
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained 
for all other uses, in any current or future media, including reprinting/republishing this material 

for advertising or promotional purposes, creating new collective works, for resale or 

redistribution to servers or lists, or reuse of any copyrighted component of this work in other 

works. 



IEEE SENSORS JOURNAL, VOL.XX, NO.XX, JULY 2019 1

Sensing Data Fusion for Enhanced Indoor Air
Quality Monitoring

Q. P. Ha, S. Metia, and M. D. Phung

Abstract—Multisensor fusion of air pollutant data in smart
buildings remains an important input to address the well-being
and comfort perceived by their inhabitants. An integrated sensing
system is part of a smart building where real-time indoor air
quality data are monitored round the clock using sensors and
operating in the Internet-of-Things environment. In this work,
we propose an air quality management system merging indoor
air quality index (IAQI) and humidex into an enhanced indoor
air quality index (EIAQI) by using sensor data on a real-
time basis. Here, indoor air pollutant levels are measured by a
network of waspmote sensors while IAQI and humidex data are
fused together using an extended fractional-order Kalman filter
(EFKF). According to the obtained EIAQI, overall air quality
alerts are provided in a timely fashion for accurate prediction
with enhanced performance against measurement noise and
nonlinearity. The estimation scheme is implemented by using
the fractional-order modeling and control (FOMCON) toolbox.
A case study is analysed to prove the effectiveness and validity
of the proposed approach.

Index Terms—Sensing fusion, Indoor air quality, Extended
Fractional Kalman Filter,

I. INTRODUCTION

W ith the increasing growth worldwide of active popu-
lation working inside a building, the management of

indoor air quality is becoming crucially important for human
health and work efficiency [1]. In this regard, the development
of smart buildings is aimed to provide comfort and improved
indoor air quality (IAQ) for occupants. Common issues asso-
ciated with IAQ include improper or inadequately-maintained
heating and ventilation as well as pollution by hazardous ma-
terials [2] (olefins, aromatics, hydrocarbons, glues, fiberglass,
particle boards, paints, etc.) and other contaminant sources
(laser printers [3], tobacco smoke, excessive concentrations of
bacteria, viruses, fungi (including molds [4]), etc.). Moreover,
the increase in the number of building occupants and the time
spent indoors directly impact the IAQ [5].

Air quality can be evaluated by such parameters as con-
centration of air pollutants including carbon monoxide (CO),
carbon dioxide (CO2), formaldehyde (HCHO), nitrogen diox-
ide (NO2), ozone (O3), sulfur dioxide (SO2), total volatile
organic compounds (TVOCs), particulate matter (PM2.5), total
suspended particles (TSP), as well as temperature, relative
humidity and air movement. For an indoor environment, air
quality is affected also by household chemicals, furnishings,
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air contaminants emitted from outside, occupant activities
(e.g., smoking, cooking, breathing) [6], as well as air infil-
tration, and manual/mechanical ventilation. Due to a large
number of factors involved, the development of an accurate
system for IAQ monitoring is of great interest. To this end,
fusing heterogeneous data from a network with a multitude
of sensor types is essential for calculating the IAQI and for
monitoring different pollutants in a building.

For indoor air quality, season-dependent models have been
developed in [7] for monitoring, prediction and control of
the IAQ in underground subway stations, where the IAQ of
a metro station is shown to be influenced by temperature
variations in different seasons. As indoor air quality (IAQ)
is affected by heating, ventilation and air-conditioning con-
ditions, modelling and control strategies have been proposed
for residential air conditioning [8] and ventilation systems
[9] to improve the occupants’ living environment. A recent
work [10] has showed that IAQ is affected by both outdoor
particle concentration and indoor activities (walking, cooking,
etc.). In [11], IAQ is assessed by monitoring and analysing
CO2 levels at the building’s foyer area taking into account
also thermal comfort. While indoor thermal comfort can be
predicted via himidity [12], it is known that an elevated level
of humidity may have a positive impact on the perceived IAQ
with some effects on human health [13]. In IAQ modeling, data
fusion is an effective way to reduce the sensors measurement
uncertainties and overcome sensory limitations [14]. Various
strategies have been employed, among which Kalman filtering
is quite popular and effective. Multi-sensor data fusion using
Kalman filtering is adopted in [15] to estimate the mass and
flow parameters of gas transport processes from their relation
of to building energy consumption and indoor air quality. For
improving the model accuracy and robustness, system identi-
fication and data fusion are implemented for on-line adaptive
energy forecasting in virtual and real commercial buildings
with filter-based techniques [16]. In [17], a Kalman consensus
filter is also used to analyze aircraft cabin contamination data
with state estimation.

