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PMU Placement Optimization for Efficient State
Estimation in Smart Grid

Y. Shi, H. D. Tuan, T. Q. Duong, H. V. Poor and A. V. Savkin

Abstract—This paper investigates phasor measurement unit
(PMU) placement for informative state estimation in smart grid
by incorporating various constraints for observability. Observ-
ability constitutes an important information-theoretic character-
istic for PMU placement to reply the depth of the buses’ reach-
ability by the placed PMUs, but addressing it solely by binary
linear programming in many works still does not guarantee a
good estimate for the grid state. Some existing works considered
optimization problems of some estimation indexes by ignoring
the observability requirements for computational ease and thus
potentially lead to trivial results such as acceptance of the
estimate for an unobserved state component as its unconditional
mean. In this work, the PMU placement optimization problem is
considered by minimizing the mean squared error or maximizing
the mutual information between the measurement output and
grid state subject to observability constraints, which incorporate
operating conditions such as presence of zero injection buses,
contingency of measurement loss, and limitation of communica-
tion channels per PMU. The proposed design is thus free from
the fundamental shortcomings in the existing PMU placement
designs. The problems are posed as large scale binary nonlinear
optimization problems involving thousands binary variables, for
which this paper develops efficient algorithms for computational
solutions. Their performance is analyzed in detail through numer-
ical examples on large scale IEEE power networks. The solution
method is also shown to be extended to AC power flow models,
which are formulated by nonlinear equations.

Index Terms—Phasor measurement unit (PMU), smart grid,
state estimation, state observability, binary nonlinear optimiza-
tion, exactly penalized method

I. INTRODUCTION

A. Motivation and Literature Survey

A phasor measurement unit (PMU) is an advanced digital
meter, which is used in smart power grids for real-time
monitoring of grid operations [1]. By installing it at a bus,
a state-of-the-art PMU can measure not only the phasor of
the bus voltage but also the current phasors of incident power
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branches with high accuracy [2]. These measurements are used
by the modern energy management systems (EMSs) for critical
applications such as optimal power flow, contingency analysis,
and cyber security, etc. [3]–[5].

There is a considerable amount of literature on PMU place-
ment optimization. From the information-theoretic perspective,
complete observability constitutes an important characteristic
as it means that there is no bus left unobserved by the placed
PMUs [6]. Under complete observability and its generaliza-
tions, the PMU placement design was addressed by binary
linear programming (BLP) in [6]–[9]. An exhaustive binary
search was proposed in [10] under the complete observability
condition and additional operating conditions such as the
single branch outage and the presence of zero injection buses
(ZIBs). A binary particle swarm optimization algorithm was
proposed in [11] to maintain the complete observability con-
ditions under the contingencies of PMU loss or branch outage.
Binary quadratic programming and BLP were respectively
used in [12] and [13] to study the impact of ZIBs and power
flow measurements (PFMs) to the complete observability.

PMU placement to optimize the so called gain matrix in the
maximum likelihood estimate of the grid state [14] subject to
a fixed allowable number of PMUs was considered in [15],
which formulated it as an optimization problem of a convex
objective function subject to a simple linear constraint on
binary variables. A convex relaxation with the binary con-
straint {0, 1} for binary variables relaxed to the box constraint
[0, 1], which is used in [15], not only fails to provide even
a local optimal solution in general but also is not scalable
in the grid dimension as it involves an additional large-size
semi-definite matrix variable. Furthermore, PMU placement
to maximize the mutual information (MI) between the mea-
surement output and grid state was solved very efficiently
in [16] using a very low computational complexity greedy
algorithm for submodular function optimization [17]. Both
computational methods used in [15] and [16] are not capable
of treating observability constraints. It was argued in [16]
that its proposed mutual information criterion includes the
complete observability, which is obviously not right simply
because as shown later in the paper, the latter differentiates
the state estimate from its unconditional mean, which is the
trivial estimate, while the former does not.

B. Research Gap and Contribution

Apparently, observability alone does not necessarily lead
to an acceptable state estimate or an informative PMU con-
figuration. In fact, PMU configurations, which use the same
number of PMUs to make the grid completely observable, can
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result in quite different state estimation accuracies [18]. On
the other hand, ignoring the state observability requirements
in PMU placement optimization as in [15] and [16] can
potentially force to accept the estimate for an unobserved
state component as its unconditional mean, which is its trivial
estimate. Certainly, the quality of state estimation is very
critical for securing the system operations and reducing the
outage [19].

Another challenge in PMU placement optimization is to
integrate the impacts of ZIBs and PFMs to deduce the re-
quired number of placed PMUs [13], which not only helps
to save cost but more importantly, to improve the smart grid
cyber-security. Note that cyber-security requirements are the
second most significant factor affecting PMU acquisition and
installation costs [20, page iii]. Placing more PMUs makes
the power system more open and thus more vulnerable to
cyber/terrorist attacks with unpredictable consequences [3],
[21], [22]. Furthermore, contingency such as PMU outage may
lead to unobservability and thus deserves to be treated under
PMU placement optimization.

Against the above background, the present paper aims to lay
down the design foundation for PMU placement to optimize
the information-theoretic indices subject to various observabil-
ity constraints. One should distinguish PMU placement from
sensor selection for spectrum sensing (see e.g. [23], [24]) or
for Kalman filtering in sensor networks (see e.g. [25] and
[26]). The latter aims to select sensors from the placed ones
and as such it is online implemented, while the former is
off-line implemented to provide the optimal conditions for
the latter online state estimation. As such PMU placement
design is based on off-line optimization, which is still very
computationally challenging. Exhaustive search is absolutely
intractable due to massive numbers of binary decision variable
involved. The paper’s contributions are three-fold:
• To provide analytical models for observability-constraint

aware (OCA) PMU placement optimization, which aims
to minimize the MSE or maximize the MI between the
measurement output and grid state in replying various
observability constraints, which incorporate operating
conditions such as presence of ZIBs and PFMs, con-
tingency of single PMU outage and limitation of PMU
communication channels.

• These models are large scale binary nonlinear optimiza-
tion problems with no known solution, for which a novel
and scalable solver is developed. The solver relies on
the development of a new class of exactly penalized
optimization for binary optimization and new function
approximations for scalable computation. The provided
comprehensive simulation results show that the solver
works well even for large-scale networks.

• Quick solvers of global optimization are proposed to
address the PMU placement optimization without ob-
servability constraints, which provides baselines for per-
formances by the OCA PMU placement optimization.
These solvers outperform all the existing solvers, espe-
cially for large-scale networks. Their application to sensor
selections is also immediate thanks to its extremely low
computational complexity.

C. Organization and Notation

The rest of the paper is structured as follows. Section
II is devoted to develop analytical models for OCA PMU
placement optimization, which also particularly shows the
importance of imposing state observability constraints in state
estimation. Discussions on their extensions to AC power flows
are also provided. Section III develops a scalable solver for
computation. Section IV presents a tailored path-following
discrete optimization solver for the state estimation without
observability constraint. Simulations are provided in Section V,
which demonstrates the efficiency of our algorithms. Section
VI concludes the paper. The fundamental inequalities used in
Section III are given in the Appendix.

