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ABSTRACT

Generalization of a deep neural network (DNN) is one major con-
cern when employing the deep learning approach for solving prac-
tical problems. In this paper we propose a new technique, named
projected weight regularization (PWR), to improve the generaliza-
tion capacity of a DNN model. Consider a weight matrix W from
a particular neural layer in the model. Our objective is to make
the eigenvalues of the matrix product WWT have comparable or
roughly the same magnitudes while allowing the DNN model to fit
the training data sufficiently accurate. Intuitively speaking, by do-
ing so, it would prevent the W matrix from matching the training
data too well. Specifically, at each iteration, we first project the W
matrix to a number of vectors along randomly generated directions.
After that, we build an objective function of the projected vectors
to regularize their behaviours towards comparable eigenvalue mag-
nitudes of WWT . Experimental results on training VGG16 for CI-
FAR10 show that PWR combined with centered weight normaliza-
tion (CWN) yields promising validation performance compared to
orthonormal regularisation combined with CWN.

Index Terms— DNN, projected weight regularization, CWN.

1. INTRODUCTION

How to train a deep neural network (DNN) to maximize its gen-
eralization capacity has been a challenging task. The training pro-
cess may be affected by various factors such as the nature of nonlin-
ear activation functions, weight initialization, neural network archi-
tectures, and optimization methods like stochastic gradient descent
(SGD). In the past few years, different techniques have been pro-
posed to improve the training process from different perspectives.
Considering selection of the activation function, the rectified lin-
ear unit (ReLU) was found to be much more effective than the bi-
nary unit in feed-forward neural networks (FNNs) and convolutional
neural networks (CNNs) [1]. Careful weight initialization based
on the properties of the activation function and layerwise neuron-
number has also been found to be essential for effective training
(e.g., [2]). Nowadays, neural networks with shortcuts (e.g., ResNet
[3] and Unet [4]) become increasingly popular as introduction of
the shortcuts greatly alleviates the issue of gradient vanishing or ex-
plosion, which become severe issues when training extremely deep
neural networks. From the optimization point of view, SGD with
momentum is empirically found to produce DNNs with good gen-
eralization capacity over other gradient based methods (e.g., Adam
[5], AdaGrad [6], RMSProp [7]).
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In recent years, a family of normalization techniques have been
proposed to accelerate the training process and produce high quality
DNN models. The motivation behind these techniques is to make
proper adjustment at each individual layer so that either the input
or output statistics of the activation functions of the layer are uni-
fied in terms of the first and/or second moments. By doing so, the
problem of internal covariance shift can be largely alleviated, thus
significantly improving the efficiency of the back-propagation op-
timization methods. Those techniques can be roughly classified as
(a): data-driven normalization, (b): activation-function normaliza-
tion, and (c): weight-driven normalization.

We now briefly review the above three normalisation techniques.
Data-driven normalization operates directly on the layer-wise inter-
nal features of training data, which includes for example batch nor-
malization [8], layer normalization [9], and iterative normalization
[10]. This type of normalisations was shown to be remarkably ef-
fective but one often has to carefully handle the inconsistency be-
tween training and inference, as the input statistics at the inference
stage might be changed due to a reduced number of input samples.
Activation-function normalization intends to design proper activa-
tion functions that are able to keep certain statistics unchanged be-
tween its input and output [11]. Weight-driven normalization in-
directly regulate the statistics of the layer-wise internal features by
building and implictly imposing contraints on the weight matrices
of the neural layers, which include weight normalization (WN) [12],
centered-weight normalization (CWN) [13], and spectral normaliza-
tion (SN) [14]. It is reported in [13, 15] that WN (or CWN) com-
bined with batch normalization often provides better performance.
SN is shown to be effective when training generative adversarial net-
works (GANs) [14].

