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Resource Abundance, Industrial Structure, and Regional Carbon 
Emissions Efficiency in China

HIGHLIGHTS:
1. Carbon emissions efficiency and abatement potential are calculated.
2. Two perspectives of resource dependence and endowment are considered.
3. The direct and indirect effects of natural resource abundance are analyzed.
4. The carbon abatement potential in resource-based regions is still large.
5. Promoting the transformation of industrial structures can obtain a double dividend.

ABSTRACT: With increasing concerns over climate change and the global 
consensus regarding low carbon growth, the transition of resource-based regions has 
become urgent and challenging. We employ a Slacks-Based Measure with windows 
analysis approach to estimate the carbon emissions efficiency and abatement 
potential of China’s provinces over the period of 2003 to 2016. A panel Tobit model is 
further employed to analyze the direct and indirect effects of natural resource 
abundance on emissions efficiency. We find that: (1) There exists a negative 
correlation between resource abundance and carbon emissions efficiency. The more 
abundant the resources, the lower the emissions efficiency. (2) Although emissions 
efficiency and abatement potential are generally negatively correlated, abatement 
potential also depends on the scale of the economy. (3) Resource dependence is 
unfavourable for the rationalization and advancement of the industrial structure, 
which indirectly affects the carbon emissions efficiency. These findings imply that 
resource-based regions should make the improvement of emissions efficiency and the 
exploration of abatement potential as their top priority of actions for a low-carbon 
transition, and promote the transformation of industrial structure in order to obtain a 
double dividend in sustainable development and carbon emissions efficiency.

Key words: resource abundance; resource dependence; industrial structure; 
emissions efficiency; abatement potential;

1. Introduction

Low carbon growth is widely regarded as the key way to resolve the contradictory

demands for economic growth and carbon emissions mitigation. Finding ways to use 

resources including energy, more efficiently, is a key requirement for low carbon 

growth. China, as the world’s largest carbon emitter, has urgency to increase 
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emissions efficiency, reduce carbon emissions and realize low-carbon economic 

development. While China has formally promised the world in the Intended Nationally 

Determined Contributions (INDC) to peak its carbon emissions around 2030, it is 

actually trying to peak the emissions earlier than this deadline. China has integrated 

policies pertaining to the control of greenhouse gas emissions into the national 

economic and social development strategy, such as to increase the share of non-fossil 

fuels in primary energy consumption to around 20% (Xian et al., 2018). In 2017, non-

fossil fuels accounts for 13.6% of China’s total primary energy consumption (BP, 2018). 

In December 2016, the National Energy Administration issued the “Revolutionary 

Strategy for Energy Production and Consumption (2016-2030)” which states that non-

fossil energy will account for more than half of primary energy in 2050 (NDRC, 2016). 

The national unified carbon market that was officially launched in December 2017, 

could increase the abatement costs of enterprises and reduce the demand for fossil 

fuels (Wang et al., 2018). 

Although resource-based regions have played a major role in promoting the 

initial stages of industrialization, implementing low-carbon transition is a severe 

challenge for resource-based regions whose economic growth is often dominated by 

resource-intensive industries. Depending on resource advantages, resource-based 

regions have developed compatible industrial structures, and these have greatly 

accelerated regional development (Shi, 2013). However, most of the industries in 

these regions are likely to be characterised by high energy and emissions intensities 

(Feng et al., 2017). The abundance of the natural resources leads to low prices of 

resources, which has led to high extensive and inefficient energy consumption 

patterns and low emissions efficiency (Adom and Adams, 2018; Yang et al., 2018). 

Furthermore, resource intensive industries tend to cluster in resource-based regions 

and form industry agglomeration, eventually become the pillar industries, which 

further leads to resource dependence. After agglomeration, non-resource intensive 

industries are closely attached to the resource-intensive ones, and as a result the 

further resource dependence worsens the carbon emissions efficiency in resource-

based regions. As the major outputs of resource-based regions, it is unrealistic to 

abandon resource-intensive industries since a consequent growth plummet resulting 

in serious social and economic problems.
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However, where natural resource endowment is rich, resource dependence is not 

necessarily high. Natural resource abundance includes two related cases: rich 

endowment and high dependence. The natural resources endowment refers to the 

quantity of natural resources that a country or region can use for social and economic 

development; the natural resources dependence refers to the role of resource-based 

industries in the development of regional economy(Sun and Ye, 2012; Wu et al., 2018). 

Given the difficulties in improving emissions efficiency and reducing carbon 

emissions in resource-based regions, it is a timely and valuable exercise to investigate 

the relationship between resource abundance, industrial structure and carbon 

emissions efficiency so as to offer policy suggestions for low carbon transition in 

resource-based regions. As the world’s largest producer of coal and the largest emitter 

of carbon, China provides an excellent case to study the topic and focusing on China 

is important for the global community. The developing country status and lagged 

economic development mean that China’s lessons and experience can be useful for 

other developing countries that rely on natural resources. 

In this paper, we apply the Slakes-Based Measure (SBM) with windows analysis 

approach to estimate carbon emissions efficiency and abatement potential of China’s 

30 provinces from 2003 to 2016, and analyze the direct and indirect impact of resource 

abundance on carbon emissions efficiency from two perspectives of resource 

dependence and endowment. Our analysis is a useful extension to the existing 

literature and can offer suggestions relating to low-carbon transition in China’s 

resource-based regions. The contributions of this paper are twofold: 1) analysis of the 

impacts of natural resources abundance on carbon emissions efficiency; and 2) 

analysis of the influence of natural resource abundance on industrial structures, and 

then examination of the indirect effects on carbon emissions efficiency. 

The paper proceeds as follow: Section 2 reviews the literature, Section 3 

discusses the influence mechanism of resource abundance on emissions efficiency, 

Section 4 elaborates on the methodology and data, and Section 5 presents the 

empirical results and discussion. The concluding section provides policy 

recommendations and suggestions for further research.
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2. Literature Review 

This paper is closely related to three research strands in the literature. The first 

strand is “resource curse”, which is a popular topic in resource economics. The second 

strand is carbon emissions efficiency and abatement potential. The last strand is 

industrial structure which connects closely with the first two strands. Therefore, the 

literature review here deals with these three aspects.