Motivated by [12]–[14], this paper proposes a data fusion
strategy for the sensor network of a smart building to integrate
the humidex and IAQI into an Enhanced Indoor Air Quality
Index (EIAQI) with a weighting scheme to take into account
also indoor humidity. Here, an Extended Fractional Kalman
Filter (EFKF) incorporating the Matérn covariance function
and a fractional order system is developed to deal with spatial
distributions as well as the highly nonlinear, uncertain nature
of indoor air quality data while merging humidex into IAQI
for the proposed EIAQI. The Matérn covariance function is
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Fig. 1: Waspmote sensor for
recording IAQ.

Fig. 2: Meshlium gateway
router

know as smoothness parameter which controls the degree of
smoothness of the random field. In [18], authors have used
Matérn covariance function geostatistical applications. In [19],
researchers have proposed various ways to produce cross-
covariance models, which is based on the Matérn covariance
model class, that are suitable for describing prominent nonsta-
tionary characteristics of the global environmental processes.
Air quality monitoring across the globe is mainly based on
monitoring stations, which are too sparse to accurately assess
the exposure effects of air pollution for the world. In [20], the
Matérn covariance function based predictive model is used to
predict PM10 and PM2.5. In this research work the Matérn
covariance function is used to smooth indoor pollutant profile
to predict accurately.

The remainder of the paper is organized as follows. Section
II describes the sensor network system for IAQ management
and the paper motivation. Section III presents the proposed
framework for obtaining the enhanced indoor air quality index.
In Section IV, the EFKF development is included together
with results and discussion on real data obtained from the
building network sensors. Rationale for data fusion with EFKF
as well as IAQ assessment are given in Section V. Finally, the
conclusion is drawn in Section VI.

II. SYSTEM DESCRIPTION AND MOTIVATION

An office building is chosen as a testbed for the study in
this paper. The building is embedded with numerous sensors
for monitoring of its energy consumption as well as internal
and external environment. For environmental monitoring, data
are collected for such parameters as structural strain, people
counting, vibrations and noise levels, as well as gas concen-
trations, weather, temperature, and meteorological conditions.

The building management system is installed on its top
floor. In this paper, our focus is on its application to the
monitoring of IAQ in the building only. The sensors used in
the building’s IAQ sensor network are the Waspmote sensors,
as shown in Fig. 1. The sensor can measure levels of air
pollutant (hydrogen (H2), ammonia (NH3), ethanol (C2H6O),
hydrogen sulfide (H2S) and toluene (C7H8)), carbon monoxide
(CO), oxygen (O2) and carbon dioxide (CO2) in parts per
million (ppm). Temperature and humidity are also recorded in
◦C (centigrade) and %RH (relative humidity). For air quality
monitoring, 16 sensors were implemented on a floor and more
than 100 others were implemented throughout the building.

Sensor data gathered by the Waspmote plug and sense nodes
are sent to the cloud by the Meshlium, a gateway router
specially designed to connect the Waspmote sensor networks
to the Internet via Ethernet, Wi-Fi and 3G interfaces, as shown
in Fig. 2. Fig. 3 shows location of the Waspmote sensors on
the 10thfloor, building 11, University of Technology Sydney.

A load resistance is required at the output of each Waspmote
sensor to maximize an amplification stage gain. The choice of
amplification stage gain and of the sensor’s load resistance can
be carried out according to two parameters: the specific sensor
available, since there may be significant variations between
two different sensors of the same model, and the value and
range of concentrations of gas to be monitored. When selecting
load resistance and amplification it must be remembered that,
although the sensors must be powered by a voltage of 5V to
function appropriately, the Waspmote allows input between 0
and 3.3V, so it will be necessary to calculate the resistance,
load and gain values to adapt the measurement range of the
sensor to the Waspmote input. The accuracy which can be
obtained in the sensor’s output value will be dependent on the
way in which it is supplied. This way, the longer the power
time or duty cycle, as appropriate, the better accuracy will be
obtained. The disadvantage of prolonged power is an increase
in the mote’s consumption, with the consequent decrease of
the battery’s life, so adjusting the power of each sensor to
the requirements of the specific application being developed
is recommended to optimize the equipment’s performance.