Notation. The notation used in this paper is standard.
Particularly, A � 0 (A � 0, resp.) for a Hermitian symmetric
matrix A means that it is positive definite (semi-definite, resp.).
Trace(.) and |.| are the trace and determinant operator. 1N is
an N -dimensional vector of ones. IN is the identity matrix
of size N . The cardinality of a set C is denoted by |C|. E(.)
denotes expectation, so the mean ū of a random variable (RV)
u is ū = E(u). For two random variables u and v, their cross-
covariance matrix Ruv is E((u−ū)(v−v̄)T ). Accordingly, the
autocovariance Ru of u is E((u−ū)(u−ū)T ). u ∼ N (ū,Ru)
means u is a Gaussian random variable with means ū and
autocovariance Ru, which represent the first moment of u.
The entropy of u is H(u) = 1

2 log2 |Ru| = 1
2 ln 2 ln |Ru|.

Finally, denote by u|v a RV u conditioned on the RV v.
Lastly, RN+ := {(x1, . . . , xN )T : xk ≥ 0, k = 1, . . . , N}
so int(RN ) = {(x1, . . . , xN )T : xk > 0, k = 1, . . . , N}.

II. ANALYTICAL MODELS FOR OCA PMU PLACEMENT

A. Explicit formulas for MSE and MI in PMU placement

Consider a power grid with a set of buses indexed by N :=
{1, 2, . . . , N}, where the buses are connected through a set of
transmission lines L ⊆ N ×N , i.e. bus k is connected to bus
m if and only if (k,m) ∈ L. Accordingly, N (k) is the set of
other buses connected to bus k. For illustrative purposes only,
Fig.1 depicts such power grid with 30 buses, 41 transmission
lines, 6 generators and 10 PMUs.

In a DC power model, the power injection at bus k is
approximated by

Pk = Bkkθk +
∑

m∈N (k)

Bkmθm, (1)

where Pk is the power injection at bus k and θm is the voltage
phasor angle at bus m, while Bkm is the imaginary part of
the (k,m)-entry of the grid’s admittance matrix Y . Let P :=
(P1, . . . , PN )T ∈ RN be the power injection vector and θ :=
(θ1, . . . , θN )T ∈ RN be the voltage phasor vector. Then the
equation (1) can be re-written as P = Bθ, where B ∈ RN×N
is the so called susceptance matrix with the entries B(k, k) =
Bkk and B(k,m) = Bkm, if m ∈ N (k), while B(k,m) = 0,
otherwise. The susceptance matrix B is invertible under the
assumption that the grid is fully connected [27]. Since P can
be assumed to be N (up,ΣP ) [28], it is obvious that

θ ∼ N (B−1up, B
−1Σp(B

−1)T ). (2)
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Fig. 1: IEEE 30-bus power network with PMUs

On the other hand, the measurement equation of a PMU
installed at bus k in the linear DC power flow model is [29]

ζk = θk + ϑk, k ∈ N ,
ζkm = θk − θm + ϑkm, k ∈ N , m ∈ N (k),

(3)

with noises ϑk ∼ N (0, rk) and ϑkm ∼ N (0, ρk). The number
of incident lines of bus k is the cardinality |N (k)|. Accord-
ingly, the measurement vector zk := (ζk, ζk1, . . . , ζk|N (k)|)

T

is of dimension Mk = |N (k)|+1. For simplicity, the equation
(3) is rewritten in regression form as:

zk = Hkθ + wk, (4)

where Hk ∈ RMk×N is the associated regression matrix,
wk := (ϑk, ϑk1, . . . , ϑk|N (k)|)

T ∼ N (0, Rwk
) with diagonal

covariance Rwk
.

To describe the presence or absence of PMU at bus k, we
introduce a selection vector xxx = (x1, · · · , xN )T ∈ {0, 1}N ,
where xk = 1 if a PMU is installed at bus k, and xk = 0
otherwise. Let us assume that we have S PMUs in total for
installation, so

∑N
k=1 xk = S. Define

DS := {xxx ∈ {0, 1}N :

N∑
k=1

xk = S}, (5)

and X = diag[xkIk]k=1,...,N , Rw = diag[Rwk
]k=1,...,N ,

where Ik is the identity matrix of size Mk ×Mk.
For every xxx ∈ DS , let kj ∈ N , j = 1, . . . , S for which

xkj = 1. Define accordingly,

z(xxx) =

zk1· · ·
zkS

 , w(xxx) =

wk1· · ·
wkS

 , H̄(xxx) =

Hk1

· · ·
HkS

 . (6)

The multi-input-multi-output PMU measurement equation is

z(xxx) = H̄(xxx)θ + w(xxx).

It is obvious that Rz(xxx)θ = H̄(xxx)Rθ while Rz(xxx) =
H̄(xxx)RθH̄(xxx)T +Rw(xxx). Let θ|z(xxx) be the RV θ conditioned
on the RV z(xxx). By [30, Th. 12.1]

θ|z(xxx) ∼ N (θ̂,Re(xxx)), (7)

where

θ̂ = θ̄ +RTz(xxx)θR
−1
z(xxx)(z(xxx)− z(xxx))

= θ̄ +RθH̄(xxx)T (H̄(xxx)RθH̄(xxx)T

+Rw(xxx))
−1(z(xxx)− H̄(xxx)θ̄), (8)

which is the minimum mean squared error (MMSE) estimate
of θ based on PMU output z(xxx), and

Re(xxx) = Rθ −RTz(xxx)θR
−1
z(xxx)Rz(xxx)θ. (9)

The expression (9) only includes those xkj = 1 so it is not an
explicit function of xxx, which means that it cannot be used for
systematic computation. Fortunately, its analytical form can be
derived as follows:

Re(xxx) = Rθ −RTz(xxx)θR
−1
z(xxx)Rz(xxx)θ

= Rθ −RθH̄(xxx)T (H̄(xxx)RθH̄(xxx)T

+Rw(xxx))
−1H̄(xxx)Rθ

=
(
R−1θ + H̄(xxx)TR−1w(xxx)H̄(xxx)T

)−1
=

R−1θ +

S∑
j=1

HT
kjR

−1
wkj

Hkj

−1

=

(
BTΣ−1P B +

N∑
k=1

xkH
T
k R−1wk

Hk

)−1
. (10)

Therefore, the mean squared error (MSE) E(||θ − θ̂||2) =
Trace(Re(xxx)) is

fe(xxx) = Trace

(BTΣ−1P B +

N∑
k=1

xkH
T
k R−1wk

Hk

)−1 ,

(11)

which is an analytical function of the PMU selection vector
xxx. This function is not only continuous but convex.