For most countries and regions, having abundant resources hinder long-run 

economic growth rather than promote it. The “resource curse” has become a popular 

academic topic and has been discussed from different perspectives using various 

theories and methods. Many studies have empirically demonstrated that a large 

number of regions with abundant natural resources, especially coal, oil and gas, are 

trapped in the “resources curse” (Ahmed et al., 2016; Badeeb et al., 2017; 

Brunnschweiler, 2008; Friedrichs and Inderwildi, 2013; Gerelmaa and Kotani, 2016; 

Shao and Yang, 2014; Song et al., 2018)

Various approaches have been applied to evaluate the carbon emissions 

efficiency and carbon abatement potentials. By applying a data envelopment analysis 

(DEA) method, recent studies (Wang et al., 2013; Xian et al., 2018; Zha et al., 2016) 

found that even if all electricity-generating units in each region were able to adopt the 

best practices, the nationwide 18% intensity reduction target was not feasible through 

improving technical efficiency in a short or medium term. Owing to the diversity 

among the development patterns and natural resource endowments in China’s 

various regions, there is significant difference in the carbon emissions performances 

at the provincial levels (Chang et al., 2017; Yao et al., 2015). The remarkable 

imbalances in economic development, technology gaps, policies, industrial structures 

and energy consumption structures may explain the regional differences in carbon 

emissions efficiency (Lin and Du, 2015; Wang et al., 2016; Yao et al., 2015). 

Some researchers argued that rational industrial structure adjustment could 

improve resource utilization efficiency (Zhang and Deng, 2010) and mitigate carbon 

emissions (Li et al., 2017; Shao et al., 2016). There are many studies discussing how to 

adjust the industrial structure so as to reduce carbon emissions, such as increasing the 

proportion of tertiary industry in GDP (Zhang et al., 2014). Tian et al. (2014) pointed 
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out that different solutions should be used to control CO2 emissions in regions which 

are at different stages in the process of industrial structural change. 

The role of industrial structure in carbon emissions control may be more 

important in resource-based regions than in other regions. Long-term resource 

development has made industrial structures in resource-based regions dominated by 

natural resource development and primary processing (Sun and Ye, 2012). Such 

industrial structures will likely lead to high emissions intensity in the resource-based 

regions. Furthermore, low level industrial structures in the resource-based regions 

have “lock-in effect” and “crowd-out effect”, which hinder the adjustment and 

evolution of regional industrial structures (Li et al., 2019; Morris et al., 2012). Such 

features make it difficult for resource-based regions to achieve sustainable 

development in a low carbon world. However, a few researches show potential of 

overcoming negative resource abundance effects. Balsalobre-Lorente et al. (2018) 

found that countries with natural resources reduced their imports of dirty energy 

resources, which had a positive effect on CO2 emissions reduction.

In summary, the existing related research provides a little study of carbon 

emissions efficiency and abatement potential while considering the natural resources 

abundance and industrial structure. In this paper, by introducing two indicators which 

denote industrial structure and employing the panel Tobit model, we analyze the 

direct and indirect effects of resource abundance on emissions efficiency from the 

perspectives of resource dependence and endowment.

3. Influence Mechanism of Regional Carbon Emissions Efficiency

This paper will analyze the impact of natural resources abundance on carbon 

emissions efficiency from both direct and indirect channels. On the one hand, 

abundant natural resources loosen the resource constraints of enterprises, leading to 

the use of resources in a more extensive and inefficient manner, which directly affects 

the carbon emissions efficiency of resource-based regions. On the other hand, 

abundant natural resources will also distort the industrial structure of resource-based 

regions, making high emissions industries as pillar industries, which indirectly affects 

the carbon emissions efficiency of resource-based regions. 

3.1 Direct Influence
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The natural resources abundance causes relatively low resource prices and thus 

make companies’ behavior in resource-based regions different from those in other 

regions. Due to the convenience, availability and lower prices, companies located in 

resource-based regions face a lower risks as well as a lower costs for resource reserves. 

Low resource prices lead to a lower willingness to invest in resource-saving 

technologies and equipment (Shi, 2014). Furthermore, resource-intensive companies 

have to keep certain quantities of resource reserves to guard against possible 

operational risks caused by resource shortages, which places an extra pressure on 

companies’ financial status. Overall, the extensive use of resources will inevitably lead 

to a decline in carbon emissions efficiency.

3.2 Indirect Influence

Abundance of natural resources not only leads to a rigid industrial structures, but 

also reduces the emissions reductions derived from the industrial structure dividend 

(Sun and Ye, 2012), which in turn affects the carbon emissions efficiency. The 

industrial structures dominated by a single resource sector, that is resource 

dependence, have squeezed the development space of modern manufacturing. Thus 

resources-based regions often fall into a rigid specialization trap. The tendency of “de-

industrialization” has caused the industrial structure of resource-based regions to be 

in a state of distortion for a long time, thus they cannot gain the “structural dividend” 

resulting from the optimization and upgrading of industrial structures. However, the 

industrial structure is shaped by market selection under the constraints of natural 

resources, technologies, economic development stages and other factors within the 

economic system. Each of these factors offer spontaneity, endogeneity and rationality 

to some degree. Figure 1 summarizes the direct and indirect effects of natural 

resource abundance on carbon emissions efficiency.
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Figure 1: Influence Mechanism

4. Methodology and Data

Two distinctive methods are employed in this study. The Slacks-based Measure 

(SBM) with window analysis approach estimates the carbon emissions efficiency and 

abatement potential, while the panel Tobit model investigates the influencing factors 

of carbon emissions efficiency. 

4.1 The SBM with Window Analysis Approach

(1) The Slacks-Based Measure

The SBM with window analysis approach is employed to estimate the carbon 

emissions efficiency of China’s 30 provinces (except for Tibet) from 2003 to 2016. 

Under the framework of DEA, the non-radial and non-oriented Slacks-Based Measure 

(SBM) can utilize input and output slacks directly in producing an efficiency, it has been 

widely applied to evaluate carbon emissions efficiency and abatement potential 

(Cecchini et al., 2018; Choi et al., 2012; Guo et al., 2017; Song et al., 2013; Zhang et al., 

2017, 2015; Zhang and Choi, 2013; Zhou et al., 2006, 2013).

