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1. Introduction

How to express and reason with qualitative spatial relations has been extensively studied
in the recent decades by researchers in pattern recognition (Peuquet and Zhan 1987), nat-
ural language understanding (Davis 2013), robotics (Escrig and Toledo 1998), geograph-
ical information science (Egenhofer and Franzosa 1991, Frank 1996), spatial databases
(Schneider et al. 2012), and artificial intelligence (Randell et al. 1992). A significant
number of different qualitative relation models have been proposed, see e.g. (Frank 1996,
Goyal and Egenhofer 1997, Guesgen 1989, Ligozat 1998, Peuquet and Zhan 1987, Ski-
adopoulos et al. 2007, Frank 2010) for directional models and (Randell et al. 1992, Egen-
hofer and Franzosa 1991, Li 2006, Nedas et al. 2007, Egenhofer and Franzosa 2010) for
topological models. Among the directional models, the direction relation matrix (DRM)
model proposed in (Goyal and Egenhofer 1997) is a very simple model for represent-
ing cardinal directions between extended spatial objects and has attracted interests of
researchers from spatial databases, geographical information science, and artificial intel-
ligence (see e.g. (Cicerone and di Felice 2004, Goyal and Egenhofer 2001, Liu and Li
2011, Liu et al. 2009, 2010, Navarrete et al. 2007, Skiadopoulos et al. 2005, Skiadopoulos
and Koubarakis 2004, 2005, Zhang et al. 2008)).

Though simple for computing, the DRM model is very expressive. For two regions a, b,
it represents the cardinal direction of a to b as a nonempty subset of

CD = {NW,N,NE,W,O,E, SW,S, SE}, (1)

whereO stands for origin, andNW (northwest),N (north),NE (northeast),W (west), E
(east), SW (southwest), S (south), SE (southeast) are the eight basic cardinal directions.
Thus it defines altogether 511 direction relations between complex regions.

Figure 1. Two instances of strictly north cap of defined in (Schneider et al. 2012)

Unlike many other relation models, DRM is not closed under converse (see Remark 2).
This implies in particular that, for two regions a and b, the DRM of b to a cannot be
uniquely determined by that of a to b. As a consequence, DRM does not satisfy the
converseness crieterion of Schneider et al. (2012) either, which requires, for example, a
is related by {N,NE,E} to b if, and only if, b is related by {S, SW,W} to a. Schneider
et al. (2012) regard this violation as a serious problem and propose instead the objects
interaction matrix (OIM) model for modelling cardinal directions between complex re-
gions. Just like DRM, the OIM model is also a tiling-based model that consists of two
phases: the tiling phase and the interpretation phase. Given two regions a and b, the
tiling phase computes a matrix, denoted by OIM(a, b), as the low-level representation for
the cardinal direction of a to b. The interpretation phase then interprets this matrix as
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a set of basic cardinal directions in CD, say {N,NE}. Schneider et al. (2012) further
demonstrate how to define predicates such as surrounds and strictly north cap of in
spatial databases based on the interpretation. Several of these predicates are, however,
counterintuitive. For example, though the OIM model can express true statements such
as “Rome surrounds The Vatican,”1 it also supports false statements like “The Vati-
can surrounds Rome.” This is because the surrounds relation as defined in (Schneider
et al. 2012) is a symmetrical relation. As another example, the OIM model also regards
both configurations in Figure 1 as instances of the strictly north cap of relation. We
note that these configurations are distinguishable by the DRM model. This hence puts
doubts on the rationality of the OIM interpretation and the necessity of the converseness
requirement for direction relation models for regions.

Figure 2. Two pairs of configurations that are distinguishable in the OIM model but indistin-
guishable in the DRM model

It was claimed in (Schneider et al. 2012) that the OIM model is “a novel concept,”
“rather differs from the direction relation matrix (DRM) model and is thus not its exten-
sion” and “provides a much more fine-grained and complete identification of the possible
valid spatial configurations between two simple regions than the DRM model.” In this
paper, however, we show that the two models are not so different.

Since DRM is not closed under converse, it is necessary to represent the cardinal
direction of two regions a, b by both the DRM of a to b and that of b to a. We say a pair
of DRMs (M1,M2) is consistent if there are two regions a, b such that M1 is the DRM of
a to b and M2 is the DRM of b to a (Cicerone and di Felice 2004). Each consistent pair
of DRMs defines a binary relation, which is called a bi-DRM relation (cf. Definition 4)
in this paper. Under this natural assumption, we show that OIM is not so different from
DRM but actually almost the same. In fact, we show that (i) every OIM relation is

1We assume that, as a country, The Vatican is not contained in Rome, the capital of Italy.
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contained in a unique bi-DRM relation (cf. Proposition 3); (ii) except a few cases (104
out of 1677, or 6.2%), every relation is identical to a bi-DRM relation (cf. Proposition 4).

Figure 2 gives two pairs of configurations which have the same bi-DRM relations but
different OIM relations. Consider the top two configurations. The DRM model cannot
distinguish configuration {a1, b1} from {a2, b2}, but the OIM model can (see Example 3).
The two configurations differ only in that, along the y-axis, the minimal bounding rect-
angle (mbr, cf. Section 2 and Figure 3 for definition) of b1 meets that of a1, but there is
a gap between the mbr of b2 and that of a2. Similar interpretation applies to the other
two configurations in Figure 2. We will show in Proposition 4 that this actually holds for
every OIM relation that is not identical to a bi-DRM relation.

Exploiting the similarity between the two models, we further show that the reasoning
mechanisms developed for DRM (Liu and Li 2011, Liu et al. 2010) can also be trans-
planted to OIM and similar computational complexity results are obtained.