Further, the mutual information (MI) I(θ; z(xxx)) between
RVs θ and z(xxx) is [31, formula (6)]

I(θ; z(xxx)) = H(θ)−H(θ|z(xxx))

=
1

2 ln 2
(ln |Rθ| − ln |Re(xxx)|)

=
1

2 ln 2
ln |Rθ|+

1

2 ln 2
ln
∣∣BTΣ−1P B+

+

N∑
k=1

xkH
T
k R
−1
wk
Hk

∣∣∣∣∣ . (12)

Maximizing the MI I(θ; z(xxx)) is thus equivalent to maximiz-
ing fMI(xxx) for

fMI(xxx) : = − ln |Re(xxx)|

= ln |BTΣ−1P B +

N∑
k=1

xkH
T
k R
−1
wk
Hk|, (13)
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which is not only continuous but concave.
To the authors’ best knowledge, the explicit expressions (11)

and (12) for the MSE and MI in PMU placement optimization
are new. Incidentally, the right hand side of (10) was regarded
in [14] as the gain matrix in the maximum likelihood estimate.
Furthermore, [16] used the implicit expression (7) and (9) for
the MI. It follows from the explicit expression (10) that

Re(xxx) � Re(x̃xx) whenever x̃xx− xxx ∈ RN+ , (14)

leading to

Trace(Re(xxx)) ≥ Trace(Re(x̃xx)) & ln |Re(xxx)| ≥ ln |Re(x̃xx)|
(15)

which means that increasing the number S of PMUs improves
both MMSE index E(||θ − θ̂||2) and MI index I(θ; z(xxx)).

B. Observability constraints on PMU placement

This subsection provides a machinery to maintain the infor-
mation quality of MSE and MI.

1) Complete observability (CO): To assure the complete
observability of system state θ, one needs the following
constraint [1], [32], [33]:

Axxx ≥ 1N , (16)

where A is the bus-to-bus incidence matrix defined by Akm =
1 if k = m or bus k is adjacent to bus m, and Akm = 0
otherwise.

Let us analyse the constraint (16) from the information-
theoretic view point. The constraint (16) guarantees that all
state components θm are observable, i.e. each θm appears at
least once in the measurement equations (3), which implies
θm|z(xxx) 6= θm, making the measurement equations (3) mean-
ingful for estimating θm. When some θm is not observable, i.e.
it does not appear in the measurement equations (3), it follows
that θm|z(xxx) = θm, so the measurement equations in (3) are
useless for estimating θm. In this case, the estimate for θm is
its unconditional mean θ̄m with E((θm − θ̄m)2) = Rθ(m,m)
and I(θm; z(xxx)) = H(θ) − H(θ|z(xxx)) = 0. In other words,
the optimization problem for maximizing I(θ; z(xxx)) does not
reveal a nontrivial estimate for θm that is a contradiction to
[16, statement 1), page 448, 2nd column] which states that the
mutual information metric includes the complete observability
condition (16) as a special case.

2) Zero injection buses (ZIBs): It is also known [7]–[9] that
ZIBs, which are neither loads nor generators are helpful for
improving observability. Let Z be the set of ZIBs and χZ(.)
be its indicator function, i.e. χZ(m) = 1 for m ∈ Z and
χZ(m) = 0 otherwise. For yyy := [yk,m](k,m)∈N×Z , where

ykm ∈ {0, 1}, (k,m) ∈ N × Z (17)

are the auxiliary binary variables to incorporate the impact of
ZIBs, the observability constraints incorporating the impact of
ZIBs are [8]∑

k∈N

Akmykm = χZ(m),m ∈ N , (18a)

Fk(xxx,yyy) :=
∑
m∈N

Akmxm +

∑
m∈N

AkmχZ(m)ykm ≥ 1, k ∈ N . (18b)

For m ∈ Z , the constraints (18) mean that all its incident
buses are observable except one, which is then observable by
applying the Kirchhoff’s current law (KCL) at m. For m /∈
Z , the constraints (18) mean that all its incident buses are
observable so m is observable by applying KCL at m.

3) Power flow measurements (PFMs): Next, the pre-
installed conventional PFMs can improve measurement redun-
dancy, which is advantageous not only for observability but
also for bad data detection [34]. All buses in a branch with a
power measurement are made observable once any of them is
observable. Suppose that B is the set of branches with power
flow measurements, and T is the set of buses that are the
terminal points of the branch in B. For Fk(xxx,yyy) defined from
(18b), the constraint (18b) can be replaced by [34]

Fk(xxx,yyy) + Fm(xxx,yyy) ≥ 1, (k,m) ∈ B, (19a)
Fk(xxx,yyy) ≥ 1, k ∈ N \ T , (19b)

where k ∈ N \ T is the bus which is not in bus set T .
4) Contingency of single PMU outage: As an electrical

device, a PMU may be inactive in some real case. In order to
guarantee that all buses are still observable when a single PMU
is lost, the following contingency-aware constraint should be
imposed [8]:∑

m∈N
Akmxm +

∑
m∈N

Akmykm ≥ 2, k ∈ N . (20)

5) Limitation of PMU channels: In many scenarios, a
PMU may not measure all phasors of incident buses due
to the limitation of its communication channels. A binary
variable ckm is then introduced to indicate that ckm = 1
whenever bus k is measured by a PMU installed at bus m, and
ckm = 0 otherwise. Following [35, (25)-(28)], the following
observability constraint is needed instead of (18b)∑
m∈N

Akmckm +
∑
m∈N

AkmχZ(m)ykm ≥ 1, k ∈ N , (21a)

xm ≤
∑
k∈N

Akmckm ≤ Cm, m ∈ N , (21b)

Akmckm ≤ xm, k,m ∈ N , (21c)
ckm ∈ {0, 1}, (k,m) ∈ N ×N , (21d)

where Cm is the maximum number of PMU channel at bus
m.

C. Analytical PMU placement optimization and computa-
tional challenges

For xxx, yyy and ccc := [ck,m](k,m)∈N×N as the binary optimiza-
tion variables, we are now in position to state the problem
of PMU placement optimization to minimize the MSE or to
maximize the MI between the measurement output and phasor
state subject to a fixed number of PMUs and observability
constraints as the following binary nonlinear optimization
problems

min
xxx,yyy,ccc

f(xxx) s.t. xxx ∈ DS , (17), (18a), (18b)/(19)/(20)/(21),

(22)
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where f(xxx) ∈ {fe(xxx),−fMI(xxx)}, which is a convex function,
and DS is defined from (5). In what follows, we call (22)
OCA PMU placement optimization.

Most existing works used binary linear programming in
handling some but not all constraints in (22) without optimiz-
ing f . For instance, the following binary linear problem of
minimizing the number of PMUs for the system observability

min
xxx

N∑
k=1

xk : xxx ∈ {0, 1}N , (16) (23)

was considered in [7], [11], [13], which can not guarantee in-
formative PMU configuration. Particular cases of the following
binary linear problems

min
xxx,yyy,ccc

N∑
k=1

xk

s.t. xxx ∈ {0, 1}N , (17), (18a), (18b)/(19)/(20)/(21), (24)

were considered in [7], [11], [13]. For instance, the constraints
(20) and (21) of the contingency of PMU outage and limitation
of PMU communication channels were not present in [7],
the constraints (19) and (21) of the PFMs and limitation of
PMU communication channels were absent in [11], while
the constraint (21) of the limitation of PMU communication
channels were not considered in [13].