Taking China’s 30 provinces as DMUj (j=1,2… 30), the SBM can be written as 

follows:
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where the vectors and  represent inputs, desirable  x ∈ 𝑅𝑚, 𝑦𝑔 ∈ 𝑅𝑠1 𝑦𝑏 ∈ 𝑅𝑠2

outputs and undesirable outputs respectively. The vectors  and  𝑠 ‒ ∈ 𝑅𝑛 𝑠𝑏 ∈ 𝑅𝑠2

correspond to excesses in inputs and undesirable outputs respectively, while 𝑠𝑔 ∈

expresses shortages in desirable outputs. The objective value satisfies 𝑅𝑠1 0 < 𝜌 ∗ ≤

. Let an optimal solution of the above program be . Then, the 1 (𝜆 ∗ ,𝑠 ‒ ∗ ,𝑠𝑔 ∗ ,𝑠𝑏 ∗ )
DMUj is efficient in the presence of undesirable outputs if and only if , i.e., 𝜌 ∗ = 1

. If the DMUj is inefficient, i.e., , it can be 𝑠 ‒ ∗ = 0, 𝑠𝑔 ∗ = 0, and 𝑠𝑏 ∗ = 0 𝜌 ∗ < 1

improved and become efficient by deleting the excesses in inputs and undesirable 

outputs, and augmenting the shortfalls in desirable outputs by the following SBM-

projection:
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In this paper, the excess in undesirable outputs means the carbon abatement 

potential and is denoted as , which is the quantity of potential emissions reduction *bs

of DMUj when  is improved to 1. 𝜌 ∗

Clearly, abatement potential measures the absolute reductions of carbon 

emissions. It depends both on the emissions efficiency and the scale of the economy. 

Some regions with high emissions efficiency, due to the large scale of the economy, 

may still have larger absolute quantity of emissions reductions. Some regions with low 

emissions efficiencies, due to the smaller scale of the economy, may have smaller 

absolute quantity of emissions reductions. Thus, SBM provides a scalar measure 

ranging from 0 to 1 that encompasses all of the inefficiencies that the model can 

identify.

In estimating carbon emissions efficiency based on SBM, we employ labor, capital 

and energy to represent the inputs, GDP as a desirable output, and the total amount 

of CO2 emissions as an undesirable output. Specifically, labor is denoted by the 
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number of employed persons, capital is estimated using the perpetual inventory 

method:

                                                (4)1(1 )it it it itK K I   

energy is represented by the total energy consumption of each province, and CO2 

emissions are calculated with the energy emissions factors and energy consumption.

 (2) The Window Analysis Approach

Due to the advantages of analyzing a frontier shift between different periods 

under a possible occurrence of a frontier crossover and in handling panel data, the 

window analysis approach is used to evaluate carbon emissions efficiencies over time 

and across different regions, sectors and subjects (Al-Refaie et al., 2018; Cuccia et al., 

2017; Lin and Tan, 2017; Shawtari et al., 2015; Sueyoshi et al., 2013; Vlontzos and 

Pardalos, 2017; Wang et al., 2013). 

A window with n × w observations is denoted starting at time t ( ) with 1 t T 

window width w ( ), n = 30 for China’s 30 provinces and the T=14 for the 1 w T t  

2003 to 2016 period. The selection of the width of the window w is a key point in the 

window analysis approach. As is most commonly done in the literature, we set w =3 

(Halkos and Tzeremes, 2009; Vlontzos and Pardalos, 2017).

4.2 Panel Tobit Model

Since the carbon emissions efficiency base on SBM is censored by 0 and 1, in this 

case, parameter estimates obtained by conventional regression methods (e.g. OLS) 

are biased. Consistent estimates can be obtained by Tobit model proposed by Tobin 

(1958), which is a special case of the more general censored regression model (Baltagi 

and Boozer, 1997; Maddala, 1987) and has been used in a very wide range of 

applications characterized by censored observations. These are recent examples (Bi et 

al., 2016; Brown et al., 2015; Kaya Samut and Cafrı, 2016). We apply a random panel 

Tobit model to estimate the possible determinants of carbon emissions efficiency. The 

model is written as:

      ln𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦𝑖𝑡 = 𝛼 + 𝛽1ln𝑁𝑅𝐷𝑖𝑡 + 𝛽2ln𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡 + 𝛽3ln𝑎𝑑𝑣𝑎𝑛𝑐𝑒𝑑𝑖𝑡

                             + 𝛽4ln𝑁𝑅𝐷𝑖𝑡 ∗ ln𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡 + 𝛽5ln𝑁𝑅𝐷𝑖𝑡
  (5)∗ ln𝑎𝑑𝑣𝑎𝑛𝑐𝑒𝑑𝑖𝑡

                           + 𝛽6ln𝑃𝐺𝐷𝑃𝑖𝑡 + 𝛽7ln𝑁𝑅𝐷𝑖𝑡 ∗ ln𝑃𝐺𝐷𝑃𝑖𝑡 + 𝑋 '
it𝛿 + 𝜆𝑖

+ 𝜀𝑖𝑡
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where efficiency indicates carbon emissions efficiency of province i in year t  calculated 

by the SBM with window analysis approach. NRD indicates natural resource 

dependence. The variables of rational and advanced are two indicators used to 

characterize the development of the industrial structure. PGDP represents the level of 

economic development and is denoted by the GDP per capita measured by the price 

in 2003. 

Xs are the control variable vectors. Besides the resource dependence and 

industrial structure, government intervention, technology innovation, energy price, 

the urbanization level and regulation are regarded as the important factors that 

impact the carbon emissions efficiency in many studies.

Because of the externality of carbon emissions, government intervention plays 

an important role in improving carbon emissions efficiency, and the fiscal policy is a 

common form of government intervention through providing funds for improving of 

energy-saving and emissions-reduction technologies, encouraging enterprises to 

eliminate backward production capacity through incentives and subsidies, supporting 

the development of clean energy (Price et al., 2005). Government intervention (GOV) 

is denoted by the ratio of fiscal expenditure to fiscal revenue.

The technology innovation is playing more and more important role in improving 

carbon emissions efficiency and it is essential to meet long-term emissions reduction 

targets (Dechezleprêtre et al., 2016; Gallagher et al., 2006). The technology innovation 

(R&D) is expressed as the ratio of R&D employees in all employed people.

When energy prices continue to rise, the cost effect will stimulate energy 

conservation and emissions reduction (Fisher-Vanden et al., 2004; McCollum et al., 

2016), while speeding up the diffusion of energy-saving technologies, reducing energy 

consumption and improving carbon emissions efficiency (Jacobsen, 2015). The change 

of energy price (EPI) can be signified by purchasing price indices for industrial 

producers of fuel and power.

In the process of urbanization, economic activities are centralized and the energy 

has been consumed massively. On the other hand, the scale effect and technique spill-

over effect from the agglomeration of economic activities will reduce the intensity of 

energy consumption, improve energy consumption efficiency and carbon emissions 
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efficiency (Wang and Zhang, 2016). The level of urbanization (UR) is represented by 

the proportion of urban resident population in each province.