Besides weight-driven normalization, different weight regular-
isation techniques have also been proposed in the literature. The
basic idea is to add specific penalty functions of the weight matrices
to the original objective function when training the DNN model to
influence the behaviours of the weight matrices. The weight decay
is one popular technique, which poses a quadratic weight penalty
function. In [16], orthonormal regularisation is proposed for push-
ing the vectors in each weight matrix to be mutually orthonormal
with their norms being pushed close to one. We will briefly review
orthonormal regularisation in Subsection 2.1 later on to motivate our
new regularisation technique.

In this paper, we develop a new weight regularisation method,
termed as projected weight regularization (PWR), to improve the
generalization capacity of DNNs. Suppose W is a weight matrix
extracted from a neural layer. PWR attempts to implicitly shape the
eigenvalues of the matrix productWWT such that it has comparable
or roughly uniform eigenvalues. By doing so, it prevents the weight



matrix from having low rank and from overlearning the training data,
which leads to better generalization of the resulting DNN model. To
start with, the W matrix is projected onto a number of vectors along
different randomly generated directions. A penalty function of the
projected vectors is then built to regularize their behaviours for shap-
ing the eigenvalues of WWT . Differently from orthonormal regu-
larisation, PWR provides more freedom to regularize the W matrix
in that it can construct different forms of the penalty functions if
necessary.

In this work, a general framework for PWR will be defined first.
We will show that the functional form of orthonormal regularisation
can be taken as a special case of PWR. We then construct a specific
functional form for CWN in training a CWN-based DNN model.
Our motivation for investigating CWN is that the technique is effec-
tive to produce DNN models with promising generalization capacity
[13]. Experimental results on training VGG16 for CIFAR10 show
that PWR combined with CWN performs better than orthonormal
regularisation combined with CWN.

2. PROJECTED WEIGHT REGULARIZATION

2.1. Preliminary

Suppose we have a sequence of L pairs of training samples
{(xi, yi)|i = 1, . . . , L}, where xi and yi represent the input and
output, respectively. For simplicity, we consider training a fully con-
nected neural network with the weights {Wi|i = 1, . . . , N} of N
layers.1 With the considered DNN model, each sample xi undergoes
a sequence of matrix multiplications and nonlinear functional oper-
ations to yield prediction of yi. The objective is to find the proper
weights {Wi} so that the network maps the input {xi} to the output
{yi} accurately. Mathematically, the training procedure intends to
solve a highly nonlinear and nonconvex optimization problem of the
form

min
{Wi}

L∑
i=1

dis(fN (. . . f2(W2f1(W1xi))), yi)+λ

N∑
i

p(Wi), (1)

where dis(·, ·) denotes the distance measure between the network
prediction for the sample xi and its ground truth yi, fi denotes non-
linear activation function at layer i, and λ is a scalar coefficient. The
2nd term in (1) represents a regularization penalty function of the
weight matrices. For the well-known weight decay technique [17],
p(Wi) becomes a quadratic penalty function of Wi, which prevents
the weight matrices from growing out of control.

Next we briefly review the orthonormal regularisation proposed
in [16], of which the penalty function for a weight matrix W of a
neural layer takes the form of

porth(W ) =
1

m2
‖WWT − I‖22, (2)

where m denotes the number of row vectors of W and I represents
the identity matrix. Basically, the penalty function porth intends
to make all the row vectors of W matrix to be orthogonal to each
other while having unit norm when a large scalar coefficient λ is
selected. For the ideal case that WWT = I , it is immediate that
all the eigenvalues of WWT becomes 1, leading to flat eigenvalue
distributions.

1One can extend the work to include the bias vectors and CNN neural
layers.

We note that orthonormal regularisation is just one way to make
an impact on the behaviour of the weight matrix W . In next subsec-
tion, we will introduce the projected weight regularisation (PWR).
Conceptually speaking, orthonormal regularisation can be taken as a
special case of PWR, which we will explain in the following.