It is highly recommended to calibrate the Waspmote sensor
in order to get an accurate value. The Waspmote sensor?s
normal resistance and sensitivity may vary from one unit to
another in a wide range. This calibration may not be necessary
in all applications, for example if the Waspmote sensor is
going to be used in a gas detection, where monitoring the vari-
ation of the Waspmote sensor output may be enough to have it
working properly, and the normal operation conditions may be
replicated without an specific equipment. The calibration pro-
cedure requires the capture of the Waspmote sensor response
under different concentrations of gas in the target operation
range (that should be comprised in the operation range of the
Waspmote sensor), and, depending on the conditions of the
application to be implemented, under controlled temperature
and humidity. The larger the number of calibration points in
that range the more accurate the calibration will be.

The case study in this paper was intrigued by a slight
incident of a fainting student in a laboratory room. During
the period, sensor measurements were recorded as depicted in
Fig. 4 for temperature and humidity, as well as in Figs. 5-8 for
the room air quality, where it can be seen from the logged data
of a critical episode on the 24th of August 2016 with an initial
assessment as lack of oxygen. After a thorough investigation,
the cause of the incident turned out to be high levels of
indoor air pollutants on that day. This has motivated us of
the development of an enhanced indoor air quality index to
forecast to the occupants to avoid experiencing severe adverse
health effects.
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Fig. 3: Location of the Waspmote sensors.
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Fig. 4: Temperature (◦C) and humidity (%RH) levels by
Waspmote.
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Fig. 5: CO2 (ppm) and O2 (%) levels by Waspmote.

III. IAQI DATA FUSION FRAMEWORK

In this section we provide a brief description of data fusion
to calculate Indoor Air Quality Index (IAQI) and the proposed
Enhanced Indoor Air Quality Index (EIAQI) incorporating also
humidity.

A. Indoor Air Quality Index (IAQI)

Air quality index (AQI) has been used by environment
protection agencies throughout the world. It is a scale of air
pollution to indicate its levels to inform people around a region
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Fig. 6: Ethanol (ppm) and Ammonia (ppm) levels by Wasp-
mote.
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Fig. 7: Hydrogen (ppm) and Hydrogen Sulfide (ppm) levels
by Waspmote.

to adjust their outdoor activities in avoiding the health risk
of getting polluted. The AQI is calculated on a real time
basis to form a numerical scale with a colour code which
is classified into several specific ranges. The information of
AQI is very important especially to children, elderly people
and people with pre-existing conditions such as cardiovascular
and respiratory diseases. However, this index is usually applied
to outdoor instead of indoor environments even though the
indoors such as work places, hotels, homes, bedrooms and
theater halls also have a certain impact on human health. For



4 IEEE SENSORS JOURNAL, VOL.XX, NO.XX, JULY 2019

TABLE I: INDOOR AIR QUALITY INDEX (IAQI)

CO CO2 H2 NH3 C2H6O H2S C7H8 O2 IAQI Health effects
(ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (%)

0-0.2 0-379 0-1 0-24 0-0.49 0-0.00033 0-0.0247 20.95 0-50 Good

0.21-2 380-450 1.1-2 25-30 0.5-10 0.00034-1.5 0.0248-0.6 19-20.9 51-100 Moderate

2.1-9 451-1000 2.1-3 31-50 11-49 1.6-5 0.7-1.6 15-19 101-150 Unhealthy for Sensitive

9.1-15.4 1001-5000 3.1-5 51-100 50-100 6-20 1.7-9.8 12-15 151-200 Unhealthy

15.5-30.4 5001-30000 5.1-8 101-400 101-700 21-50 9.9-12.2 10-12 201-300 Very Unhealthy

30.5-50.4 30001-40000 8.1-10 401-500 701-1000 51-100 12.3-100 <10 301-400 Hazardous
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Fig. 8: Carbon Monoxide (ppm) and Toluene (ppm) levels by
Waspmote.

outdoor air quality, the AQI is calculated from a ratio intro-
duced by the U.S. EPA in 2006 with the corresponding colour
code with six categories ranging from good to hazardous [21],
whereby air quality standards are based on common outdoor
air pollutants such as ozone, particulate matters PM2.5 and
PM10, CO, sulfur dioxide (SO2) and nitrogen dioxide (NO2).