As the climate change become more serious, governments will take stricter 

environmental regulations, which exert extra costs on enterprises and force them to 

adopt emissions-reduction technologies and clean energy. However, excessive cost 

may not be conducive to the operation of enterprises and result in the decrease of 

carbon emissions efficiency. We apply the energy-saving and emissions-reducing 

targets for each province in “Five-Year Plans” as the indicator of environmental 

regulation (Regulation).

4.3 Variable Construction and Data Sources
Considering the regional economic landscape, resource abundance and 

geographic features (Zhou et al., 2014), we divided China’s 30 provinces into eight 

economy-geographic regions, i.e., the northeast, north coast, east coast, south coast, 

the middle Yellow River, the middle Yangtze River, southwest and northwest regions 

(see Table 1).

The measurement indicators of natural resources abundance can be roughly 

divided into two categories: the resource dependence index and the resource 

endowment index. Considering that this paper calculates the carbon emissions 

efficiency from energy consumption, we choose the output value proportion of the 

coal mining industry and the oil and gas extraction industry in total industrial output 

value to represent the degree of natural resource dependence (NRD). The larger the 

value, the higher the degree of dependence. At the same time, in order to carry out 

robustness tests, this paper also calculates other variables that can represent the 

natural resource dependence: the natural resource dependence in employment 

(NRDL), which is represented by the employment proportion of the coal mining 

industry and the oil and gas exploration industry in total industrial employment. 

Considering that this paper mainly measures the efficiency and potential of carbon 

emissions, we use fossil energy endowment (FEE) to represent resources endowment 

index, which is represented by the ratio of production to consumption of fossil fuels. 

The larger the ratio, the higher the degree of fossil energy endowment.

We employ two indicators to characterize the improvement of industrial 

structure: rationalization and advancement, separately measuring the allocation 
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efficiency of production factors among industries and the stages of industrial 

structures evolution (Sun and Ye, 2012). Rationalization means high allocation 

efficiency and coupling quality, in which economic development is enhanced and 

carbon emissions efficiency is improved. Rational means rationalization index of 

industrial structure (Gan et al., 2011), which is shown in equation (6):

                                    (6)𝑅𝑎𝑡𝑖𝑜𝑛𝑎𝑙 = ∑𝑛
𝑖 = 1(𝑌𝑖

𝑌)𝑙𝑛(𝑌𝑖
𝐿𝑖

𝑌
𝐿)

where i=1, 2, 3 indicate the primary, secondary and tertiary industries respectively, 

and n=3. Y and L indicate the industrial output and the industrial employment 

respectively. When the economy is in an equilibrium state, the production efficiency 

of each industry will converge (  and Rational=0). The smaller the value of 𝑌𝑖 𝐿𝑖 = 𝑌 𝐿

Rational, the more reasonable the industrial structure. Advancement is represented 

by the ratio of gross value of the tertiary industrial sector to that of the secondary 

industrial sector, and higher value means more advanced industrial structure. The 

development of tertiary industry plays an important role in emissions reduction and 

improvement in carbon emissions efficiency.

The annual data that was used to estimate the carbon emissions efficiency all 

come from the China Statistical Yearbooks of 2004-2017. Other data are collected 

from the China Statistical Yearbook, China Industrial Statistical Yearbook, China Energy 

Statistical Yearbook, China Population and Employment Statistics Yearbook, China 

Labor Statistics Yearbook, and China Science and Technology Statistical Yearbook. 

The values of Regulation for 2006-2010 are calculated based on the energy 

consumption reduction target for each province during the 11th Five-Year Plan period, 

that for 2011-2016 are from “Work Plan for Controlling Greenhouse Gas Emissions in 

the 12th (and 13th) Five-Year Plan”, and the values for 2003-2005 are set to 0 

indicating no environmental regulation policies on carbon emissions in that period. 

Except for environmental regulations, the values of the variables in the model are all 

logarithms.

5. Empirical Results

5.1 Carbon Emissions Efficiency and Abatement Potential
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Based on the SBM with window analysis approach mentioned above, we 

estimated the carbon emissions efficiency and abatement potential for China’s 30 

provinces. 

Table 1 shows the results for selected years. Firstly, the carbon emissions 

efficiencies in almost all provinces improved from 2003 to 2016 but there were 

significant gaps among provinces. In 2016, the carbon emissions efficiency in 10 

provinces (Shandong, Beijing, Tianjin, Ningxia, Qinghai, Hunan, Shanghai, Jiangsu, 

Guangdong and Hainan) achieved efficient production activities (the value of carbon 

emissions efficiency is 1), while the eight provinces of Xinjiang, Shanxi, Inner Mongolia, 

Henan, Hebei, Gansu, Liaoning and Shaanxi had very lower emissions efficiency (below 

0.6). Secondly, there was regional clustering in carbon emissions efficiency. The 

efficiency of carbon emissions in the coastal regions was generally higher than that of 

the central and western regions. Not surprisingly, the coal-rich Middle Yellow River 

region and the Northeast region had the lowest emissions efficiencies.

Table1: Carbon Emissions Efficiency in China’s 30 Provinces（2004-2016）
Region 2004 2006 2008 2010 2012 2014 2016

Middle Yellow River Region 0.479 0.520 0.580 0.589 0.590 0.581 0.525

Shanxi 0.394 0.404 0.455 0.487 0.490 0.475 0.469

Inner Mongolia 0.466 0.530 0.575 0.579 0.542 0.674 0.496

Henan 0.536 0.582 0.661 0.652 0.671 0.574 0.543

Shaanxi 0.519 0.565 0.631 0.641 0.656 0.599 0.591

North Coast Region 0.677 0.711 0.764 0.776 0.781 0.831 0.886

Hebei 0.556 0.575 0.587 0.612 0.624 0.601 0.545

Shandong 0.689 0.646 0.637 0.615 0.615 0.766 1.000

Beijing 0.792 0.942 0.960 0.944 0.989 0.992 1.000

Tianjin 0.673 0.682 0.872 0.935 0.896 0.967 1.000

Northeast Region 0.497 0.553 0.607 0.621 0.663 0.669 0.643

Liaoning 0.478 0.538 0.587 0.631 0.671 0.619 0.571

Heilongjiang 0.495 0.526 0.576 0.625 0.653 0.637 0.605

Jilin 0.518 0.594 0.656 0.607 0.664 0.749 0.753

Northwest Region 0.679 0.642 0.681 0.675 0.698 0.671 0.756

Xinjiang 0.495 0.525 0.554 0.541 0.518 0.493 0.464

Gansu 0.450 0.485 0.546 0.585 0.595 0.567 0.560

Ningxia 0.769 0.559 0.624 0.611 0.754 0.624 1.000

Qinghai 1.000 1.000 1.000 0.964 0.928 1.000 1.000

Southwest Region 0.625 0.655 0.710 0.728 0.680 0.679 0.728

Guizhou 0.415 0.442 0.527 0.559 0.575 0.600 0.614

Guangxi 0.694 0.763 0.861 0.808 0.668 0.694 0.661

Sichuan 0.631 0.691 0.714 0.778 0.701 0.607 0.685
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The abatement potential is the excess in carbon emissions when the DMUi is 