The remainder of this paper is organised as follows. Section 2 provides a uniform defini-
tion for objects interaction matrices and direction relation matrices. Section 3 establishes
the connection between OIMs and DRMs. In Section 4 we compare the expressivity of the
OIM model and the DRM model in both the tiling phase and the interpretation phase.
In Section 5 we investigate the computational property of reasoning with the OIM model
and Section 6 concludes the paper.

2. Definitions of DRM and OIM

This section introduces the direction relation matrix (DRM) model (Goyal and Egen-
hofer 1997) and the objects interaction matrix (OIM) model (Schneider et al. 2012) in
a uniform framework. These models are designed for modelling the cardinal direction
between regions in the plane.

A region in the plane is a nonempty, bounded, and regular closed set of the two
dimensional Cartesian plane R2. For a region a, the minimal bounding rectangle (mbr)
of a is defined as M(a) = Ix(a) × Iy(a), where Ix(a) = [a−x , a

+
x ] (Iy(a) = [a−y , a

+
y ],

resp.) is the minimal closed interval that contains the x-projection (y-projection, resp.)
of region a (see Figure 3). Note that when a is connected, Ix(a) and Iy(a) are the x- and
y-projections of a.

The OIM model and the DRM model can be defined via the notion of tiles and grid.
Let L = Lx ∪ Ly be a set of lines parallel to the coordinate axes, where

Lx = {x = x1, ..., x = xn} (x1 < x2 < ... < xn)

Ly = {y = y1, ..., y = ym} (y1 < y2 < ... < ym).

The grid generated by L is defined as

GL = {(xi, xi+1)× (yj , yj+1) : 0 ≤ i ≤ n, 0 ≤ j ≤ m},

where x0 = y0 = −∞ and xn+1 = ym+1 = +∞. Each element

tij = (xi, xi+1)× (yj , yj+1) (2)

in the grid GL is called a tile. The size of GL is the number of tiles contained in GL.
Here it is (m+ 1)× (n+ 1).
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(a) (b)

(c) (d)

Figure 3. Illustrations of (a) regions a and b; (b)M(a) andM(b); (c) grid Gb; and (d) grid Ga,b.

Given two regions a and b, three grids can be introduced via the mbrs of a and b (cf.
Figure 3). We write La for the set of lines {y = a−y , y = a+

y , x = a−x , x = a+
x } and Lb

similarly. Let Ga and Gb be the grids generated by La and Lb respectively, and let Ga,b

be the grid generated by La∪Lb. Note that the sizes of Ga and Gb are both 3×3. Because
lines in La and Lb may coincide, the size of Ga,b could be any s× t for 3 ≤ s, t ≤ 5.

We now define the occupancy matrix of a region a w.r.t. a grid G, which will be used
later to derive the OIM and the DRM of a to b.

Definition 1. (occupancy matrix) Let G be a grid with size (m + 1) × (n + 1). The
occupancy matrix of a region a w.r.t. G, denoted by OMG(a), is defined as the (m +
1) × (n + 1) matrix (pij), where pij = 1 if a ∩ tij 6= ∅ and pij = 0 otherwise, where
tij = (xi, xi+1)× (yi, yi+1) is the (i, j)-th tile in grid G.

Remark 1. Note that each occupancy matrix has the same size as the underlying grid.
Intuitively, the occupancy matrix records those tiles in the grid that intersect the region.
Given the occupancy matrix OMG(a) = (pij) of a region a with respect to a gridG = (tij),
we regard the topological closure of

⋃
{tij ∈ G : pij = 1} as an (upper) approximation of

region a. In this sense, a grid provides a granularity to approximate a region.

For two regions a, b, we next introduce the direction relation matrix and the objects
interaction matrix of a to b by using their occupancy matrices.

Definition 2. (direction relation matrix (Goyal and Egenhofer 1997)) Given two regions
a and b, the direction relation matrix of the primary object a to the reference object b
is defined as DRM(a, b) = OMGb(a).

Clearly, the shape of the reference object (here b) does not affect the direction relation
matrix. In particular, DRM(a, b) = DRM(a,M(b)). By exchanging the role of a and b,
we have that DRM(b, a) = OMGa(b).
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Definition 3. (objects interaction matrix (Schneider et al. 2012)) Suppose a and b are
two regions, and Ga,b is the grid generated by La∪Lb as above with size (m+1)×(n+1).
Define the raw objects interaction matrix of a to b as the (m+ 1)× (n+ 1) matrix

rOIM(a, b) = OMGa,b(a) + 2× OMGa,b(b). (3)

The objects interaction matrix of a to b, written as OIM(a, b), is the (m − 1) × (n − 1)
matrix obtained by removing the first and the last columns and rows from rOIM(a, b).

It is straightforward to see that each OIM has size s× t, where 1 ≤ s, t ≤ 3. Moreover,
let OIM(a, b) = (pij)s×t. Then we can prove that

pij =


0, if a ∩ tij = ∅, b ∩ tij = ∅;
1, if a ∩ tij 6= ∅, b ∩ tij = ∅;
2, if a ∩ tij = ∅, b ∩ tij 6= ∅;
3, if a ∩ tij 6= ∅, b ∩ tij 6= ∅,

where tij is the (i, j)-th tile in the grid Ga,b. This shows that the above definition is
equivalent to the original one in (Schneider et al. 2012).

Example 1. Suppose a, b are regions as shown in Figure 3(a). Figure 3(b) shows the
mbrs of a, b, and Figure 3(c) and (d) show grid Gb and grid Ga,b respectively. Matrices
DRM(a, b) = OMGb(a), OMGa,b(a), OMGa,b(b), rOIM(a, b) and OIM(a, b) are shown below.

