, θ) is (roughly) independent of the object distance. That is, if the
object moves along the same direction w.r.t. the radar device, its
orientation (ϕ, θ) remains roughly the same.

The above analysis suggests that one can freely multiply a rota-
tion scalar (i..e, ejφ for any φ ∈ R) to each range-doppler cell across
the N spectrums without affecting the object orientation. Therefore,
in our work, we normalize the phases of each range-doppler cell
(corresponding to an N dimensional vector) by taking the spectrum
of the first receiver as a benchmark. After normalization, the spec-
trum of the first receiver always has zero phases.

We note that the normalization step is crucial to successfully
train the FCN and further utilize the network for object detection and
3D estimation. With normalization, the FCN does not need to figure
out by itself that the object range is unrelated with the estimation of
object orientation, making the training process feasible.

4.3. FCN architecture and loss function
4.3.1. Structure of the neural network

We exploit an FCN to analyze the tensor I obtained from the signal
preprocessing step. Fig. 4 displays the variant U-Net (one type of
FCN) exploited in our work. In total, it has 28 hidden layers and
three outputs. The 28 hidden layers include 20 conv. layers, 4 max-
pooling and 4 up-conv. layers. The first output is the object presence
map, which we denote as Cp. Each cell variable Cp(k,m) rep-
resents a binary probability, indicating the likelihood of an object
occupying the cell (k,m). The second and third outputs represent



the estimates of object orientation in terms of xim and yim, which
we denote as Cx and Cy . Correspondingly, the two cell variables
Cx(k,m) and Cy(k,m) represent the estimate of xim and yim of
the object at cell (k,m) if it exists.

4.3.2. Loss function

So far the FCN structure has been motivated and explained. We
now briefly describe the loss function needed for training the FCN.
As analyzed from above, the first output Cp of the neural network
estimates object presence in the foreground, which is equivalent to
an image segmentation problem (see [5]). We therefore design the
loss function for Cp to be a combination of binary cross-entropy and
a Dice loss [11], denoted as fseg(Cp,C

g
p), where Cg

p represents the
ground truth. The second output (Cx,Cy) further determines the
object orientation detected in the first output by providing estimates
of their image coordinates. We therefore measure the mean squared
error (MSE) between the estimates (Cx,Cy) and their ground truth
(Cg

x,C
g
y), denoted as ‖Cx−Cg

x‖2 and ‖Cy−Cg
y‖2, respectively.

When training the FCN, a summation of the above three losses is
minimized through backpropogation.

5. EXPERIMENTS

In the experiment, the radar QR77SAW from Qamcom Research and
Technology AB was employed for evaluating the proposed object
detection and 3D estimation system. The radar has one transmitter
and N = 8 receivers. As shown in Fig. 2, a camera was mounted
at the top of the radar for both radar signal annotation and detection
visualization. The radar signal and image sequences from the camera
were properly synchronized as required by the proposed system.

The experiment was designed for the radar to detect and esti-
mate the 3D position of a car in an environment with surrounded
buildings as shown in Fig. 2. The tested range for the car was be-
tween 4 m to 28 m. Three segments of radar and camera data were
collected separately: one for the background (i.e., no car in the en-
vironment) and the other two for the foreground (i.e., a car moving
in the field). The background segment contains 800 radar-camera
frames while the first and second foreground segments have 2214
and 2323 frames, respectively. As the radar was placed by facing the
front ground surface rather than sky, strong background noise exists
in the collected radar signal.

In preparation for evaluating our system, all the foreground
radar-camera frames were carefully annotated by following the
guidelines in Section 3. That is, the ground truth for the car orien-
tations in the radar signal were obtained by estimating the image
coordinates (i.e., the centroid) of the car by running Mask R-CNN
which is then followed by manual verification. The obtained image
coordinates (xim, yim) were normalized to the range [0, 1] to facili-
tate FCN training. The cell positions of the car in the range-doppler
spectrums were manually marked.

The first foreground segment was selected for training the FCN
while the second one was for performance validation. In partic-
ular, 2214 training samples were generated by randomly pairing
the frames from the first foreground segment and the background
frames. Similarly, 2323 validation samples were generated by using
the background and the second foreground segments. The stochastic
gradient decent (SGD) method was chosen for training the FCN, of
which the learning rate and momentum were set to 0.03 and 0.9,
respectively. In total, the neural network was trained for 200 epochs
from scratch.

The training results were briefly summarized in Table 1. It is
seen that the MSE for Cx is slightly larger than that for Cy . This

(a):  Detection at a far distance 

(b):  Detection at a close distance 

Fig. 6. Demonstration of two tested examples by applying the
trained FCN on the validation dataset. The yellow box in the range-
doppler spectrums indicates the cell positions for the detected car.
The green circle in the images represents the estimated car orienta-
tions from the FCN.

is because when collecting the data, the car moved on the ground
surface in a horizontal manner. As a result, the coordinate yim was
always within a small range while the coordinate xim changed a lot
as the car moved. One observes that the validation loss for Cp is
noticeably larger than the training loss compared to those for Cx

and Cy . This might be due to the fact that the segmentation problem
for Cp is difficult to train compared with the regression problems
for Cx and Cy in our system.

Table 1. List of training and validation losses after 200 epochs.
loss for Cp MSE for Cx MSE for Cy

training -0.63 2.8× 10−3 7.7× 10−5

validation -0.52 3.9× 10−3 8.2× 10−5

Fig. 6 displays two examples by applying the trained FCN model
on the validation samples. It is clear from the figure that when
the car is close to the radar, its signal on the range-doppler spec-
trum has a strong magnitude and occupies a reasonable number of
range-doppler cells, making it easy for detection and 3D estimation.
The detection becomes less easy when the car moves away from the
device due to both background noise and fewer number of range-
doppler cells being occupied by the car. As shown in the figure, our
proposed system is able to detect the car accurately even when the
distance is large.

6. CONCLUSIONS

In this paper, we have proposed an FCN-based object detection and
3D estimation system using an FMCW radar. A camera has been
used to assist the radar device by annotating the radar signals through
image analysis. Our method requires no calibration between radar
and camera coordinates. Furthermore, we have proposed a phase-
normalization method to preprocess the range-doppler spectrums,
which is essential to ensure successful training of the FCN. Experi-
mental results have verified that the new system can be well trained
and applied for detecting and estimating the 3D position of a car.
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