inefficient and needs to be deleted as the carbon efficiency is improved and the DMUi 

becomes efficient. Figure 2 shows the aggregate abatement potential over time in 30 

provinces. We can see that, firstly, there are distinct differences in the abatement 

potential among the provinces. Over the 11th Five-Year Plan, 12th Five-Year Plan and 

in 2016, the provinces with the largest abatement potential were Shandong, Shanxi 

and Inner Mongolia, and the average annual abatement potential was 595 mt, 677 mt 

and 822 mt separately, while the smallest abatement potential was only 1.28 mt, 1.17 

mt and 0*. Secondly, although the carbon emissions for most of the provinces were 

improving, the abatement potentials were increasing, especially in the high emissions 

regions of Inner Mongolia, Shanxi, Hebei, Xinjiang, Liaoning, Henan, Shaanxi. The 

emissions reduction resulting from efficiency improvements cannot offset increases 

in emissions caused by the expansion of production activities (Choi et al., 2012; Zhang 

et al., 2016). This is the key for China in achieving the target of carbon emissions peak. 

* When the carbon emissions efficiency is 1, there is no abatement potential.

Yunnan 0.554 0.568 0.624 0.635 0.676 0.694 0.740

Chongqing 0.832 0.810 0.823 0.862 0.781 0.800 0.939

Middle Yangtze River Region 0.640 0.674 0.757 0.767 0.757 0.751 0.783

Anhui 0.597 0.651 0.692 0.717 0.722 0.689 0.673

Jiangxi 0.669 0.763 0.868 0.816 0.803 0.714 0.718

Hubei 0.613 0.618 0.722 0.757 0.701 0.681 0.743

Hunan 0.681 0.662 0.746 0.778 0.803 0.922 1.000

East Coast Region 0.796 0.844 0.876 0.930 0.878 0.818 0.975

Zhejiang 0.850 0.794 0.809 0.789 0.794 0.782 0.925

Shanghai 0.765 0.918 0.917 1.000 0.839 0.884 1.000

Jiangsu 0.774 0.819 0.902 1.000 1.000 0.787 1.000

South Coast Region 0.940 0.911 0.933 0.926 0.883 0.882 0.929

Fujian 0.833 0.829 0.855 0.779 0.699 0.694 0.786

Guangdong 1.000 0.953 1.000 1.000 1.000 0.993 1.000

Hainan 0.988 0.951 0.944 1.000 0.948 0.960 1.000

Average 0.658 0.680 0.731 0.744 0.733 0.728 0.769
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Figure 2: The Carbon Abatement Potential in China’s 30 Provinces (mt CO2)

While emissions efficiency and abatement potential are generally negatively 

correlated, the eight regions are categorized into four distinct groups according to the 

relationship between emissions efficiency and abatement potential over the 12th 

Five-Year Plan (See Figure 3 for details). The first group has low efficiency in emissions 

with high abatement potential (LE-HP), including 11 provinces: Xinjiang, Inner 

Mongolia, Heilongjiang, Liaoning, Hebei, Shanxi, Shaanxi, Henan, Hubei, Sichuan and 

Guizhou, accounting for 65 percent of the abatement potential in the 12th Five-Year 

Plan. All of the coal abundant areas are in this group. Reducing the carbon emissions 

from this group is crucial for achieving the emissions reduction targets. The second 

group is low efficiency but low potential regions (LE-LP): Gansu, Jilin, Yunnan, and 

Guangxi. These provinces have relatively underdeveloped economies and low carbon 

emissions efficiencies, but they have low fossil energy endowment and relatively clean 

energy consumption structures. This means that the total carbon emissions are low. 

Thus, there is little potential for further carbon reduction even if efficiencies are 

improved. The third group is high efficiency but with high potential (HE-HP): Shandong, 

Jiangsu, Anhui, and Zhejiang. The four provinces have large-scale economies and more 

sources of emissions, although the emissions efficiency is high, the quantity of 

potential emissions reduction will still be large. In 2016, the abatement potential in 

the four provinces was dramatically reduced as a result of the improvements made in 
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carbon efficiencies. The last group is high efficiency with low potential (HE-LP): Beijing, 

Shanghai, Tianjin, Chongqing, Guangdong, Fujian, Hunan, Jiangxi, Qinghai, Ningxia, 

and Hainan. These are all successful in terms of efficiency improvement and carbon 

reduction.

Figure 3: The Carbon Emissions Efficiency and Potential of China’s 30 Provinces 
in the 12th Five-Year Plan

5.2 Influencing Factors of Carbon Emissions Efficiency
The panel Tobit regression results are shown in Table 3†. From column (1), it can 

be seen that the resource dependence (NRD) has a significant negative effect on the 

carbon emissions efficiency. For every 1% increase in resource dependence, the 

carbon emissions efficiency will decrease by about 0.04%. After the two industry 

structure indicators were added to columns (2)-(3), and cross-terms of industrial 

structure variables with resource dependence were added to columns (4)-(6) and all 

control variables were further included in column (6), the coefficients of resource 

† Before running the panel Tobit model, we conducted the correlation analysis for independent variables and the 
test result showed that there is no multicollinearity. We conducted fixed effect panel data model but did not find 
significant difference of results from the panel Tobit model. The results are available upon request. Since the 
literature shows that panel Tobit model is more efficiency than the fixed effect model for data used in this paper, 
we conducted our analysis based on the results of panel Tobit model.
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dependence were still significantly negative. However, the values of the coefficients 

of resource abundance significantly increased in the regression models with cross-

items, which is in line with previous theoretical analyses. 