DRM(a, b) DRM(b, a) OMGa,b(a) OMGa,b(b) rOIM(a, b) OIM(a, b)1 1 0
1 1 0
0 0 0

 0 0 0
0 1 1
0 1 1




0 0 0 0 0
0 1 1 0 0
0 1 1 0 0
0 0 0 0 0
0 0 0 0 0




0 0 0 0 0
0 0 0 0 0
0 0 1 1 0
0 0 1 1 0
0 0 0 0 0




0 0 0 0 0
0 1 1 0 0
0 1 3 2 0
0 0 2 2 0
0 0 0 0 0


1 1 0

1 3 2
0 2 2


It is clear that the first and the last columns and rows of rOIM(a, b) are all zeros.

Therefore, OIM(a, b) and rOIM(a, b) can be trivially converted from one to the other.
Furthermore, the two occupancy matrices OMGa,b(a) and OMGa,b(b) can be obtained
from OIM(a, b).

Lemma 1. Suppose a, b are two regions. Let Ga,b be the grid generated by La∪Lb. Then
the objects interaction matrix OIM(a, b) can be computed from the two occupancy matrices
OMGa,b(a) and OMGa,b(b) in constant time, and vice versa.

Proof : OMGa,b(a) is obtained from rOIM(a, b) by replacing each occurrence of 2 with 0
and each occurrence of 3 with 1 and leaving the other entries unchanged; and OMGa,b(b)
is obtained from rOIM(a, b) by replacing each occurrence of 1 with 0 and each occurrence
of 3 with 1 and leaving the other entries unchanged. The other direction is clear from
the definition of OIM. �

In this paper, we regard each DRM M and each OIM N as a binary relation between
regions, which are defined as

δM = {(a, b) : DRM(a, b) = M}; (4)

ρN = {(a, b) : OIM(a, b) = N}. (5)
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For each DRM M , we call δM a basic DRM relation. It is easy to see that the set of
basic DRM relations are jointly exhaustive and pairwise disjoint (JEPD), i.e. for any two
regions a, b there exists a unique DRM M such that DRM(a, b) = M . Similar notation
and conclusion applies to basic OIM relations.

2.1. Consistent pairs of DRMs

Note that OIM(b, a) can be obtained from OIM(a, b) by replacing each occurrence of 1 by
2 and each occurrence of 2 by 1. This implies in particular that the OIM model meets the
converseness requirement (Schneider et al. 2012). The following example, however, shows
that the DRM model does not enjoy this property. That is, in general, the direction
relation matrix of b to a cannot be uniquely determined by that of a to b (see also
(Cicerone and di Felice 2004, Liu et al. 2010)).

Figure 4. Illustrations of regions a, b, c and d

Example 2. Suppose regions a, b, c and d are as shown in Figure 4. We have

DRM(a, b) = DRM(c, d) =

1 1 0
1 1 0
0 0 0

 ,

while

DRM(b, a) =

0 0 0
0 1 1
0 1 1

 6=
0 0 0

0 0 1
0 1 1

 = DRM(d, c).

For the object interaction matrices, we have

OIM(a, b) =

1 1 0
1 3 2
0 2 2

 6=
1 1 0

1 1 2
0 2 2

 = OIM(c, d).

The above example illustrates that the cardinal direction between two regions a, b is
more precisely expressed by the pair (DRM(a, b),DRM(b, a)) than by DRM(a, b) alone.
This fact was first noticed by Cicerone and di Felice (2004), where they also call such
a pair of DRMs as a consistent pair. In general, we say a pair of DRMs (M1,M2) is
consistent if there exist two regions a, b such that M1 = DRM(a, b) and M2 = DRM(b, a).
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By the definition of consistent DRM pairs, we have

Proposition 1. A pair of DRMs (M1,M2) is consistent if and only if δM1
∩ δ−1

M2
is

nonempty.

For convenience, we introduce the following notion.

Definition 4. A binary relation R of regions is called a bi-DRM relation if there exists
a consistent pair (M1,M2) of DRMs such that R = δM1

∩ δ−1
M2

, i.e.

R = {(a, b) : DRM(a, b) = M1,DRM(b, a) = M2}.

It is clear that each bi-DRM relation corresponds to a unique consistent pair of DRMs,
and vice versa. Moreover, the set of bi-DRM relations is also jointly exhaustive and
pairwise disjoint. Since there are 1621 consistent pairs of DRMs (Liu et al. 2010), we
have in total 1621 bi-DRM relations.

Remark 2. The (set-theoretical) converse of a binary relation R is defined as

R−1 = {(b, a) : (a, b) ∈ R}. (6)

The DRM model is not closed under converses, in the sense that there exists a DRM M
such that δ−1

M cannot be represented as the union of several basic DRM relations. For
example, let

M =

0 0 0
1 0 0
0 0 0

 , N1 =

0 0 0
0 0 1
0 0 0

 , N2 =

0 0 0
0 0 1
0 0 1

 , N1 =

0 0 1
0 0 1
0 0 0

 , N1 =

0 0 1
0 0 1
0 0 1

 .

Then (M,Ni) is a consistent pair for 1 ≤ i ≤ 4, and there is no other DRM N ′ such that
(M,N ′) is a consistent pair. It is clear that δ−1

M ⊆
⋃4
i=1 δNi

. Let a = [0, 1] × [0, 3] and
b = [2, 3]× [1, 2]. Then we have DRM(b, a) = N1, but DRM(a, b) 6= M , i.e. (b, a) ∈ δN1

⊆⋃4
i=1 δNi

but (b, a) 6∈ δ−1
M . This shows δ−1

M 6=
⋃4
i=1 δNi

and, hence, δ−1
M is not representable

in DRM.