2.2. Definition of PWR

Without loss of generality, we consider the input-output relationship
under a weight matrix W at a particular neural layer. We drop the
layer index for simplicity. The output z can be expressed as

z =Wv, (3)

where W is of size m × n, and v ∈ Rn represents the output from
layer below right after a nonlinear activation function. Our objective
is to generalize orthonormal regularisation to have more freedom in
shaping the eigenvalues of the matrix product WWT .

Intuitively speaking, suppose there exist extremely low-rank
weight matrices {Wi} for (1) that fits the training data well. It sug-
gests that the DNN model does not fully make use of its parameter
space and is highly redundant in the number of parameters. In other
words, information of the training data is concentrated only on a
small manifold of the parameter space. It is likely that information
of unseen data may fall outside of the small manifold, leading to
unsatisfactory performance. The above analysis suggests that it is
preferable to search for a DNN model of which the weight matri-
ces have high rank and where most of eigenvalue magnitudes are
comparable w.r.t. the largest eigenvalue magnitude. Therefore, we
propose PWR to serve the above purpose.

Next we introduce the basic framework of PWR. The first step
is to generate k random m-dimensional vectors {qj |j = 1, . . . , k}
from a certain probability distribution. The k vectors are then nor-
malized by their respective norms to produce k unified directions,
denoted as

q̂j = qj/‖qj‖ j = 1, . . . , k. (4)

After that, we compute and investigate the projection of W matrix
over the obtained k random directions. In principle, as k increases,
the projected vectors {q̂Ti W |j = 1, . . . , k} would carry sufficient
information of the W matrix to be able to shape the eigenvalues of
WWT .

We define the penalty function for PWR to be of form

ppwr(W |{qj}) = ppwr(q̂
T
1 W, q̂

T
2 W, . . . , q̂

T
kW ). (5)

(5) is quite general and provides high degrees of freedom for func-
tional construction if necessary. In fact, it can be shown that (5)
includes (2) of orthonormal regularisation as a special case by choos-
ing both the k directions {q̂Tj } and the penalty ppwr carefully. One
can simply take {q̂Tj = eTj }where the vector ej has entry 1 at the jth
position and zeros at other positions and then work out the functional
form of ppwr to produce (2).

From a perspective of linear system, W and q̂Tj can be treated
as a linear filter and the normalised input to the filter, respectively.
Conceptually speaking, orthonormal regularisation only penalises
the output response of a limited normalised input space. It is not
clear how the linear system responds for the whole normalised input
space when applying orthonormal regularisation when the parameter
λ in (1) is bounded from above. On the contrary, PWR automatically
considers the output response of the whole normalised input space
by generating random directions per training iteration, which allows



PWR to gain more controllability of the behaviour of the linear filter
W than orthonormal regularisation.

Next, as an example, we design a particular functional form for
ppwr(·), which is given by

pvarpwr(W |{qj}) =
1

k

k∑
j=1

(
‖q̂Tj W‖2 −

1

k

∑
r

‖q̂Tr W‖2
)2

. (6)

Equ. (6) penalizes the variance of the squared norms of the projected
vectors. Small variance implies that the output responses of the lin-
ear filter W over the whole normalised input space have roughly the
same norms. In other words, the eigenvalues of the matrix product
WWT would have roughly the same magnitudes, which is in line
with our research goal.

Remark 1. We note that in certain aspect, PWR is similar to sliced
Wasserstein distance (SWD) [18]. Basically, SWD approximates the
distance of two high-dimensional probability distributions by first
projecting the two distributions to one-dimensional space along a
number of directions and then measures the distance of the projected
distributions accordingly. PWR is designed to first project the weight
matrix along a number of directions and then operate on the pro-
jected vectors to influence the behavior of the weight matrix.

3. DESIGN OF PWR FOR CWN

In this section, we first briefly introduce CWN. After that, we pro-
pose a specific PWR form for CWN.