In optimizing the so called gain matrix [14], the work [15]
considered the simple binary convex problem

min
xxx
f(xxx) s.t. xxx ∈ DS , (25)

by solving its convex relaxation problem, which is

min
xxx∈RN

+ ,T∈RN×N
Trace(T) s.t. xxx ∈ Poly(DS), (26a)[

BTΣ−1P B +
∑N
k=1 xkH

T
k R
−1
wk
Hk IN

IN T

]
� 0, (26b)

when f = fe, or

max
xxx∈RN

+

ln |BTΣ−1P B +

N∑
k=1

xkH
T
k R
−1
wk
Hk|

s.t. xxx ∈ Poly(DS), (27)

when f = fMI , for

Poly(DS) = {xxx ∈ [0, 1]N :

N∑
k=1

xk = S}, (28)

and rounding the S largest entries of their optimal solution to
one and the remaining N − S entries to zero. Note that there
is no guarantee that the solution of (26) or (27) is sparse to
make such rounding efficient. Moreover, the size of the semi-
definite optimization problem (26) is not scalable in N as it
invokes the additional slack symmetric matrix variable T of
size N × N that involves N(N + 1)/2 additional decision
variables. For a moderate number N such as N = 118, the
value of N(N+1)/2 is 7021, which is already a huge number.
There is no solver of polynomial complexity for solving (27).
The reader is referred to [36] for capacity of SDR to address
discrete optimization problems such as (25). Furthermore, by

showing that the MI is a submodular function, the work [16]
has shown that the PMU placement to maximize the MI
can be very efficiently solved by the very low computational
complexity greedy algorithm [17] for submodular function op-
timization with a really sound analytical foundation. However,
both convex relaxation-based algorithm and greedy algorithm
cannot be used for addressing the problem (22).

It is obvious that the problem (22) is much more com-
putationally challenging than either the problem (23) or the
problem (24). While the latter is a binary linear problem,
which can be solved by very powerful binary solvers such
as CPLEX [37], the former is a large scale binary nonlinear
problem, which is among the most computationally difficult
optimization problems with no known solution method. The
next section is devoted to its computational solution.

D. Discussion on extension to AC power flow models

The optimization formulation (22) for f(xxx) = fe(xxx) can
be extended to the case of AC power flows models [38],
under which the equation (1) is nonlinear. Like [25] and [26]
for nonlinear sensor networks, one can use the unscented
transformation and MMSE result of [39] to approximate the
RV θ by a Gaussian RV as in (2) or by Gaussian mixture
RV and then the conditional RV θ|z(xxx) in (7) for deriving the
MMSE estimator θ̂ in (8) so the resultant MMSE is still an
analytical function in xxx as that defined by (9).

III. SCALABLE PENALTY ALGORITHMS FOR OPTIMAL
PMU PLACEMENT

To address the OCA PMU placement optimization (22) we
need to handle its discrete constraint xxx ∈ DS . An important
observation is that xL < x whenever 0 < x < 1 and L > 1,
and xL = x whenever x = 0 or x = 1. Therefore, the
binary constraint x ∈ {0, 1} is expressed by two continuous
constraints x ∈ [0, 1] and xL = x. This helps to express
the discrete constraint xxx ∈ DS by continuous constraints as
follows.

Lemma 1: For the polytope Poly(DS) defined from (28),
the discrete constraint xxx ∈ DS is equivalent to the continuous
constraints

xxx ∈ Poly(DS), (29a)
g1(xxx) ≥ S, (29b)

for g1(xxx) :=
∑N
k=1 x

L
k with L > 1.

Proof. Note that xLk ≤ xk ∀ xk ∈ [0, 1], so
g1(xxx) ≤

∑N
k=1 xk = S ∀xxx ∈ Poly(DS). Therefore

constraint (29) forces g(xxx) = S, which is possible if and only
if xLk = xk, k = 1, . . . , N , i.e. xk ∈ {0, 1}, k = 1, . . . , N ,
implying xxx ∈ DS . �

Since the function g1(xxx) is convex, the constraint g1(xxx) ≥ S
in (29) is a reverse convex constraint [40]. As such DS =
Poly(DS) \ {xxx : g1(xxx) < S}, i.e. DS is the difference
of two convex sets Poly(DS) and {xxx : g1(xxx) < S}. Also
as L decreases, g1(xxx) tends to approach the linear function
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∑N
k=1 xk and thus, the constraint g1(xxx) ≥ S approaches the

linear constraint
∑N
k=1 xk ≥ S. However, it does not mean

that choosing L closer to 1 is effective because the function
g1(xxx) − S also approaches to zero very quickly, making the
constraint g1(xxx) ≥ S highly artificial. In our previous works
[41], [42], L = 2 was chosen. However, as we will see shortly,
L = 1.5 is a much better choice, accelerating the convergence
of the iterative computational processes. The following result
is a direct consequence of Lemma 1.

Proposition 1: The function

g̃1(xxx) = 1/g1(xxx)− 1/S

can be used to measure the degree of satisfaction of
the discrete constraint xxx ∈ DS in the sense that
g̃1(xxx) ≥ 0 ∀ xxx ∈ Poly(DS) and g̃1(xxx) = 0 if and only
if xxx ∈ DS . �

Similarly, over the box domain

ykm ∈ [0, 1], (k,m) ∈ N ×Z, (30)

and
ckm ∈ [0, 1], (k,m) ∈ N ×N , (31)

the following functions can be used to measure the satisfaction
of the discrete constraint (17) and (21d),

g̃2(yyy) = 1/g2(yyy)− 1/|Z|, (32)

and
g̃3(ccc) = 1/g3(ccc)− 1/(N − |Z|), (33)

with

g2(yyy) :=

N∑
k=1

∑
m∈Z

yLkm,

and

g3(ccc) :=

N∑
k=1

N∑
m=1

cLkm.

Since each ZIB can exactly make one bus observable, we need
at least |N |−|Z| PMU channels for the complete observability.

Following the developments in [41]–[45], instead of han-
dling the nonconvex constraints (29b) and g2(yyy) ≥ |Z| and
g3(ccc) ≥ N−|Z| we incorporate the degree of their satisfaction
into the objective in (22), leading to the following penalized
optimization problem:

min
xxx,yyy,ccc

Fµ(xxx,yyy, ccc) := f(xxx) + µ (g̃1(xxx) + g̃2(yyy) + g̃3(ccc)) (34a)

s.t. (29a), (18a), (18b)/(19)/(20)/(21), (30), (31), (34b)

where µ > 0 is a penalty parameter. This penalized optimiza-
tion problem is exact with sufficiently large µ in the sense
that its optimal solution is also optimal for (22). Note that the
problem (34) is a minimization of a nonconvex function over
a convex set. We now develop a path-following computational
procedure for its solution. For this purpose, we firstly develop
an upper bounding approximation for (34), at some its feasible

point (xxx(κ), yyy(κ), ccc(κ)) (at κ-th iteration). As the function g1(xxx)
is convex, it is true that [40],

g1(xxx) ≥ g
(κ)
1 (xxx)

:= g1(xxx(κ)) + 〈∇g1(xxx(κ)),xxx− xxx(κ)〉

= −(L− 1)

N∑
k=1

(x
(κ)
k )L + L

N∑
k=1

(x
(κ)
k )L−1xk.