3. Connection between OIMs and DRMs

In this section we establish the connection between OIMs and DRMs. Our results show
that, for two regions a, b, the DRM of a to b and that of b to a can be computed from
the OIM of a to b; and the OIM of a to b can be computed from the DRM of a to b, the
DRM of b to a, and the rectangle relation (see below for definition) of M(a) and M(b).

To formalise our main result, we briefly review the Interval Algebra (Allen 1983)
and the Rectangle Algebra (Guesgen 1989, Balbiani et al. 1999). The Interval Alge-
bra (IA) distinguishes 13 basic relations between closed intervals (see Table 1, where
x = [x−, x+], y = [y−, y+] are two intervals).

The Rectangle Algebra (RA) can be viewed as the product of two IAs. For two rectan-
gles a = [a−x , a

+
x ]×[a−y , a

+
y ] and b = [b−x , b

+
x ]×[b−y , b

+
y ] with edges parallel to the coordinate

axes, the RA relation between a and b is defined as α ⊗ β, where α and β are the IA
relation between [a−x , a

+
x ] and [b−x , b

+
x ] and, respectively, the IA relation between [a−y , a

+
y ]

and [b−y , b
+
y ]. RA relations can also be generalised from rectangles to regions via their

mbrs.
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Table 1. Basic IA relations and their converses, where x = [x−, x+], y = [y−, y+] are two intervals.

Relation Symbol Converse Meaning
before b bi x− < x+ < y− < y+

meets m mi x− < x+ = y− < y+

overlaps o oi x− < y− < x+ < y+

starts s si x− = y− < x+ < y+

during d di y− < x− < x+ < y+

finishes f fi y− < x− < x+ = y+

equals eq eq x− = y− < x+ = y+

Definition 5. For two regions a, b, the RA relation of a to b, written RA(a, b), is the RA
relation of M(a) to M(b).

Our main result is stated as follows.

Theorem 1. Suppose a, b are two regions. We can compute RA(a, b), DRM(a, b) and
DRM(b, a) from OIM(a, b), and vice versa.

3.1. Proof of Theorem 1

We first note that Theorem 1 is different from Lemma 1. In the latter we use the grid
Ga,b and compute OMGa,b(a) and OMGa,b(b) from OIM(a, b) and vice versa; while in
Theorem 1, we need to compute DRM(a, b) = OMGb(a) by using grid Gb and compute
DRM(b, a) = OMGa(b) by using grid Ga. Recall that grid Ga,b is obtained by overlaying
grid Ga on grid Gb. We need to establish the connection of the two occupancy matrices
of a region w.r.t. two different grids.

Suppose G is a grid with size (m+ 1)× (n+ 1) generated by L, and G′ is a grid with
size (m′ + 1) × (n′ + 1) generated by L′ ⊂ L. In this case we say G is finer than G′, or
G′ is coarser than G. Note that m′ ≤ m and n′ ≤ n, and each tile in G is contained in a
tile in G′. For n ≥ 0, we write [n] for the set {0, 1, ..., n}. Define the coarse function

C : [m]× [n]→ [m′]× [n′] (7)

from G to G′ by C(i, j) = (k, l) if tile tij ∈ G is contained in tile t′kl ∈ G′.

Lemma 2. Suppose G is a grid generated by L, and G′ a grid generated by L′ ⊂ L, and
C the coarse function from G to G′. For a region a, the occupancy matrix OMG′(a) can
be uniquely determined if OMG(a) is given.

Proof : Suppose G = {tij}, G′ = {t′kl}. Assume furthermore that OMG(a) = (pij) and
OMG′(a) = (p′kl). Then p′kl = 1 if and only if 1 ∈ {pij : C(i, j) = (k, l)}. �

Lemma 3. Suppose a and b are two regions. Given the RA relation of a to b, we can
uniquely determine the occupancy matrix OMGa,b(M(a)) and the coarse function from
Ga,b to Gb.

Proof : This is because the RA relation RA(a, b) completely describes the relations of
lines in La and lines in Lb, which further determine OMGa,b(M(a)) and the coarse func-
tion. The following details can be obtained by case analysis.

Suppose RA(a, b) = α ⊗ β. Then the occupancy matrix OMGa,b(M(a)) is identical
to V (β)TV (α), where V is the function from basic IA relations to vectors specified in
Table 2.
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Table 2. Functions V and f in the proof of Lemma 3.
α b m o s d f eq

V (α) (0, 1, 0, 0, 0) (0, 1, 0, 0) (0, 1, 1, 0, 0) (0, 1, 0, 0) (0, 0, 1, 0, 0) (0, 0, 1, 0) (0, 1, 0)
fα(0), ..., fα(mα) 0, 0, 0, 1, 2 0, 0, 1, 2 0, 0, 1, 1, 2 0, 1, 1, 2 0, 1, 1, 1, 2 0, 1, 1, 2 0, 1, 2

α bi mi oi si di fi
V (α) (0, 0, 0, 1, 0) (0, 0, 1, 0) (0, 0, 1, 1, 0) (0, 1, 1, 0) (0, 1, 1, 1, 0) (0, 1, 1, 0)

fα(0), ..., fα(mα) 0, 1, 2, 2, 2 0, 1, 2, 2 0, 1, 1, 2, 2 0, 1, 2, 2 0, 0, 1, 2, 2 0, 0, 1, 2

Suppose V (α) is a vector with mα entries. Then the coarse function Cα⊗β from Ga,b

to Gb can also be represented by the products of two functions fβ and fα (defined in
Table 2), i.e. Cα⊗β(i, j) = (fβ(i), fα(j)). Here for each basic IA relation α, fα (specified
in the above table) is a function with domain {0, 1, ...,mα} and range {0, 1, 2} (note that
the size of Gb is always 3× 3). �

In the following, we prove Theorem 1.
We first show that RA(a, b), DRM(a, b) and DRM(b, a) can be computed from OIM(a, b).