This research extends the existing AQI for determining the
indoor air quality. Based on the AQI breakpoints, which are
available online [21], the indoor air quality index can be
evaluated with a sensing system [22]. A review of standards
and guidelines for the IAQ parameters are given in [23].
Besides the six concentrations for the AQI as mentioned above,
additional pollutants are needed [24] to calculate the indoor
air quality index (IAQI). These include carbon dioxide (CO2),
volatile organic compounds (VOCs), radon and formaldehyde,
which are known to cause concerns of health risk [25]. For
example, the hydrogen sulfide breakpoint is set in accordance
with the health effects of respiratory exposure [26]. Similarly,
toluene, a toxic solvent, together with other contaminants such
as formaldehyde can build up in a poorly-ventilated indoor
environment. Its effect at different concentrations is explained
in [27] with breakpoint details given in [28]. Ethanol vapour
may cause irritation of the nose and throat with choking
and coughing, depending on the level of concentration in air
[29]. Ammonia, of which level breakpoint is defined in [30],
may cause more severe problems with eyes, nose, throat and
respiratory tract. High concentrations of hydrogen can cause
oxygen deficit, which in turns may result in giddiness, mental
confusion, loss of judgment, loss of coordination, weakness,
nausea, fainting, or even loss of consciousness. Explanation of
breakpoints for hydrogen concentration can be found in [31]

and for oxygen level in [32]. In summary, Table I lists these
gases together with the IAQI in association with their health
effects coded in colour.

The air quality index for outdoor or indoor air pollutants
can be calculated by using the following linear interpolation
formula:

Ip = Ill +
(
(Cp −BPll)×

Iul − Ill
BPul −BPll

)
, (1)

where Ip is the index for pollutant p, Cp is its rounded con-
centration, BPul (BPll) is the breakpoint greater (less) than
or equal to Cp, and Iul (Ill) is the index value corresponding
to BPul (BPll).

In the case of oxygen level, the IAQI is calculated using
the following linear interpolation formula:

Io = Iul −
(
(BPul − Co)×

Ill − Iul
BPll −BPul

)
, (2)

where Io is the index for oxygen, Co is its rounded concentra-
tion in percentage, BPul (BPll) is the breakpoint greater (less)
than or equal to Co, correspondingly with the upper (Iul) and
lower (Ill) index of oxygen.

For example, the indoor waspmote gave Cp=230.4295 ppm
for CO2. We then obtained from Table I as BPul = 379, BPll
= 0, Iul = 50, Ill = 0, and the IAQI obtained from (1) is
30.3997, which is in the ”good” category. Now if waspmote
readings for O2 is Co=19.7347 %, the breakpoints found from
the table are then BPul=20.9, BPll=19, Iul=100, and Ill=51.
The IAQI from (2) is therefore 69.9475, which is ”moderate”
in health concerns.

Data from eight sensors of the waspmote are used to
calculate the IAQI correspondingly. To integrate also humidity
and temperature for formulating the proposed enhanced indoor
air quality index (EIAQI) we consider next the humidity index.

B. Humidex

Since the evaporation process of sweat for cooling down a
human body in hot weather usually stops when the relative
humidity reaches about 90%, indoor heat may yield a rise in
the body temperature, causing illness. To describe the hot or
cold feelings of an average person during different seasons,
Canadian meteorologists proposed the humidex a dimension-
less quantity based on the dew point theory, combining the
effect of heat and humidity with breakdowns given in [32].
Accordingly, the humidex is calculated as,

h = T +
5

9
×
(
6.112× 107.5×

T
237.7+T × H

100
− 10

)
, (3)
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where T is air temperature in ◦C and H is relative humidity
in %. Humidex ratings can be summarized in Table II.