Therefore, an upper bounding approximation at xxx(κ) for
1/g1(xxx) can be easily obtained as 1/g1(xxx) ≤ 1/g

(κ)
1 (xxx) over

the trust region
g
(κ)
1 (xxx) > 0. (35)

Analogously, 1/g2(yyy) ≤ 1/g
(κ)
2 (yyy) and 1/g3(ccc) ≤ 1/g

(κ)
3 (ccc)

over the trust region

g
(κ)
2 (yyy) > 0, (36)

and
g
(κ)
2 (ccc) > 0, (37)

for

g
(κ)
2 (yyy) : = −(L− 1)

∑N
k=1

∑
m∈Z(y

(κ)
km)L

+L
∑N
k=1

∑
m∈Z(y

(κ)
km)L−1ykm,

and

g
(κ)
3 (ccc) : = −(L− 1)

∑N
k=1

∑N
m=1(c

(κ)
km)L

+L
∑N
k=1

∑N
m=1(c

(κ)
km)L−1ckm.

At the κ-th iteration we solve the following convex op-
timization problem to generate the next iterative point
(xxx(κ+1), yyy(κ+1), ccc(κ+1)) :

min
xxx,yyy,ccc

f(xxx) + µP (κ)(xxx,yyy, ccc), s.t. (34b), (35), (36), (37), (38)

with

P (κ)(xxx,yyy, ccc) :=

(
1

g
(κ)
1 (xxx)

− 1

S

)
+

(
1

g
(κ)
2 (yyy)

− 1

|Z|

)

+

(
1

g
(κ)
3 (ccc)

− 1

N − |Z|

)
.

Although the function f(xxx) is already convex, it is not easy to
optimize it. For instance, when f = fe, usually fe is expressed
by Trace(T), where T is a slack symmetric matrix variable
of size N × N satisfying the semi-definite constraint (26b),
which is not scalable to xxx. Worse, for f = −fMI , which
is ln |BTΣ−1P B +

∑N
k=1 xkH

T
k R
−1
wk
Hk|, there is no known

convex solver of polynomial complexity.
In the following, we propose a different approach to provide

scalable iterations for (38). Obviously, there is ε > 0 such that

Aε := BTΣ−1P B − ε
N∑
k=1

HT
k R
−1
wk
Hk � 0.

For f = fe, applying the inequality (53) in the Appendix for

A0 → Aε, xk → xk + ε, x̄k → x
(κ)
k + ε, (39)
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yields fe(xxx) ≤ f (κ)e (xxx) := a
(κ)
0 +

N∑
k=1

a
(κ)
k

xk + ε
for

0 < a
(κ)
0 := Trace((Re(xxx(κ)))2Aε), (40a)

0 < a
(κ)
k := (x

(κ)
k + ε)2Trace((Re(xxx(κ)))2

×HT
k R
−1
wk
Hk), k = 1, . . . , N. (40b)

Accordingly, initialized by a feasible point (xxx(0), yyy(0), ccc(0))
for (34), at the κ-th iteration for κ = 0, 1, . . . , we solve the
following convex optimization problem to generate the next
iterative point (xxx(κ+1), yyy(κ), ccc(κ)), instead of (38):

min
xxx,yyy,ccc

F (κ)
µ (xxx,yyy, ccc) := f (κ)e (xxx) + µP (κ)(xxx,yyy, ccc)

s.t. (34b), (35), (36), (37). (41)

Note that Fµ(xxx,yyy, ccc) ≤ F
(κ)
µ (xxx,yyy, ccc), ∀ (xxx,yyy, ccc),

and Fµ(xxx(κ), yyy(κ), ccc(κ)) = F
(κ)
µ (xxx(κ), yyy(κ), ccc(κ)), and

F
(κ)
µ (xxx(κ+1), yyy(κ+1), ccc(κ+1)) < F

(κ)
µ (xxx(κ), yyy(κ), ccc(κ)), since

(xxx(κ+1), yyy(κ+1), ccc(κ+1)) and (xxx(κ), yyy(κ), ccc(κ)) are the optimal
solution and a feasible point for (41). Therefore,

Fµ(xxx(κ+1), yyy(κ+1), ccc(κ+1)) ≤ F (κ)
µ (xxx(κ+1), yyy(κ+1), ccc(κ+1))

< F (κ)
µ (xxx(κ), yyy(κ), ccc(κ))

= Fµ(xxx(κ), yyy(κ), ccc(κ),

i.e. (xxx(κ+1), yyy(κ+1), ccc(κ+1)) is a better feasible point than
(xxx(κ), yyy(κ), ccc(κ)) for (34). For a sufficient large µ > 0,
g̃1(xxx(κ))+g̃2(yyy(κ))+g̃3(ccc(κ))→ 0 as well, yielding an optimal
solution of the binary nonlinear optimization problem (22) for
the case f = fe. Algorithm 1 provides a pseudo-code for the
proposed computational procedure.

Algorithm 1 Scalable Penalized MSE Algorithm

1: Initialization. Set κ = 0. Take any feasible point
(xxx(0), yyy(0), ccc(0)) for (34). Choose µ > 0 such that
fe(xxx

(0)) and µ(g̃1(xxx(0)) + g̃2(yyy(0)) + g̃3(ccc(0))) have a
similar magnitude.

2: Repeat until the convergence of the objective in (22):
Solve the convex optimization problem (41) to gener-
ate the next feasible point (xxx(κ+1), yyy(κ+1), ccc(κ+1)); Set
κ := κ+ 1.

Analogously, considering f = −fMI , based on the in-
equality (55) in the Appendix, for A0, xk, and x̄k defined
from (39), at the κ-th iteration we solve the following convex
optimization problem to generate the next iterative point
xxx(κ+1) and yyy(κ+1), instead of (38):

max
xxx,yyy,ccc

[
f
(κ)
MI(xxx)− µP (κ)(xxx,yyy, ccc)

]
s.t. (34b), (35), (36), (37), (42)

for

f
(κ)
MI(xxx) := a

(κ)
0 −

N∑
k=1

a
(κ)
k

xk + ε
(43)

and

a
(κ)
0 := − ln |Re(xxx(κ))|+ Trace(Re(xxx(κ))

×(

N∑
k=1

(ε+ x
(κ)
k )HT

k R
−1
wk
Hk)), (44a)

a
(κ)
k := (x

(κ)
k + ε)2Trace(Re(xxx(κ))

×HT
k R
−1
wk
Hk), k = 1, . . . , N. (44b)

We thus adjust Algorithm 1 by solving the convex optimization
problem (42) at the κth iteration instead of (41) for compu-
tational solution of the binary nonlinear optimization problem
(22) for the case f = −fMI .

The computational complexity of (41)/(42) is

O(α2β2.5 + β3.5), (45)

where

α = N +
∑
k∈Z

∑
m∈N

Akm +
∑
k∈N

∑
m∈N

Akm,

which is the number of decision variables, and

β = 4 + 4N + |ccc|,

which is the number of constraints under the scenario with
(18) for ZIBs and (21) for the PMU channels’ limitation.

IV. TAILORED PATH-FOLLOWING DISCRETE OPTIMIZATION
ALGORITHMS

In this section, we address the problem (25), which provides
a lower bound for the optimal value of (22), i.e. it provides
a lower bound for MSE and an upper bound for MI in OCA
PMU placement optimization.