3.1. Centered-Weight Normalization(CWN)

CWN is proposed in [13] as a slight modification of WN. It conducts
operation on each row vector of W , which is associated with weight
incoming connections of the neurons from a layer below. We usewT

l

to denote the lth row vector of W in (3). CWN computes a function
of wT

l as

ŵT
l =

wT
l − 1

n
wT

l 1n

‖wT
l −

1
n
wT

l 1n‖
, (7)

where 1n denotes an n-dimensional vector of all ones. As the name
centered-weight normalization suggests, the new row vector ŵT

l is
obtained by first subtracting the mean value from the row vectorwT

l ,
which is then normalized to have a unit norm. To compensate for the
effect of normalization, an additional parameter ν is introduced in
[13] to perform scale transformation for ŵT

l , which can be expressed
as

ŵT
s,l = νŵT

l . (8)

When performing forward propagation over the neural network, wT
l

is replaced by ŵT
s,l in (1) so that the weight vector ŵT

l always has
zero mean and unit norm. In this case, the weight decay technique is
not necessary anymore as ŵT

l would never grow out of control.
The authors’ motivation for subtraction mean value from each

weight vector is that the vector is often initialized using a zero-mean
Gaussian distribution before training the DNN model. Thus, it is
natural to keep the zero mean property of the weight vector dur-
ing the training process. It is found empirically in [13] that the
mean-subtraction operation indeed helps with accelerating the train-
ing speed and making the DNN model more general.

Table 1. Procedure for building p1pwr for CWN
Input: a weigh matrix W , the number k of projections
1: Compute Ŵ by applying (7) on row vectors of W .
2. Randomly generate k vectors {qj |j = 1, . . . , k}
3. Normalize the k vectors to obtain {q̂j = qj/‖qj‖}
4. Compute p1pwr(Ŵ |{qj}) by following (9)

3.2. PWR form

We use Ŵ to denote the weight matrix obtained by stacking all the
newly obtained row vectors {ŵT

l } from (7) by CWN. We would like
to design ppwr for Ŵ to further shape the eigenvalues of ŴŴT .
Our motivation behind it is that CWN itself does not pose any con-
dition on the eigenvalues of W or ŴŴT . It may happen that the
matrix Ŵ after training has extremely low rank, which is undesir-
able from the analysis in Subsection 2.2. Therefore, an additional
regularization function is needed to shape the eigenvalues of ŴŴT .

Given Ŵ computed from (7) by CWN, we define ppwr to be

p1pwr(Ŵ |{qj}) =
1

k

k∑
j=1

(‖q̂Tj Ŵ‖2 − 1)2, (9)

where the superscript 1 in p1pwr indicates that the norm of each pro-
jected vector is pushed towards 1 in the function. Correspondingly,
the eigenvalues of ŴŴT would also be pushed to 1. The procedure
for computing p1pwr in (9) is summarized in Table (1). We note that
one can also design other functions of ‖q̂Tj Ŵ‖2 − 1 instead of the
quadratic function for better performance, which we leave for future
investigation.

The main difference between pvarpwr(·) in (6) and p1pwr(·) is that
the latter function uses 1 to replace the mean value 1

k

∑
r ‖q̂

T
r Ŵ‖2

of the squared norms of the projected vectors in pvarpwr(·). Our moti-
vation for the design of p1pwr(·) is that as Ŵ is computed from (7),
each of its row vectors {ŵT

l } has a unit norm already. Therefore, it
is reasonable to also push the norm of each projected vector q̂Tj Ŵ to
1 for consistency.

4. EXPERIMENTS

4.1. Experimental setup

In the experiments, we consider training the VGG16 network on CI-
FAR10. Five configurations have been tested, which are VGG16
with BN, BN+CWN, BN+CWN+orthonormal, BN+CWN+PWR1,
and BN+CWN+PWRvar, where orthonormal refers to orthonormal
regularisation defined by porth(Ŵ ). PWR1 and PWRvar refer to
the two penalty functions p1pwr(Ŵ ) and pvar

pwr(Ŵ ) of PWR, respec-
tively. Our primary interest is the validation performance gain due
to the introduction of PWR.