The following lemma shows that OIM(a, b) determines RA(a, b).

Lemma 4. Suppose a, b are two regions. Given OIM(a, b), we can compute RA(a, b) and
the coarse function C from Ga,b to Gb.

Proof : Suppose OIM(a, b) = (pij). Let

x1 = min{i : (∃j) pij = 1 or 3},

x2 = max{i : (∃j) pij = 1 or 3},

x3 = min{i : (∃j) pij = 2 or 3},

x4 = max{i : (∃j) pij = 2 or 3}.

It is straightforward to prove that the IA relation between Ix(a) and Ix(b) is the same as
that between [x1, x2 + 1] and [x3, x4 + 1]. Similarly we compute the IA relation between
Iy(a) and Iy(b), and thus the RA relation RA(a, b). The remaining part follows directly
from Lemma 3. �

The following lemma shows that we can compute the DRMs from the OIM.

Lemma 5. Suppose a, b are two regions. Then we can compute DRM(a, b) and DRM(b, a)
from OIM(a, b).

Proof : Given OIM(a, b), we have OMGa,b(a) by Lemma 1 and the coarse function C from
Ga,b to Gb by Lemma 4. By Lemma 2, we can compute OMGb(a), which is DRM(a, b) by
definition. Since OIM(b, a) can be obtained from OIM(a, b), we also have DRM(b, a) in
the same way.

�

These two lemmas show that RA(a, b), DRM(a, b) and DRM(b, a) can be obtained
from OIM(a, b). To prove that RA(a, b), DRM(a, b) and DRM(b, a) are sufficient to de-
cide OIM(a, b), we first show that RA(a, b) decides OMGa,b(M(a)), and then show that
OMGa,b(a) can be computed from OMGa,b(M(a)) and DRM(a, b) = OMGb(a). Note that
OMGa,b(a) and OMGa,b(M(a)) have the same size, and each entry of OMGa,b(a) is less
than or equal to the corresponding entry of OMGa,b(M(a)).

Lemma 6. Suppose a is a region and G0 a grid generated by L0. Let G be the finer grid
obtained by adding La (the bounding lines of a) to L0. For a tile t ∈ G, let t0 be the tile
in G0 that contains t. Then t ∩ a 6= ∅ iff t0 ∩ a 6= ∅ and t ∩M(a) 6= ∅.
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Proof : The necessity is clear because t ⊆ t0 and a ⊆ M(a). For the sufficiency, we
observe that each tile in G is contained in a unique tile in G0 and a unique tile in grid
Ga (the grid generated by La), and is in fact their intersection. Moreover, because t is
a tile in G and M(a) is a tile in Ga, we have t ∩M(a) 6= ∅ iff t ⊆ M(a). Since t is
contained in t0, we have t = t0 ∩M(a). Suppose t0 ∩ a 6= ∅ and t∩M(a) 6= ∅. Then we
have t ⊆M(a) and hence t = t0 ∩M(a). From t ∩ a = t0 ∩M(a) ∩ a = t0 ∩ a, we know
t ∩ a is nonempty because t0 ∩ a is nonempty.

�

Lemma 7. Suppose a, b are two regions. The occupancy matrix OMGa,b(a) can be
uniquely determined if RA(a, b) and DRM(a, b) are given.

Proof : By Lemma 3, from RA(a, b) we have OMGa,b(M(a)) as well as the coarse function
C from grid Ga,b = {tij} to grid Gb = {t′kl}. Let tij be a tile in grid Ga,b, and pij the
corresponding entry in OMGa,b(a). Note that tij is contained by the tile t′C(i,j) ∈ Gb.

Let p̄ij be the entry in OMGa,b(M(a)) corresponding to tile tij (in grid Ga,b), and p′C(i,j)

be the entry in DRM(a, b) corresponding to tile t′C(i,j) (in grid Gb). Then we have by

Lemma 6 that pij = 1 iff tij ∩ a 6= ∅ iff t′C(i,j) ∩ a 6= ∅ and tij ∩M(a) 6= ∅ iff p′C(i,j) = 1

and p̄ij = 1. Therefore OMGa,b(a) can be uniquely determined by RA(a, b) and DRM(a, b).
�

Lemma 8. Suppose a, b are two regions. The objects interaction matrix OIM(a, b) can
be uniquely determined if DRM(a, b), DRM(b, a) and RA(a, b) are given.

Proof : By Lemma 7, we compute OMGa,b(a) from RA(a, b) and DRM(a, b). As RA(b, a)
is the converse of RA(a, b), we also have OMGa,b(b) from RA(a, b) and DRM(b, a). Then
OIM(a, b) can be computed by Lemma 1.

�

Theorem 1 then follows directly from the above lemmas. We note that, from the proofs
above, we can easily design algorithms with constant complexity that transform between
(i) OIM(a, b) and (ii) RA(a, b), DRM(a, b), DRM(b, a). In the following subsection, we give
a more intuitive method for computing DRM(a, b) and DRM(b, a) from OIM(a, b).

3.2. Computing DRMs from OIM

We note that, for regions a, b shown in Figure 3(a), we have

OIM(a, b) = DRM(a, b) + 2× DRM(b, a).