For any K ⊂ N we define xxxK = (x1, . . . , xN )T such that
xk = 1 for k ∈ K and xk = 0 otherwise. Accordingly,

Re(xxxK) =

(
BTΣ−1P B +

∑
k∈K

HT
k R−1wk

Hk

)−1
.

Thanks to the explicit expression (10), the greedy algorithm
[17] for computing (25) is simply excused as to initialize from
the set K of the selected PMUs as an empty set and process
the following recursions for κ = 1, . . . , S:

kκ = arg min
k∈N\K

Trace
(
(R−1e (xxxK) +HT

k R−1wk
Hk)−1

)
/arg max

k∈N\K

∣∣R−1e (xxxK) +HT
k R−1wk

Hk

∣∣ (46)

and
K → K ∪ kκ. (47)

Although such greedy algorithm is of heuristic type, the
following result shows that its analytical foundation is sound
thanks to the inequalities in (15).

Theorem 1: For γopt and γgr as the global optimal value
of the problem (25) and that found by the greedy algorithm,
the following approximation ratio is achieved

γgr
γopt

≥ 1− 1

e
. (48)
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Proof. It follows from (14) that for ∀B ⊂ A ⊂ N ,

Re(xxxA) � Re(xxxB) & R−1e (xxxA) � R−1e (xxxB). (49)

Applying the inequality (57) in the Appendix for X =
R−1e (xxxA), Y = R−1e (xxxB) and A = HT

k R−1wk
Hk, k ∈ N \ A

yields

fe(xxxA)− fe(xxxA∪{k}) =

Trace(Re(xxxA))− Trace((R−1e (xxxA) +HT
k R−1wk

Hk)−1) ≤
Trace(Re(xxxB))− Trace((R−1e (xxxB) +HT

k R−1wk
Hk)−1) =

fe(xxxB)− fe(xxxB∪{k}). (50)

Furthermore, by (14),

fMI(xxxA∪{k})− fMI(xxxA) =

ln
∣∣∣I +R−1/2wk

HkRe(xxxA)HT
k R−1/2wk

∣∣∣ ≤
ln
∣∣∣I +R−1/2wk

HkRe(xxxB)HT
k R−1/2wk

∣∣∣ =

fMI(xxxB∪{k})− fMI(xxxB). (51)

The inequalities (50) and (51) show that the function fe is
supermodular and the function fMI is submodular, under
which the ratio (48) is valid [17]. �

Note that the above result for f = −fMI has been shown
in [16, Th. 3] by using the chain rule of MI. We have showed
here that it can be proved directly based on the analytical form
of the function fMI . Moreover, the above result for f = fe is
quite new.

We now also develop a simple but very efficient path-
following discrete optimization algorithm that explores a sim-
ple structure of the discrete constraint xxx ∈ DS to yield the
global optimal solution of (25).
The following result is important for our development.

Lemma 2: The set DS defined from (5) is the set of vertices
of the set Poly(DS) defined from (28).
Proof. For xxx ∈ DS define J(xxx) = {k1 < k2 < .... < kS |xkj =
1, j = 1, 2, ..., S}. Suppose x̄xx ∈ DS . It suffices to show that
if x̄xx = µa+(1−µ)b for a,b ∈ Poly(DS) and 0 < µ < 1 then
a = b = x̄xx. Indeed, for i ∈ J(x̄xx) we have x̄i = 1 = µai +
(1 − µ)bi and since ai ∈ [0, 1] and bi ∈ [0, 1] it follows that
ai = bi = 1. For i /∈ J(x̄xx) we have x̄i = 0 = µai + (1− µ)bi
and since ai ∈ [0, 1], and bi ∈ [0, 1] it follows that ai = bi = 0.
Hence a = b = x̄xx as asserted. �

Recall that point xxx is a vertex neighbouring the vertex x̄xx if
and only if there exists a pair (i, j) such that xi = 0 6= x̄i = 1
and xj = 1 6= x̄j = 0 and x` = x̄` whenever ` 6= i and
` 6= j, i.e. x̄xx and xxx are exactly different in two entries and
there are S(N − S) neighbouring vertices for each vertex x̄xx.
Then x̄xx ∈ DS is a minimizer of f over Poly(DS) if and only
if f(x̄xx) ≤ f(v) for every v ∈ DS neighbouring x̄xx. We thus
propose Algorithm 2 for solving (25), which looks like the
Dantzig simplex method for linear programming.1

1Dantzig simplex method is one of the 20th century’s top ten algorithms
[46] although its polynomial complexity cannot be proved (in contrast to the
polynomial complexity of the interior points methods for linear programming).
Conceptually, it is very simple: starting from any vertex of a simplex it moves
to a better neighbouring vertex until there is no better neighbouring vertex
found.

Algorithm 2 Path-following discrete optimization algorithm

Initialization. Start from a xxx(0) ∈ DS . Set κ = 0.
κ-th iteration. If there is a x̄xx ∈ DS neighbouringxxx(κ) such
that f(x̄xx) < f(xxx(κ)) then reset κ+ 1→ κ and x̄xx→ xxx(κ).
Otherwise, if f(xxx) ≥ f(xxx(κ)) for all xxx ∈ DS neighbouring
xxx(κ) then stop: xxx(κ) is the global optimal solution of (25).

Based on this powerful algorithm, we propose Algorithm
3 for solution of the following problem of choosing the
minimum number of PMUs to satisfy given tolerance of MSE
or MI:

min
xxx

∑
k∈N

xk : xxx ∈ {0, 1}N , f(xxx) ≤ ε. (52)

Algorithm 3 Iterative Procedure

Initialization. Start from 1 < S0 < N and use Algorithm
2 to find the optimal solution xxx(0) of (25) for S = S0.
Until f(xxx(κ)) ≤ ε but f(xxx(κ−1)) > ε: Reset S → S − 1 if
f(xxxopt) < ε and S → S+ 1 if f(xxxopt) > ε; Set κ := κ+ 1.

V. SIMULATION RESULTS

In the simulation, the real power injections P are normally
distributed and independent across different buses [28]. Sim-
ilarly to the simulation setup in [16], the mean vector of real
power injection up = (up(1), . . . , up(N))T is obtained by
properly scaling the power profiles in [47], while the diagonal
entries of power injection covariance matrix are assumed to
be 10% of the mean values, i.e. ΣP is a diagonal matrix
with diagonal entries ΣP (k, k) = 0.1up(k). The deviation of
measurement noise for bus voltage and current branch are set
as rk = 0.01 and ρk = 0.02, respectively. All algorithms are
solved by Matlab on a Core i7-7600 processor. Sedumi [48]
interfaced by CVX is used to solve the convex optimization
problems (41) and (42). The commonly used benchmark power
networks IEEE 30-bus, IEEE 39-bus, IEEE 57-bus, IEEE 118-
bus, IEEE 300-bus, European 1354-bus and Polish 2383-bus
with their structure and susceptance matrix obtained from
Matpower [47] are tested. The unit of MSE is dB while that
of MI is bit.