TABLE II: HUMIDEX RATINGS

Humidex Range Degree of Comfort
16-29 Comfort

30-39 No Comfort

40-45 Some Discomfort

46-54 Great Discomfort

55-60 Dangerous

61-65 Heat Stroke

C. Enhanced Indoor Air Quality Index (EIAQI)

For decades, the American Society of Heating, Refrigerating
and Air-Conditioning Engineers (ASHRAE) Standard 55 has
been using the Fanger’s predicted mean vote (PMV) model to
evaluate the indoor thermal comfort satisfaction [33]. PMV is
based on the average vote of a large group of people on the a
seven-point thermal sensation scale, using canonical thermal
comfort models. Attempt to extend the IAQI to incorporate
a thermal comfort index taking into account humidity can
be found in [12]. In this work, we propose to improve the
indoor air quality index by complementing it with humidex to
formulate the EIAQI as,

EIAQI =(Wh × h) + (WIAQI × IAQI),
WT =Wh +WIAQI ,

(4)

where Wh and WIAQI are respectively the humidex and IAQI
weighting factors ranging from -2 to 3, WT is the overall
EIAQI weightage, IAQI is the indoor air quality index, and
h is the humidex. The calculation procedure for the EIAQI is
shown in Fig. 9. For example, at any given time, the status of
IAQI is ”Good” (weightage 3) and the Humidex status is ”No
Comfort’ (weightage 2), then the total EIAQI weightage is 5
which refers the overall condition of the room as ”Better”.

IV. EXTENDED FRACTIONAL KALMAN FILTER

A majority of research work in indoor air quality is to obtain
a mathematical model based on a given set of parameters and
other information of geometry, shape, size, and contrast, see
e.g., [34] to predict the pollutant distribution. On the other
hand, inverse modelling generally focuses on the mathemat-
ical process of estimating the sources when determining the
spatiotemporal distribution via a set of data or observations,
see e.g., [35] for an outdoor emissions problem. For indoor
applications, here extended fractional Kalman filtering is used
to obtain air pollutant profiles in a smart building for accu-
rately predicting the IAQ that the waspmotes installed in the
building may overlook.

A. EFKF Estimation Scheme

The EFKF is particularly suitable for accurate and ef-
fective state estimation of highly nonlinear systems, where
additive uncertainties, initial deviation, noise, disturbance and

inevitably missing measurements affect the prediction per-
formance [36]. In outdoor air quality modelling, an EFKF
with Matérn function-based covariances has been applied for
pollutant prediction [37] to improve accuracy of inventories
and to complement missing data taking into account the spatial
distribution of the indoor air quality profiles. Here, by adopting
a Matérn correlation function for a length scale l =

√
5/λ, the

EFKF of fractional order α is proposed as

dαf(tk)

dtα
=


0 1 0 0
0 0 1 0
0 0 0 1
−λ4 −4λ3 −6λ2 −4λ

 f(tk) +

0
0
0
1

w(tk),
y(tk) =

[
1 0 0 0

]
f(tk) + d(tk), (5)

where λ is a positive constant for the system quadruple pole (at
−λ) depending on the correlation length l of the Gaussian pro-
cess involved [37], f(tk) represents waspmote data assumed to
have initial zero mean and covariance matrix diag{0.1} with
measurement variance 0.52 and spectral density of process
noise 10−6.

B. Fractional Order Identification

Fractional-order systems are considered as a generalization
of integer-order ones to improve system performance. In this
work, our implementation is based on the Fractional-Order
Modeling and Control (FOMCON) Toolbox in MATLAB [38]
with data collected in the time domain from waspmotes. Air
pollutant concentrations, after conversion, are to be processed
for prediction of abnormalities by using the EFKF where the
fractional order is identified with FOMCON. Here, the black
box modelling [39] is applied to infer a dynamic system model
based upon experimentally collected data. This filtered model
represents a relationship between system inputs and outputs
under external stimuli in order to determine and predict the
system behavior. Let yr denote the experimental pollutant
profile using eqn. (5) as a plant output, and ym the identified
model output. We consider the single-input and single-output
(SISO) case where both yr and ym are N×1 vectors with the
model output error:

ε = yr − ym, (6)

where estimation performance can be evaluated via the maxi-
mum absolute error:

εmax = max
i
| ε(i) |, (7)

or the mean squared error:

εMSE =
1

N

N∑
i=0

ε2i =
‖ε‖22
N

. (8)

To demonstrate the merit and advantage of using EFKF to
estimate pollutant profiles in smart buildings, let’s take the
concentration of CO2 on the 22rd August 2016 and N =
78 from data of the considered building. From conventional
system identification, a corrected indoor air quality profile can
be obtained from the corresponding rational transfer function
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Fig. 9: Calculation procedures for EIAQI.

as:
F (s) =

1

a4s4 + a3s3 + a2s2 + a1s+ a0
, (9)

where a4 = 1, a3 = 1.058 × 10−1, a2 = 4.2 × 10−3,
a1 = 7.408 × 10−5, and a0 = 4.9 × 10−7 for the pollutant
level data collected at the testbed building. In fractional order
modelling, the identification problem is included in estimat-
ing a set of parameters an = [a4 a3 a2 a1 a0] and
αn = [αa4 αa3 αa2 αa1 αa0 ] for the transfer function
of the model (5),

Fα(s) =
1

a4s
αa4 + a3s

αa3 + a2s
αa2 + a1s

αa1 + a0s
αa0

.

(10)
Table III shows the values of fractional orders obtained by
using the FOMCON toolbox with the initial transfer function
from equation (9) for all the indoor air pollutants, oxygen,
temperature and humidity as collected by the building’s wasp-
motes during the week from the 20th to 26th of August 2016.
Here, contaminant gases include CO2, CO, H2, NH3, C2H6O,
H2S, and C7H8 with the corresponding mean squared error
εMSE ranging between 0.3 and 0.9 for N = 78.

C. Indoor Air Pollutant Profiles with EFKF

To illustrate the improvements in determining indoor air
quality profiles by using the proposed EFKF, we compare the
time series of the air pollutant as well as oxygen levels over the
period of interest from the 23rd to 26th of August. Figure 10
shows the carbon dioxide concentration, distributed within a
permissible limit from 400 to 1000 ppm, and rather consistent
as obtained by waspmotes, EKF or EFKF. Similarly, the
concentration distributions of gaseous contaminants such as
hydrogen, ammonia, ethanol, hydrogen sulfide, toluene as well
as temperature and humidity profiles are shown respectively in
Figs. 11-17. They also display a general coincidence between
the ground truth, EKF and EFKF. However, the carbon monox-
ide and oxygen levels, depicted respectively in Figs. 18 and
19, exhibit a difference on the 24th August with an increase
of around 0.13 ppm in CO concentration and 0.4% in O2

concentration by using EFKF as compared to the measured
ground truth.

On one hand, while the levels of hydrogen, ammonia,
ethanol and hydrogen sulfide lie in the moderate ranges as
referred to Table I, the peak of these profiles all rests with
the 24th of August, which may become unhealthy to highly
sensitive people. On the other hand, the concentration of
toluene C7H8 shows clearly a rise on the same day of over
0.7 ppm which is unhealthy for a sensitive person. Moreover,
it is interesting to note that from the correction of EFKF, the
level of oxygen on the incident date was moderate indeed
with over 20%, while the concentration of carbon monoxide
was found rather higher than the waspmote measurements and
unhealthy for sensitive people. These filtered profiles explain
that the cause for the student’s fainting was an exposure to not
of a low oxygen concentration but of a poor indoor air quality
environment with unhealthy levels of gaseous pollutants such
as CO and C7H8, particularly in association with a substantial
rise in humidity on the incident date.
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Fig. 10: Carbon dioxide concentration (ppm).