The results in columns (2)-(6) show that the increase in the rationalization and 

advancement of industrial structure will increase carbon emissions efficiency‡, but the 

coefficient of advancement is no longer significant in column (5). The cross-terms 

show that in the regions with higher resource dependence, the advanced industrial 

structure fails to promote carbon emissions efficiency, and the rational industrial 

structure may not further reduce carbon emissions efficiency.

Economic development, however, can mitigate the negative effect of natural 

resource abundance on emissions efficiency. The cross-term coefficient of per capita 

GDP and its resource dependence is significantly positive in all regressions, indicating 

that higher levels of economic development can mitigate the negative impact of 

resource dependence on emissions efficiency.

Table 3: Analysis of Influencing Factors of Carbon Emissions Efficiency: 
Panel Tobit Regression Model Results

　 (1) (2) (3) (4) (5) (6)

Dependent variable lnefficiency

-0.041*** -0.029*** -0.042*** -0.117** -0.249*** -0.277***

lnNRD
(0.004) (0.004) (0.003) (0.047) (0.054) (0.050)

-0.032*** -0.027** -0.029**

lnrational 
(0.006) (0.012) (0.014)

0.072*** 0.058 0.094**

lnadvanced 
(0.020) (0.039) (0.047)

0.004* -0.002
lnNRD*lnrational

(0.002) (0.003)
-0.011 -0.013

lnNRD*lnadvanced
(0.009) (0.012)

0.165*** 0.185*** 0.179***

lnPGDP
(0.020) (0.021) (0.027)
0.013*** 0.023*** 0.027***

lnNRD*lnPGDP
(0.005) (0.005) (0.005)

0.107***

lnGOV
(0.025)
0.039** 

lnR&D
(0.017)

lnEPI 0.143**

‡ According to equation (7), the smaller the value of Rational, the more reasonable the industrial structure.
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(0.067)
-0.028 lnUR
(0.040)
0.985**

Regulation
(0.493)

-0.488*** -0.569*** -0.506*** -2.113*** -2.272*** -2.844***

_cons
(0.015) (0.017) (0.015) (0.196) (0.210) (0.493)
0.172*** 0.147*** 0.152*** 0.162*** 0.148*** 0.170***

sigma_u
(0.007) (0.007) (0.006) (0.006) (0.006) (0.007)
0.120*** 0.117*** 0.118*** 0.105*** 0.107*** 0.105***

sigma_e
(0.004) (0.004) (0.004) (0.004) (0.004) (0.004)

rho 0.672 0.613 0.625 0.705 0.655 0.723
Prob > chi2 0.000 0.000 0.000 0.000 0.000 0.000 
Prob >= chibar2 0.000 0.000 0.000 0.000 0.000 0.000 

n 420 420 420 420 420 420 
Note: Standard errors are shown in parentheses; 

***, **, * denote the statistical significance at 1%, 5% and 10% separately.

5.3 Robustness Test

In Table 4, we turn to using the NRDL to verify the reliability of the previous 

results. The regression results are basically the same as the previous findings. 

Specifically, in the absence of cross-terms and control variables, the emissions 

efficiency dropped by 0.03% for each 1% increase in resource dependence in columns 

(1)-(3). After adding the cross-terms and control variables, for each 1% increase in 

resource dependence in columns (4)-(6), the emissions efficiency will decrease by 

approximately 0.30%. The magnitude of the influence is similar to that of Table 3. The 

results of industrial structure variables and all cross terms are also basically the same, 

but the significance level of some coefficients declines.

Table 4: Panel Tobit Model: Analysis of the Effect of Resource Dependence 
and Industrial Structure on Carbon Emissions Efficiency

(1) (2) (3) (4) (5) (6)

Dependent variable lnefficiency

-0.029*** -0.026*** -0.025*** -0.256*** -0.266*** -0.330***

lnNRDL　
(0.003) (0.003) (0.004) (0.051) (0.054) (0.057)

-0.052*** -0.004 -0.019
lnrational 　

(0.005) (0.014) (0.013)
0.057*** 0.005 -0.004

lnadvanced 　
(0.020) (0.047) (0.054)

0.006*** 0.003
lnNRDL*lnrational　

(0.002) (0.002)
lnNRDL*lnadvanced　 -0.017** -0.016
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(0.009) (0.010)
0.177*** 0.200*** 0.198***

lnPGDP
(0.024) (0.022) (0.029)

0.024*** 0.024*** 0.031***

lnNRDL*lnPGDP　
(0.005) (0.005) (0.005)

0.074***

lnGOV (0.025)

0.029
lnR&D (0.018)

0.075
lnEPI (0.069)

-0.033
lnUR (0.040)

0.982***

Regulation (0.381)

-0.505*** -0.587*** -0.482*** -2.259*** -2.429*** -2.804***

_cons　
(0.016) (0.018) (0.017) (0.229) (0.233) (0.502)
0.178*** 0.162*** 0.177*** 0.135*** 0.140*** 0.161***

sigma_u　
(0.008) (0.011) (0.007) (0.006) (0.006) (0.008)
0.121*** 0.118*** 0.119*** 0.106*** 0.107*** 0.105***

sigma_e　
(0.005) (0.004) (0.004) (0.004) (0.004) (0.004)

rho 0.684 0.653 0.687 0.620 0.629 0.700
Prob > chi2 0.000 0.000 0.000 0.000 0.000 0.000
Prob >= chibar2 0.000 0.000 0.000 0.000 0.000 0.000
n 420 420 420 420 420 420
Note: Standard errors are shown in parentheses; 

***, **, * denote the statistical significance at 1%, 5% and 10% separately.

Natural resource abundance has a certain correlation with natural resource 

dependence. However, where natural resources are abundant, natural resource 

dependence is not necessarily high. The natural resources abundance refers to the 

quantity of natural resources that a country or region can use for social and economic 

development; the natural resources dependence refers to the role of resource-based 

industries in the development of regional economy (Sun and Ye, 2012; Wu et al., 2018). 

To distinguish the effect of resource endowment to that of the resource dependence, 

we use FEE (fossil energy endowment) as the main dependent variable, which is the 

ratio of production to consumption of fossil fuels to measure the level of resource 

endowment.

From the results in columns (1) to (3) in Table 5, it can be seen that resource 

endowment have a significant negative correlation with carbon emissions efficiency. 

For each 1% increase in resource endowment, the emissions efficiency will decrease 
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by about 0.12%. In addition, similar to the previous results, the increase in the 

rationalization and advancement of the industrial structure will improve the carbon 

emissions efficiency. When adding the cross-terms of the industrial structure variable 

and resource endowment in columns (4)-(6), it can be seen that the distortion of 

resource endowment to industrial structure is not as serious as that of resource 

dependence. 