In fact, this holds for all 3× 3 OIMs. A more general result is given below.
Suppose a, b are two regions. Let M be OIM(a, b), and M∗ the 3× 3 matrix obtained

by properly inserting rows and/or columns of zeros (see below). We show

M∗ = DRM(a, b) + 2× DRM(b, a). (8)

Suppose M is of size m×n. There are three cases concerning the rows r1, ..., rm of M ,
where ri (1 ≤ i ≤ m) is the i-th row of M :

(1) m = 3.
(2) m = 2, there are three exhaustive and disjoint subcases (Schneider et al. 2012,

Lemma 4.10):
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(2a) 3 ∈ r1, or {1, 2} ⊆ r1;
(2b) 3 ∈ r2, or {1, 2} ⊆ r2;
(2c) r1 ⊆ {0, 1} and r2 ⊆ {0, 2}; or r1 ⊆ {0, 2} and r2 ⊆ {0, 1};

(3) m = 1.

For each of the above cases, we assign a 0-1 matrix UM as below.

Case of M (1) (2a) (2b) (2c) (3)

UM

1 0 0
0 1 0
0 0 1

 0 0
1 0
0 1

 1 0
0 1
0 0

 1 0
0 0
0 1

 0
1
0


Note that UM is a matrix with size 3 ×m, and UMM , the matrix product of UM and
M , is a matrix with size 3 × n. UMM is an extension of M by inserting 3 −m rows of
zeros. For example, in case (2c), UMM is the matrix obtained by inserting a row of zeros
in the middle of M .

Similar classification can be made considering the columns of M , and an n× 3 matrix
VM can be defined. Note that M∗ = UMMVM is a 3×3 matrix. The following proposition
has been automatically verified by a program. Here we only provide a proof sketch for
the 3× 3 case.

Proposition 2. Suppose a, b are two regions and M = OIM(a, b). Let UM and VM be
defined as above and M∗ = UMMVM . Then M∗ = DRM(a, b) + 2× DRM(b, a).

Proof : (Sketch) Take the case when M is a 3× 3 matrix as an example. In this special
case, UM and VM are the identity 3× 3 matrix, and thus M∗ = M . We need only show
OIM(a, b) = DRM(a, b) + 2× DRM(b, a). By the definition of OIM and Equation (3) (in
Definition 3), this holds if we can show that DRM(a, b) is the 3 × 3 matrix obtained by
removing the first and the last rows and columns from OMGa,b(a), and that DRM(b, a)
is the 3 × 3 matrix obtained by removing the first and the last rows and columns from
OMGa,b(b).

We need only consider DRM(a, b). The argument for DRM(b, a) is the same. Recall that
DRM(a, b) = OMGb(a). We need to show that OMGb(a) can be obtained by removing the
first and the last rows and columns from OMGa,b(a). Note that Ga,b is a 5× 5 grid. For
a tile t in Ga,b or in Gb, we have that t ∩ a 6= ∅ only if t ⊆ M(a). Therefore, if the
intersection of a and a tile t in Gb is nonempty then there exists a unique sub-tile t′ of t
in Ga,b such that a∩ t′ 6= ∅. It is then easy to see that OMGb(a) is obtained by removing
the first and the last rows and columns from OMGa,b(a). �

The above definition and proposition provide a more intuitive method for computing
DRM(a, b) and DRM(b, a) from OIM(a, b). Given M , we first compute UM , VM , and
UMMVM , then DRM(a, b) can be obtained from UMMVM by replacing each occurrence
of 2 with 0, and each occurrence of 3 with 1; and DRM(b, a) can be obtained from
UMMVM by replacing each occurrence of 1 with 0, and each occurrence of 2 or 3 with 1.

We note that when computing RA(a, b), DRM(a, b) and DRM(b, a) from OIM(a, b),
the RA relation and the two direction relation matrices depend only on the objects
interaction matrix OIM(a, b), and not on the particular choice of regions a, b. Similarly,
the objects interaction matrix OIM(a, b) depends only on the RA relation RA(a, b) and
the two direction relation matrices DRM(a, b) and DRM(b, a), and not on the particular
choice of regions a, b.

This observation implies the following result, where ρN and δMi
are binary relations

associated with OIM N and DRM Mi (i = 1, 2) (cf. (4) and (5)).

Proposition 3. Given an OIM N , there exist a unique DRM M1, a unique DRM M2,
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and a unique basic RA relation α⊗ β, such that

ρN ⊆ δM1
, ρN ⊆ δ−1

M2
, ρN ⊆ α⊗ β.

Moreover, in this case we have

ρN = δM1
∩ δ−1

M2
∩ α⊗ β. (9)

On the other hand, suppose M1,M2 are two DRMs and α⊗β a basic RA relation. Then
there exists a unique OIM N which satisfies (9) iff δM1

∩ δ−1
M2
∩ α⊗ β is nonempty.

Proof : Given an OIM N , by Theorem 1 and the observation above this proposition,
we know there exist a basic RA relation α ⊗ β and two DRMs M1,M2 that satisfies
(9). In particular, we have ρN ⊆ δM1

, ρN ⊆ δ−1
M2

, and ρN ⊆ α ⊗ β. The uniqueness of
M1,M2, α ⊗ β follows from the fact that both the set of basic RA relations and the set
of basic DRM relations are jointly exhaustive and pairwise disjoint.

On the other hand, suppose M1,M2 are two DRMs and α⊗β a basic RA relation such
that δM1

∩ δ−1
M2
∩ α ⊗ β is nonempty. Take an instance (a, b) from δM1

∩ δ−1
M2
∩ α ⊗ β. It

is easy to see that N = OIM(a, b) is the unique OIM which satisfies (9). �

Recall that relations with form δM1
∩δ−1

M2
are called bi-DRM relations in this paper (cf.

Definition 4). This result shows in particular that OIM relations are finer than bi-DRM
relations. In the next section, we will show that, except a few cases (104 out of 1677, or
6.2%), every OIM relation ρN is identical to a bi-DRM relation δM1

∩ δ−1
M2

.