D. Statistical Analysis

In order to evaluate the performance of prediction, we in-
troduce several model performance measures including MAPE
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TABLE III: FRACTIONAL ORDER SYSTEM ESTIMATED BY USING FOMCON

System input Fractional order system εMSE

Carbon Dioxide 1
10.297s3.0213+10.463s1.3718−81.103s1.2455+74.212s1.2287+1.0541s0.0046851

0.8612

Carbon Monoxide 1
40.309s4.1246−53.264s3.9793+20.59s3.5975+3.178s1.2639+1.0523s0.0087201

0.3993

Oxygen 1
8.209s3.7867+2.0644s1.9433+2.7378s1.5326+0.215s1.5043+1.142s0.026486

0.7082

Hydrogen 1
11.996s3.2658−21.778s2.0137+19.827s1.9881+3.6513s1.2145+1.6149s0.010517

0.5122

Ammonia 1
6.9802s2.2789+10.622s2.2469−1.8461s2.2268−1.0216s1.915+1.0213s0.00045903

0.6103

Ethanol 1
−5.1094s4.2713+321.5s2.6011−311.47s2.5897+5.5133s1.687+1.0893s0.0057901

0.6761

Hydrogen Sulfide 1
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Fig. 11: Hydrogen concentration (ppm).

(mean absolute percentage error), RMSE (root mean square
error) and R2 (the coefficient of determination), defined re-
spectively as follows:

MAPE =
100

n

n∑
j=1

(
|aj − bj |
|aj |

)
, (11)
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Fig. 12: Ammonia concentration (ppm).

RMSE =

√√√√ 1

n

n∑
j=1

(aj − bj)2, (12)

R2 = 1−

(∑n
j=1(bj − aj)2∑n

j=1(bj)
2

)
, (13)

where aj and bj are the forecast and observed values, and n
is the number of samples. MAPE and RMSE are applied as
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Fig. 13: Ethanol concentration (ppm).
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Fig. 14: Hydrogen sulfide concentration (ppm).
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Fig. 15: Toluene concentration (ppm).
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Fig. 16: Temperature (◦C).

performance criteria of the prediction model to quantify the
errors of forecasting values. The coefficient of determination
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Fig. 17: Humidity (%RH).
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Fig. 18: Carbon monoxide concentration (ppm).
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Fig. 19: Oxygen concentration (%).

R2 is used to assess the strength of the relationship of the
estimation to the accurate observation. Table IV provides
descriptive statistics of EKF and EFKF prediction data on the
23rd and 24th of August, 2016. It justifies for the improvement
of EFKF over EKF in precise estimation of indoor air quality.
This is accounted by the merit of the Matérn covariance
function associated with the Kalman filters used to allow
for better correlation at a suitable length scale between the

waspmotes and a location inside the building, here λ =

√
(5)

l
and l = 5m, the distance from the corridor (waspmote) to the
lab room (incident location, in this study). As can be seen,
the RMSE value is higher in the case of CO2 concentration as
compared to other IAQ levels. This is explained by a biological
factor whereby human beings also produce CO2 due to the
natural process of respiration with a wide range of permissible
limits (400-1000 ppm).
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TABLE IV: PERFORMANCE STATISTICS OF EKF AND EFKF IN DATASETS OF DIFFERENT DAYS

Pollutant 8/23/2016 8/24/2016
EKF EFKF EKF EFKF

MAPE RMSE R2 MAPE RMSE R2 MAPE RMSE R2 MAPE RMSE R2

Carbon Dioxide 2.94% 1.0498 0.9187 2.45% 0.8729 0.9437 3.31% 2.5957 0.8476 2.69% 2.2503 0.8982
Carbon Monoxide 0.71% 0.0076 0.9177 0.70% 0.0073 0.9213 0.94% 0.0078 0.7998 0.88% 0.0078 0.8202
Oxygen 0.70% 0.0818 0.8285 0.59% 0.0692 0.8778 0.52% 0.0631 0.8978 0.45% 0.0551 0.9229
Hydrogen 3.40% 1.7091 0.9631 2.42% 1.3752 0.9761 3.77% 1.8922 0.9892 2.56% 1.4871 0.9928
Ammonia 2.20% 0.2681 0.9918 1.94% 0.2166 0.9946 3.90% 0.4113 0.9948 3.28% 0.3394 0.9964
Ethanol 1.48% 0.0597 0.9942 1.34% 0.0491 0.9960 2.41% 0.0911 0.9937 2.09% 0.0779 0.9954
Hydrogen Sulfide 1.08% 0.0059 0.9946 1.01% 0.0051 0.9959 1.68% 0.0092 0.9918 1.51% 0.0082 0.9934
Toluene 1.18% 0.0065 0.9946 1.10% 0.0055 0.9961 1.86% 0.0100 0.9925 1.65% 0.0089 0.9941
Temperature 0.65% 0.1840 0.9613 0.56% 0.1579 0.9717 0.82% 0.2349 0.9852 0.71% 0.1983 0.9896
Humidity 0.54% 0.2593 0.9987 0.46% 0.2176 0.9992 0.8% 0.4416 0.9984 0.67% 0.3757 0.9988