Table 5: Panel Tobit Models: Analysis of the Effects of Resource Endowment and 
Industrial Structure on Carbon Emissions Efficiency

 
(1) (2) (3) (4) (5) (6)

Dependent variable lnefficiency
-0.117*** -0.117*** -0.121*** -0.289** -0.406*** -0.244**

LnFEE
(0.013) (0.012) (0.014) (0.115) (0.139) (0.120)

-0.016*** -0.020** -0.009
lnrational

(0.006) (0.009) (0.010)
0.110*** 0.064** 0.081***

lnadvanced
(0.019) (0.028) (0.031)

0.009 0.025***
lnFEE*lnrational

(0.008) (0.009)
-0.035 0.035

lnFEE*lnadvanced
(0.023) (0.029)

0.115*** 0.117*** 0.118***
lnPGDP

(0.012) (0.011) (0.023)
0.023** 0.035*** 0.025**

lnFEE *lnPGDP
(0.012) (0.014) (0.012)

-0.002
lnGOV

(0.024)
0.025

lnR&D
(0.017)
0.092

lnEPI
(0.068)
-0.081**

lnUR
(0.040)
0.850**

Regulation
(0.376)

-0.452*** -0.485*** -0.431*** -1.578*** -1.537*** -1.951**
_cons

(0.012) (0.017) (0.010) (0.113) (0.112) (0.490)
0.151*** 0.149*** 0.155*** 0.154*** 0.147*** 0.148***

sigma_u
(0.007) (0.007) (0.007) (0.006) (0.006) (0.006)
0.116*** 0.116*** 0.115*** 0.107*** 0.107*** 0.104***

sigma_e
(0.004) (0.004) (0.004) (0.004) (0.004) (0.004)

rho 0.630 0.624 0.644 0.677 0.654 0.670
Prob > chi2 0.000 0.000 0.000 0.000 0.000 0.000
Prob >= chibar2 0.000 0.000 0.000 0.000 0.000 0.000
n 420 420 420 420 420 420

Note: Standard errors are shown in parentheses; 
***, **, * denote the statistical significance at 1%, 5% and 10% separately.



21

5.4 Test of Control Variables Effects
As shown in Tables 3, 4 and 5, the coefficients of GOV are significantly positive 

since fiscal expenditure can finance the improvement of energy-saving and abatement 

technologies, and encouraging enterprises to eliminate backward production capacity. 

As in the literature, the role of R&D in improving carbon emissions efficiency is 

significant. The impact of energy prices on carbon emissions efficiency is significantly 

positive because the rise of energy prices will force enterprises to introduce energy-

saving technologies or reduce energy consumption. The coefficient of urbanization is 

negative, but not significant in Tables 3 and 4, and weakly significant in Table 5. The 

reason could be that the economic activities are centralized and the energy has been 

consumed massively in the process of urbanization but the scale effect and technique 

spill-over effect cannot be reflected in short-term. The significant effect of 

environmental regulation on carbon emissions efficiency suggest that the energy-

saving and emissions-reduction target is an effective tool for controlling emissions. 

5.5 Medium-term and Long-term Effects 
The effect of medium-run and long-run are indeed important to the analysis of 

the impact of natural resource abundance on carbon emissions efficiency. According 

to the method in the previous studies (Arin and Braunfels, 2018; Kneller et al., 1999; 

Wu et al., 2018), this study further carries out the panel Tobit model with 5-year 

moving average data to examine the medium-term effect of natural resource 

abundance and industrial structure on carbon emissions efficiency and carries out the 

Tobit model to analyze long-term effect with the cross-sectional data of 14-year 

(2013–2016) averages.

Table 6 and Table 7 show that the impacts of resource dependence on carbon 

emissions efficiency keep unchanged and are still significant negative in both the 

medium-term and the long-term§. Similar to the results in the models with the annual 

data, the rationalization and advanced of industrial structure promote the carbon 

emissions efficiency in the medium-term and long-term (see column (2) - (3) in Table 

6 and Table (7)). In the case of introducing cross-items, the positive effect of 

§We also examine the medium-term and long-term effect with the variable of resource dependence in employment 
(NRDL) and the fossil energy endowment (FEE). The results are consistent with that in the Table 6 and Table 7 
except the coefficients of FEE become less significant in the long-term effect model with the cross-items.
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rationalization is significantly weakened, and the coefficients of cross-items further 

show that in the resource dependence regions, even the development of industrial 

structure towards rational and advanced still cannot improve carbon emissions 

efficiency (see column (4) - (6) in Table 6 and Table (7)).

Table 6: Middle-term Analysis of Influencing Factors of Carbon Emissions Efficiency: 
Panel Tobit Regression Model Results

　 (1) (2) (3) (4) (5) (6)

Dependent variable lnefficiency

-0.014*** -0.016*** -0.012*** -0.237** -0.266*** -0.402***

lnNRD
(0.003) (0.003) (0.003) (0.047) (0.045) (0.040)

-0.011*** -0.003 0.071***

lnrational 
(0.004) (0.010) (0.011)

0.134*** 0.080** 0.175***

lnadvanced 
(0.012) (0.033) (0.036)

0.009*** 0.019***

lnNRD*lnrational
(0.002) (0.002)

0.002 -0.006
lnNRD*lnadvanced

(0.008) (0.009)
0.152*** 0.168*** 0.294***

lnPGDP
(0.020) (0.017) (0.024)
0.026*** 0.028*** 0.043***

lnNRD*lnPGDP
(0.005) (0.004) (0.004)

0.090***

lnGOV
(0.017)
0.044***

lnR&D
(0.011)
0.586***

lnEPI
(0.107)
-0.014 

lnUR
(0.048)
0.005

Regulation
(0.014)

-0.355*** -0.386*** -0.391** -1.839*** -1.937*** -5.756***

_cons
(0.013) (0.016) (0.011) (0.193) (0.176) (0.661)

0.196*** 0.134*** 0.130*** 0.193*** 0.195*** 0.142***

sigma_u
(0.006) (0.004) (0.003) (0.006) (0.005) (0.004)

0.078*** 0.070*** 0.067*** 0.068*** 0.065*** 0.054***

sigma_e
(0.003) (0.003) (0.003) (0.003) (0.003) (0.002)

rho 0.864 0.788 0.791 0.889 0.899 0.873
Prob > chi2 0.000 0.000 0.000 0.000 0.000 0.000 
Prob >= chibar2 0.000 0.000 0.000 0.000 0.000 0.000 

n 300 300 300 300 300 300 
Note: Standard errors are shown in parentheses; 

***, **, * denote the statistical significance at 1%, 5% and 10% separately.
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In the long run, the resources dependence of economic development in resource-

based regions will inevitably lead to “lock-in effect”, which hinders the adjustment and 

evolution of regional industrial structures. The longer this development model is 

maintained, the higher resource dependence will be and the greater negative impact 

on carbon emissions efficiency will be. Even when resources are exhausted, the 

transformation of development model are still very difficult due to the lack of 

alternative industries.