The following scenarios are considered for simulations:
• S-1 is with the complete observability constraint (CO)

(16);
• S-2 is with the constraint (18) of ZIB’s presence, which

helps to reduce the number of placed PMUs for system
observability;

• S-3 is with the both constraints (18a) and (19) of ZIB’s
presence and PFMs, which help to reduce the number of
PMUs for system observability.

A. MSE and MI performance

Table I provides some basic parameters for the networks
and also the minimum of PMUs needed to guarantee different
observability constraints in (22), which is obtained by using
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CPLEX solver [37] for solving the binary linear problem (23)
or (24). In Table I, the first two columns provide the network
name and its total number of branches (|L|) and total number
of ZIBs (|Z|). The last three columns show the minimum
number of PMUs obtained by solving (23) under S-1, and
solving (24) under S-2 and S-3. It can be seen that, the required
number of PMUs to make the system observable decreases
significantly by integrating ZIBs and PFMs.

TABLE I: The minimum number of placed PMUs under
different scenarios

Case |L|/|Z| S-1 S-2 S-3
30 41/6 10 6 6
39 46/10 13 9 7
57 80/15 17 11 9

118 186/10 32 28 25
300 411/65 87 68 66
1354 1991/421 397 271 268
2383 2896/552 746 553 553

In Table II, the second column, the third column, and the
fourth column provide the trio of the number of placed PMUs
(S), which is the same as it is in Table I, MSE and MI that are
found by Algorithm 1 under S-1, S-2, and S-3, respectively.
ZIBs and PFMs in S-3 thus help in reducing the number of
placed PMUs while maintaining a good MSE/MI.

TABLE II: MSE (in dB) and MI (in bits) under the number
S of PMUs

Case S-1 S-2 S-3
30 10/-13.3/7.136 6/-11.61/6.921 6/-11.61/6.921
39 13/-13.7/3.628 9/-12.9/3.407 7/-12.19/3.281
57 17/-10.7/7.558 11/-9.6/7.325 9/-9.15/7.175
118 32/-8.1/8.488 28/-7.8/8.243 25/-7.41/8.186
300 87/-2.6/42.195 68/-2.1/39.381 -

1354 397/-4.3/619.21 271/-2.8/587.43 -
2383 746/0.1/2134.45 - -

In Table III, the second column and the third column
of provide a similar trio that are found by Algorithm 1
for solving (22) under S-1, and S-2, respectively plus the
additional contingency-constraint (20). We need to use more
placed PMUs to compensate the contingency-constraint (20)
and as a result they also help to improve the MSE/MI.

TABLE III: MSE (in dB) and MI (in bits) with the additional
contingency-constraint (20)

Case S/MSE/MI under S-1 S/MSE/MI under S-2
30 21/-15.6/8.446 16/-14.6/8.073
39 28/-16.1/4.561 21/-15.4/4.315
57 33/-12.4/10.139 26/-12.1/9.732
118 68/-10.4/13.262 63/-10.3/12.973

Fig. 2 shows the required number of placed PMUs to satisfy
both (18a) to exploit ZIBs and (21) to limit the number of
communication channels per PMU. Table IV provides the cor-
responding MSE. It should be mentioned that if the maximum
number of channels per PMU is 1 then the required number
of PMUs is |N | − |Z|. By allowing only one communication
channel per PMU, the required number of placed PMUs is
almost the same as the number of buses. By allowing two
communication channels per PMU, this number is almost

reduced to half. Allowing the number of communication
channels per PMU more than three seems to be not so efficient
as it does not help to reduce the number of placed PMUs while
resulting in worse MSEs.
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Fig. 2: The required number of placed PMUs with different
limitation value of communication channels per PMU

TABLE IV: The required number of placed PMUs/MSE (in
dB) under different numbers of channels per PMU

Case # of channels per PMU No channel limit1 2 3 4
30 24/-15.9 8/-12.5 8/-12.5 7/-12.0 6/-11.6
39 29/-16.1 14/-14.0 12/-13.9 11/-13.2 9/-12.9
57 42/-12.8 22/-11.3 13/-10.1 11/-9.6 11/-9.6

118 108/-11.5 54/-9.8 36/-8.6 30/-8.1 28/-8.1

Fig.3 depicts the achieved MSE by using different algo-
rithms under different scenarios versus the number of placed
PMUs. The curve ”S-1 Alg. 1” and ”S-2 Alg. 1” are the
theoretical MSE by solving problem (41) for scenarios S-
1 and S-2, respectively. The MSE of ”S-2 Alg. 1” is better
than that of ”S-1 Alg. 1” thanks to the impact of ZIBs. The
curve ”Monte-Carlo” is MSE obtained through Monte-Carlo
simulation of scenario S-1. The curve ”S-1 CPLEX” is MSE
obtained by solving the feasibility problem of (23) by CPLEX.
MSE obtained by the former is much better than that obtained
by the latter. The MSE in the curve ”S-1 CPLEX” is not
monotonous, because its MSE is not optimal. The curve ”LB
by Alg. 2” provides a lower bound for the MSE in OCA PMU
placement problem (22) by solving problem (25) by Algorithm
2. Similarly, the curves in Fig. 4 plot the MI, where the curve
”UB by Alg. 2” provides an upper bound for the MI in OCA
PMU placement problem (22) by solving problem (25) by
Algorithm 2. The capability and efficiency of Algorithm 1
and Algorithm 2 to obtain informative PMU placements are
quite clear.

Fig. 5 and Fig. 6 provide the values of MSE and MI found
by Algorithm 2, the greedy algorithm by solving (46) and
convex relaxation used in [15]. Algorithm 2 and the greedy
algorithm clearly outperform the convex relaxation method
and the performance gaps becomes wider with the increase
of network size. Observe that Algorithm 2 and the greedy
algorithm perform similarly. The former provides the global
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optimal value for (25) while the latter guarantees a suboptimal
value at least with the ratio 1−1/e according to Theorem 1. It
is reasonable to expect that locating the global optimal value
costs by the former more time due to the confirmation of its
global optimality than that for locating a suboptimal value by
the latter.
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Fig. 5: MSE value of problem (25) computed by different
algorithms
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Fig. 6: MI value of problem (25) computed by different
algorithms

Given different tolerances ε, the required minimum number
of PMUs can be obtained by Algorithm 3. For the case of
f = fe, the results are presented in Fig.7.
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Fig. 7: Minimum number of placed PMUs required versus
different values of tolerance level ε for MSE by Algorithm 3

B. Computation experience

The numerical details of Algorithm 1 for scenario S-1 and
S-2 are summarized in Table V with the numerical value of
µ in implementing Algorithm 1 given by the second and third
column. The number of actual decision binary variables yk,m
in (18) to express of the impact of ZIBs in S-2 is also provided
in the sixth column. Note that this number is much smaller
than N |Z| because if nodes k and m are not connected, then
there is no involvement of ykm as automatically it is zero.
The CPU time of Algorithm 1 increases moderately with the
increase of grid size, demonstrating its scalability. To speed
up its convergence, at each iteration we check the state of
variables xxx, yyy, and ccc to fix those, which attain binary values.