V. INDOOR AIR QUALITY ASSESSMENT

The above findings indicate the importance of accurate,
comprehensive and continuous monitoring with a prediction
system for the IAQ, taking into account also human comfort.
Such a system should be integrated into a building manage-
ment for better monitoring the IAQ and, more importantly,
prevention of any incidents via, e.g., ventilation control.

A. Time Series Plot of IAQI and Humidex Using Real Data
and Estimated Data

To consider the overall indoor air quality index for calcu-
lation of the IAQI, Eqn. (1) is used to interpolate data of
all pollutants except the oxygen level which is obtained from
Eqn. (2). Fig. 20 shows the time series plot of IAQI using
real data from waspmotes and processed data from EFKF,
where it can be seen that the value of IAQI is rather high
and appears to be very unhealthy on the 24th August, 2016,
particullarly affecting a sensitive person. This could explain
for the student’s incident but does not account for the effect
of humidity.
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Fig. 20: IAQI plot using real data and EFKF data.
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Fig. 21: Overall index for indoor air using real data and EFKF
data .

B. Time Series Plot of EIAQI Using Real Data and Estimated
Data

To incorporate also humidity, the enhanced indoor air qual-
ity index is calculated by using Eqn. 4. For a better illustration
of the improvement obtained from the use of EFKF, the EIAQI
plot is shown in Fig. 21 for both real data and estimated data
according to weightage (Wh = 1.0 and WIAQI = 1.0). Using
the same colour codes for health effects presented in Fig. 20,
it can be seen that with EFKF, the obtained EIAQI clearly
indicates an increase in the indoor air quality index within a
short period of time. This is reflected in the soon recovery of
the sensitive student whereas the majority of the class could
tolerate. Although the proposed EIAQI with EFKF estimation
is not much different from with real data from waspmotes
for most of the time, during the episode day, the enhanced
indoor air quality index appears to be more accurately reflect
the indoor air quality with EFKF data owing to the advantages
in handling missing data as well as nonlinear and uncertain
spatio-temporal distributions.

Figs. 22-23 show time series plot of oxygen concentration
from 23rd to 25th August, 2015 and 23rd to 25th August, 2017
respectively. Similarly carbon monoxide time series are plotted
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in figs. 24-25 respectively for 2015 and 2017. These figures
show EFKF estimation is more accurate than EKF estimation.
The concentration level of carbon monoxide level is lower in
year 2015 and 2017 than 2016.
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Fig. 22: Oxygen concentration (%).
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Fig. 23: Oxygen concentration (%).
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Fig. 24: Carbon monoxide concentration (ppm).

VI. CONCLUSION

In this paper, we have proposed an effective approach to
improve accuracy in predicting indoor air pollutant profiles
taking into account their nonlinear and stochastic nature, along
with a novel index for indoor air quality considering also hu-
midity. Here, an extended Kalman filter with a fractional order
is developed for the indoor air quality model, in dealing with
high nonlinearity and missing or inaccurate data collected from
the building’s sensors. To verify the performance imrovement,
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Fig. 25: Carbon monoxide concentration (ppm).

both EKF and EFKF algorithms have been implemented and
compared. For illustration, an incident of a student with some
slight fainting, is used as a case study to not only evaluate the
effectiveness of the proposed estimation framework but also
to emphasize the need of integrating accurate IAQ monitoring
and prediction into the overall building management system
to better maintain the inhabitants’ wellbeing. In addition, a
combination of IAQI and humidex is proposed to address the
effect of humidity on indoor air quality.
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