Table 7: Long-term Analysis of Influencing Factors of Carbon Emissions Efficiency: 
Tobit Regression Model Results

　 (1) (2) (3) (4) (5) (6)

Dependent variable lnefficiency

-0.071*** -0.068*** -0.064*** -0.856** -0.751*** -0.594**

lnNRD
(0.018) (0.018) (0.017) (0.327) (0.255) (0.247)

-0.051** 0.019 0.188**

lnrational 
(0.022) (0.040) (0.069)

0.173*** -0.074 0.455**

lnadvanced 
(0.062) (0.195) (0.217)

0.013 0.018
lnNRD*lnrational

(0.008) (0.015)
-0.052 0.075

lnNRD*lnadvanced
(0.045) (0.077)

0.383*** 0.360*** 0.218
lnPGDP

(0.127) (0.102) (0.132)
0.081** 0.068*** 0.059**

lnNRD*lnPGDP
(0.032) (0.024) (0.026)

0.315***

lnGOV
(0.098)
0.229***

lnR&D
(0.064)

0.842**

lnUR
(0.352)

-0.660***

Regulation
(0.137)

-0.606*** -0.711*** -0.566** -4.384*** -4.184*** -3.134*

_cons
(0.077) (0.090) (0.076) (1.270) (1.046) (1.582)

n 30 30 30 30 30 30 
Note: Standard errors are shown in parentheses; 

***, **, * denote the statistical significance at 1%, 5% and 10% separately.
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For the control variables, the coefficients of economic development, the 

government intervention, the technology innovation and the energy price are 

consistent with those in the models with the annual data (short run effect). The 

coefficient of urbanization become significantly positive from non-significant, 

suggesting that although the impact of urbanization on carbon emissions efficiency is 

unclear in the short and medium-term, in the long run, the effect agglomeration and 

technology spillover of urbanization significantly improves carbon emissions efficiency. 

It needs to be noticed that the coefficient of energy-saving and emissions-

reduction target is significantly negative in the long-term model, while it is non-

significant in the medium-term model and is significantly negative in the models with 

annual data. Due to the fiscal decentralization system, the interests between the 

China’s central and local governments are not entirely consistent and the pursuit of 

rapid economic growth is the primary objective of local governments for a long time. 

Under the constraints of energy saving and emissions reduction targets, local 

governments are more likely to control current energy consumption through some 

government interventions and resulting in higher carbon emissions efficiency in the 

short term. However, if the target constraints cannot be translated into effective 

environmental regulations to promote innovation and industrial structure upgrading, 

they cannot continuously and effectively improve carbon emissions efficiency in the 

long run.

In summary, the empirical analysis shows that rationalization and advancement 

of the industrial structure improve the carbon emissions efficiency in different time 

horizon. However, the significantly negative coefficients of resource abundance in all 

models and the coefficients of interaction-terms all show that higher resource 

dependence not only hinders the improvement of carbon emissions efficiency directly 

but also affects the carbon emissions efficiency by distorting the industrial structure 

and further exacerbates inefficiency. 

6. Conclusion and Policy Implications

Given China’s ongoing efforts implement a national emission trading scheme,  

investigating potential and ways to achieve low carbon transition are common 

challenges for all regions and enterprises. These challenges are particular important 
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for the resource-based regions, in which resource-intensive industries are both the 

pillar and leading industries. With the continuous strengthening of global climate 

governance, the low-carbon transition of resource-based regions is particularly 

imperative and will become a new obstacle to the future sustainable development of 

resource based regions.

 This paper uses SBM with windows analysis approach to estimate carbon 

emissions efficiency and abatement potential for China’s 30 provinces from 2003 to 

2016. The panel Tobit model is further employed to analyze the direct and indirect 

effects of resource abundance on emissions efficiency. The paper finds that : (1) The 

natural resource abundance in the central regions of the Yellow River means lower 

carbon emissions efficiency and larger abatement potential. (2) From the direct effect, 

there is a negative correlation between resource abundance and carbon emissions 

efficiency. The more abundant the resources in a region, the lower the emissions 

efficiency, and the larger the abatement potential. (3) From the indirect effect, 

resource abundance is not conducive to the rationalization and advancement of the 

industrial structure, and indirectly affects the carbon emissions efficiency, which 

decreases the dividend of industrial structure. 

Given the continuous advancement of climate change efforts, resource-based 

regions must regard the industrial structure transformation as an important 

development strategy in the medium and long term, otherwise which may become a 

huge challenge for their sustainable development. These regions should take the low-

carbon transition as an important factor in their long-term development strategy. 

Therefore, the conclusions of this paper have important implications to resource-

based regions in China, which is applicable to other countries, including:

(1) The resource-based regions should take improving emissions efficiency and 

tapping abatement potentials as the top priority of actions for low-carbon transition. 

Resource-based regions should set strict criteria of entrance of new projects for 

carbon emissions efficiency when conducting environmental impact assessments.

(2) Resource-based regions need to promote the rationalization, and 

advancement of industrial structures, so as to obtain a double dividend in sustainable 

development and carbon emissions efficiency. Resource-based regions could 
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gradually phase out outdated industries and/or retrofit those resource intensive 

industries with new abatement technologies. 

(3) The central government should further accelerate the construction of the 

carbon market, so that the resource-based regions can sell the allowances saved 

through technological improvement, thereby obtain financial compensation for their 

abatement investment. The government could also reserve fund from auction of 

carbon allowances to support industry upgrading and development of low carbon 

emissions. 

 The current study at the provincial level has a limitation in that the spatial 

distribution of natural resources is extremely uneven within any given province. 

Therefore, the impact of resource dependence on carbon emissions efficiency needs 

to be further decomposed geographically so that the relationship can be described 

more accurately. In future, we will employ panel data at the city level for empirical 

analysis.
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