4. Comparison between OIM and DRM

In the previous section we have seen from Theorem 1 that the OIM model is more
expressive than the DRM model in the tiling phase, even when we consider bi-DRM
relations (or, but equivalently, consistent pairs of DRM relations). In this section we
first make a more detailed comparison by counting the numbers of different scenarios
that can be distinguished in the tiling phase, and then compare the two models in the
interpretation phase.

4.1. Comparison in the tiling phase

Note that there are 1677 valid objects interaction matrices (Schneider et al. 2012), while
there are only 511 valid direction relation matrices. By Proposition 3, we know that each
OIM relation is contained in a unique DRM relation. This shows that the OIM model is
finer than the DRM model.

As said before, it will be more precise if we use bi-DRM relations to represent the
cardinal direction information between regions. There are 1621 bi-DRM relations (Liu
et al. 2010). By Proposition 3 again, each OIM relation ρN is contained in a unique bi-
DRM relation δM1

∩δ−1
M2

. It will be interesting to know when ρM is identical to a bi-DRM
relation. We consider the configurations shown in Figure 2.
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Example 3. For the two pairs of configurations shown in Figure 2, we have

DRM(a1, b1) = DRM(a2, b2) =

1 0 0
0 0 0
0 0 0

 and DRM(b1, a1) = DRM(b2, a2) =

0 0 0
0 0 0
0 0 1

 , but

OIM(a1, b1) =

(
1 0
0 2

)
6=

1 0
0 0
0 2

 = OIM(a2, b2); and

DRM(c1, d1) = DRM(c2, d2) =

0 1 0
0 0 0
0 0 0

 and DRM(d1, c1) = DRM(d2, c2) =

0 0 0
0 0 0
1 0 1

 , but

OIM(c1, d1) =

(
0 1 0
2 0 2

)
6=

0 1 0
0 0 0
2 0 2

 = OIM(d2, c2).

This shows that DRM cannot distinguish configuration {a1, b1} from {a2, b2} or {c1, d1}
from {c2, d2}, but OIM can. RA can also makes such distinctions. In fact, we have

RA(a1, b1) = m⊗mi 6= m⊗ bi = RA(a2, b2),

RA(c1, d1) = d⊗mi 6= d⊗ bi = RA(c2, d2).

The example shows that there are bi-DRM relations that contain more than one OIM
relations. Note that in these configurations the mbrs of two regions meet or disjoint along
the x- or y-axis. In the following we show that this is the only case where OIM relations
are finer than bi-DRM relations.

Proposition 4. Suppose N1, N2 are two OIMs, M1,M2 are two DRMs, and αi ⊗ βi
(i = 1, 2) are basic RA relations such that

ρN1
= δM1

∩ δ−1
M2
∩ α1 ⊗ β1;

ρN2
= δM1

∩ δ−1
M2
∩ α2 ⊗ β2.

Assume in addition that N1 6= N2. Then {α1, α2} = {b,m}, or {α1, α2} = {bi,mi}, or
{β1, β2} = {b,m}, or {β1, β2} = {bi,mi}. 1

Proof : Suppose ai, bi (i = 1, 2) are four regions such that OIM(ai, bi) = Ni for i =
1, 2, i.e. DRM(a1, b1) = DRM(a2, b2) = M1, DRM(b1, a1) = DRM(b2, a2) = M2, and
RA(ai, bi) = αi ⊗ βi for i = 1, 2. By (Liu et al. 2010, Proposition 4), we know if α1 6= α2

then {α1, α2} is either {b,m} or {bi,mi}; and if β1 6= β2 then {β1, β2} is either {b,m} or
{bi,mi}. �

By Proposition 3, we know each OIM relation can be uniquely represented as the
intersection of a DRM relation, the converse of a DRM relation, and a basic RA relation.
We use this result to analyse when a OIM relation is identical to a bi-DRM relation.

1Here we write for example {α1, α2} = {b,m} if α1 and α2 are two different basic IA relations in {b,m}.
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Proposition 5. Let N be an OIM. Suppose M1,M2 are the DRMs and α⊗ β the basic
RA relation such that ρN = δM1

∩ δ−1
M2
∩ α ⊗ β. If α or β is a relation in {b,m, bi,mi},

then δM1
∩ δ−1

M2
∩ α? ⊗ β? is nonempty for any α?, β? such that

α? = α, or {α, α?} = {b,m}, or {α, α?} = {bi,mi}; (10)

β? = β, or {β, β?} = {b,m}, or {β, β?} = {bi,mi}. (11)

If neither α nor β is a relation in {b,m, bi,mi}, then δM1
∩ δ−1

M2
∩ α? ⊗ β? is nonempty

iff α? = α and β? = β.

Proof : Suppose for instance α = m and α? = b, β? = β. We show δM1
∩ δ−1

M2
∩ α? ⊗ β?

is nonempty. Let a, b be two regions which satisfy ρN , i.e. (a, b) ∈ δM1
∩ δ−1

M2
and (a, b) ∈

α ⊗ β. If α = m, we can move a to left along the x-axis and obtain another region
a?. Note that there is a gap between a? and b along the x-axis. Note by definition of
direction relation matrix, DRM(a, b) = DRM(a?, b) and DRM(b, a) = DRM(b, a?), but
RA(a, b) = b ⊗ β. This shows that δM1

∩ δ−1
M2
∩ b ⊗ β is nonempty. The other cases are

entirely analogous (cf. the regions in Figure 2).
On the other hand, suppose neither α nor β is a relation in {b,m, bi,mi}, but δM1

∩
δ−1
M2
∩ α? ⊗ β? is nonempty. By Proposition 3, we know there exists a unique OIM N?

such that ρN? = δM1
∩ δ−1

M2
∩ α? ⊗ β?. Suppose N 6= N?. By Proposition 4, this implies

that {α, α?} = {b,m}, or {α, α?} = {bi,mi}, or {β, β?} = {b,m}, or {β, β?} = {bi,mi}.
By our assumption that neither α nor β is a relation in {b,m, bi,mi}, none of the above
four cases is possible. This is a contradiction. Therefore N = N? and, hence, α = α? and
β = β?. �

As a consequence, we have the following result.