The computational complexity of Algorithm 1 is determined
by (45), which is the computational complexity of the convex
problem (41)/(42) solved at each iteration, and the number of
iterations for its convergence. Fig. 8 provides the number of
iterations that Algorithm 1 needs for computing (34) for IEEE
30-bus network, 39-bus network, 57-bus network and 118-bus
network under different scenarios.
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Fig. 8: Average number of iterations that Algorithm 1 needs
in computing (34)

Table VI provides the CPU for implementing Algorithm 2,
the greedy algorithm (46) and convex relaxation using (26)-
(27). The CPU time of convex relaxation for the IEEE 300-
bus is about five hours and seven hours and half due to the
involvement of additional 300× 301/2 = 45.150 variables. It
should be mentioned that, all the proposed algorithms experi-
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ence difficulty for calculating matrix inverse (for fe(xxx)) and
determinant (for fMI(xxx)), especially in large-scale networks.

TABLE V: Numerical details of Algorithm 1 under scenario
S-1 and S-2

Case µ CPU (s) for S-1 CPU (s) for S-2
MSE MI MSE MI # yyy MSE MI

30 0.1 1 4.10 6.32 25 6.17 9.32
39 0.1 1 9.47 14.41 42 13.87 19.74
57 1 10 32.20 54.73 55 52.54 81.33
118 1 10 57.23 98.72 44 58.43 92.34
300 1 10 164.53 319.24 270 540.23 810.89

1354 10 100 473.89 715.88 1557 1643.27 2122.43
2383 10 100 1245.31 1656.74 - - -

TABLE VI: Comparison of CPU time between Algorithm 2,
the greedy algorithm (GA) (46) and convex relaxation (CR)
(26)-(27)

Case CPU (s) of Alg. 2 CPU (s) of GA CPU (s) of CR
MSE MI MSE MI MSE MI

30 0.30 0.57 0.03 0.10 1.85 3.46
39 0.56 1.24 0.05 0.17 3.63 5.29
57 2.88 5.23 0.12 0.38 12.34 18.52

118 45.21 95.47 0.84 1.51 1053.26 1547.65
300 537.56 941.45 62.38 87.91 17267.45 26833.46

For IEEE 57-bus network and IEEE 118-bus network, Fig.9
presents the number of iterations needed for the convergence
of Algorithm 2 for MSE and MI, respectively. The computa-
tional complexity of each iteration is O(S(N − S)).
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Fig. 9: Number of iterations required for the convergence of
Algorithm 2

VI. CONCLUSIONS

The paper has considered PMU placement optimization to
minimize the mean squared error or maximize the mutual
information between the measurement outputs and phasor
states under a fixed number of PMUs and different observ-
ability constraints to guarantee the estimation quality, which
are formulated as a large scale binary nonlinear optimization
problem. The paper has developed scalable algorithms for their
computation, which result at least in local optimal solutions.
The paper has also developed extremely efficient algorithms
of very low computational complexity for cases of absent ob-
servability. The viability of the developed algorithms has been
confirmed through comprehensive simulations with benchmark
grids.

APPENDIX: FUNDAMENTAL INEQUALITIES

For A0 � 0 and Ak � 0, k = 1, . . . , N let Φ(xxx) := (A0 +
N∑
k=1

1

xk
Ak)−1, and Ψ(xxx) := (A0 +

N∑
k=1

xkAk)−1. The first

result is
Theorem 2: The following inequality holds true for all xxx ∈

int(RN+ ) and x̄xx ∈ int(RN+ ):

Trace(Ψ(xxx)) ≤

Trace
(
(Ψ(x̄xx))2A0

)
+

N∑
k=1

x̄2k
xk

Trace
(
(Ψ(x̄xx))2Ak

)
. (53)

Proof. By [26, Th.1], the function ϕ(xxx) = Trace(Φ(xxx)) is
concave in the domain int(RN+ ), so for all xxx ∈ int(RN+ ) and
x̄xx ∈ int(RN+ ) one has

ϕ(xxx) ≤ ϕ(x̄xx) + 〈∇ϕ(x̄xx),xxx− x̄xx〉

= Trace
(
Φ2(x̄xx)A0

)
+

N∑
k=1

xk
x̄2k

Trace
(
Φ2(x̄xx)Ak

)
.

(54)

Then the inequality (53) is obtained by replace xk → 1/xk
and x̄k → 1/x̄k, k = 1, . . . , N, in (54). �

The next result is
Theorem 3: The following inequality holds true for all xxx ∈

int(RN+ ) and x̄xx ∈ int(RN+ ):

− ln |Ψ(xxx)| ≥ − ln |Ψ(x̄xx)|+

Trace

(
Ψ(x̄xx)(

N∑
k=1

x̄kAk)

)
−

N∑
k=1

x̄2k
xk

Trace (Ψ(x̄xx)Ak) . (55)

Proof. By [49, Th. 2], the function φ(xxx) = − ln |Φ(xxx)| is
convex in the domain int(RN+ ), so for all xxx ∈ int(RN+ ) and
x̄xx ∈ int(RN+ ) one has

φ(xxx) ≥ φ(x̄xx) + 〈∇φ(x̄xx),xxx− x̄xx〉

= − ln |Φ(x̄xx)|+ Trace

(
(Φ(x̄xx))−1(

N∑
k=1

1

x̄k
Ak)

)

−
N∑
k=1

xk
x̄2k

Trace
(
(Φ(x̄xx))−1Ak

)
. (56)

Then the inequality (55) is obtained by replace xk → 1/xk
and x̄k → 1/x̄k, k = 1, . . . , N, in (56). �

The last result is
Theorem 4: The following inequality holds true for all X �

Y � 0 and A � 0

Trace(X−1)− Trace((X +A)−1) ≤
Trace(Y −1)− Trace((Y +A)−1). (57)
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Proof. By the mean value theorem, there is ξ ∈ (0, 1) such
that for Z = ξX + (1− ξ)Y � 0,(

Trace(X−1)− Trace((X +A)−1)
)

−
(
Trace(Y −1)− Trace((Y +A)−1)

)
=

Trace
((

(Z +A)−2 − Z−2
)

(X − Y )
)

=

Trace(
(
(X − Y )1/2(Z +A)−1(X − Y )1/2

)2
−
(
(X − Y )1/2Z−1(X − Y )1/2

)2
) =

Trace(
(
(X − Y )1/2(Z +A)−1(X − Y )1/2

− (X − Y )1/2Z−1(X − Y )1/2
)

×
(
(X − Y )1/2(Z +A)−1(X − Y )1/2

+ (X − Y )1/2Z−1(X − Y )1/2
)
) ≤ 0,

because

(X − Y )1/2(Z +A)−1(X − Y )1/2

−(X − Y )1/2Z−1(X − Y )1/2 =
(X − Y )1/2[(Z +A)−1 − Z−1](X − Y )1/2 � 0,

due to (Z +A)−1 � Z−1, and

(X − Y )1/2(Z +A)−1(X − Y )1/2

+(X − Y )1/2Z−1(X − Y )1/2 =
(X − Y )1/2[(Z +A)−1 + Z−1](X − Y )1/2 � 0

due to (Z +A)−1 + Z−1 � 0. �
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