The implementation of the training and testing procedure was
conducted on the pytorch platform. SGD with momentum was em-
ployed for training each network configuration, where the momen-
tum was set to be 0.9. The maximum number of epochs was 160.
The initial learning rate was 0.1, and scheduled to be divided by 2 at
60 and 120 epochs sequentially. The scalar coefficient λ in (1) for
orthonormal regularization and PWR was set to be 5.0. For PWR,
the number k of projections was k = 128. To alleviate the effect of
the randomness in the training process, five experimental repetitions
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Fig. 1. Performance comparison of four configurations for training a VGG16 on CIFAR10, where orthonormal refers to orthonormal reguli-
razation. The curve for each configuration is selected from five experimental repetitions, which gives the highest validation accuracy.

Table 2. Validation accuracy (in percentage) of five experimental
repetitions per configuration for training VGG16 over CIFAR10.
PWR1 and PWRvar refer to the penalty function p1pwr(Ŵ |qj) and
pvarpwr(Ŵ |qj), respectively.

BN BN+CWN BN+CWN
+orthonormal

92.22±0.09 92.68±0.08 92.87±0.12
BN+CWN+PWR1 BN+CWN+PWRvar

93.04±0.13 93.0±0.09

were conducted for each configuration.

4.2. Analysis of experimental results

Table 2 shows the validation accuracy of five experimental repeti-
tions per configuration for the five configurations. It is clear that
introduction of PWR indeed helps CWN to improve generalisation
of the obtained VGG16 model. Furthermore, PWR performs slightly
better than orthonormal regularisation. This might be due to the fact
that PWR exploits full normalized input space of each weight ma-
trix by generating random projection directions while orthonormal
regularisation only considers a limited normalized input space. Our
experiments also confirm that CWN helps BN to obtain better vali-
dation performance. In brief, BN+CWN+PWR yields the best vali-
dation performance among the five tested configurations.

As is illustrated in Table 2, the validation accuracy of PWRvar

has a smaller confidence interval than PWR1. This suggests that
the performance of PWRvar tends to be less sensitive to the random-
ness introduced by DNN initialisation and the training procedure.
Therefore, PWRvar might be a good candidate to impliment PWR in
practice.

Fig. 1 displays the convergence results of four configurations.
The results for PWRvar are omitted due to the fact that PWRvar and
PWR1 have similar performance. Each curve in the plot is selected

from five experimental repetitions which gives the highest validation
accuracy. It is seen that the convergence behaviours of the training
loss are quite similar for the four configurations. When it comes val-
idation accuracy, the configuration with PWR produces noticeably
better convergence results than others. The above property suggests
that PWR is able to successfully shape the eigenvalues of each ma-
trix product ŴŴT in VGG16 as expected. It is also clear from the
figure that VGG16 with BN alone performs the worst. This might
be due to the fact BN operates on the internal features of training
samples and lacks controllability of weight matrices in comparison
to CWN, orthonormal regularisation, and PWR.

5. CONCLUSIONS

In this paper, we have proposed projected weight regularisation
(PWR), a new weight regularisation technique. PWR can be viewed
as a generalisation of orthonormal regularisation as both techniques
intend to shape the eigenvalues of each weight matrix in a DNN
model such that most of the eigenvalues have comparable magni-
tudes. Instead of imposing constraints directly on the row vectors
of a weight matrix as in orthonormal regularisation, PWR projects
the weight matrix to a number of vectors along different directions
and then builds a penalty function of the projected vectors. Concep-
tually speaking, PWR treats the weight matrix as a linear filter. It
then attempts to regulate the output response of the filter by feeding
randomly generated normalised inputs. Therefore, PWR is able to
cover the whole normalised inputs while orthonormal regularisa-
tion only considers a limited normalized input space. Experimental
results show that PWR performs slightly better than orthonormal
regularisation which might be due to the difference of normalized
input space.
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