Theorem 2. Let N be an OIM. Suppose M1,M2 are the DRMs and α⊗ β the basic IA
relation such that ρN = δM1

∩ δ−1
M2
∩ α ⊗ β. Then ρN = δM1

∩ δ−1
M2

if and only if neither
α nor β is a relation in {b,m, bi,mi}.

We next have a closer examination of those OIMs which are not bi-DRM relations.

Proposition 6. Suppose α, β are two basic IA relations such that either α or β is a
relation in {b,m, bi,mi}. If neither α nor β is a relation in {d, di}, then there exists a
unique OIM M such that α ⊗ β = ρM ; if either α or β (but not both) is a relation in
{d, di}, then there exist exactly two OIMs M1 and M2 such that α⊗ β = ρM1

∪ ρM2
.

For example, m⊗ s = ρN and m⊗ d = ρM1
∪ ρM2

, where

N =

(
0 2
1 2

)
, M1 =

0 2
1 2
0 2

 , M2 =

0 2
1 0
0 2

 . (12)

There are 36 basic RA relations α⊗β such that α ∈ {b,m, bi,mi}, but β 6∈ {b,m, bi,mi};
36 basic RA relations α ⊗ β such that α 6∈ {b,m, bi,mi}, but β ∈ {b,m, bi,mi}; and 16
basic RA relations α⊗ β such that both α and β are in {b,m, bi,mi}. In total, there are
88 basic RA relations α⊗β such that either α or β is in {b,m, bi,mi}. Among these, there
are 16 basic RA relations α⊗β such that either α or β is in {d, di}. By Proposition 6 we
know there are 88+16=104 OIMs whose corresponding basic RA relations have the form
α⊗ β, where either α or β is in {b,m, bi,mi}. By Proposition 5, these OIMs merge into
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36/2+36/2+16/4+16/2 = 48 bi-DRM relations. As a consequence, OIM has 104-48=56
(or 3.5%) more relations than bi-DRM.

Remark 3. When restricted to connected regions, there are 805 valid matrices in the
OIM model (Schneider et al. 2012), while there are 757 consistent pairs of DRMs (Liu
et al. 2010). Similar to Proposition 6, we can show that when either α or β is a relation
in {b,m, bi,mi} then there exists a unique OIM M such that α⊗β = ρM . This is because
matrices like M2 in (12) are not valid OIMs for connected regions. Since there are 88
valid such OIMs and only 40 valid bi-DRM relations, we have 88-40=48 (or 6.3%) more
OIM relations than bi-DRM relations for connected regions.

4.2. Comparison in the interpretation phase

Although convenient for computation, matrices are not a convenient and comprehensible
tool for our everyday communication. The DRM model and the OIM model adopt an
interpretation phase to handle this problem. The interpretation phase translates valid
matrices to sets of basic cardinal directions in

CD = {NW,N,NE,W,O,E, SW,S, SE}.

We next show that there is significant information loss during the interpretation phase
in the OIM model, while no information loss occurs in the DRM model.

To facilitate the presentation, we introduce the following notion.

Definition 6. (cardinal direction between points (Frank 1991, Ligozat 1998)) Let P =
(xP , yP ) and Q = (xQ, yQ) be two points in the plane. The cardinal direction of P to
Q, written dir(P,Q), is uniquely determined by the signs of xP − xQ and yP − yQ. The
correspondence is given below.(−,+) (0,+) (+,+)

(−, 0) (0, 0) (+, 0)
(−,−) (0,−) (+,−)

⇒
NW N NE

W O E
SW S SE

 (13)

For example, dir(P,Q) = NW if and only if xP − xQ < 0 and yP − yQ > 0.

Definition 7. Let M = (pij) be a m × n matrix. We assign for each entry (i, j) (1 ≤
i ≤ m, 1 ≤ j ≤ n) an integer point loc(i, j) = (j,−i) in the plane as its location.

We now give the interpretations of the two models.

Definition 8. (DRM interpretation) Suppose a and b are regions, and DRM(a, b) = (pij)
where 1 ≤ i, j ≤ 3. Then the cardinal direction relation of a to b in the DRM model is a
subset of CD defined as

dirDRM(a, b) = {dir(loc(i, j), loc(2, 2)) : pij = 1, 1 ≤ i, j ≤ 3}.

It is clear that the above interpretation is independent of the choice of a, b. It therefore
establishes a mapping from the set of DRMs to the set of nonempty subsets of CD. This
mapping is bijective and DRM(a, b) can be restored from dirDRM(a, b) directly. That is
to say, the DRM model loses no information in the interpretation phase.

The interpretation phase for the OIM model introduced in (Schneider et al. 2012) can
be viewed as a tile-wise synthesis. Intuitively, let a and b be two regions, and G be the
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grid generated by the edges of their mbrs. We say a has a cardinal direction, say NW, to
b, if there are two tiles t, t′ in G such that t∩ a 6= ∅, t′ ∩ b 6= ∅, and t is to the northwest
of t′. Formally, we have

Definition 9. (OIM interpretation (Schneider et al. 2012)) Suppose a, b are regions, and
OIM(a, b) = (pij) is a m× n matrix. The cardinal direction relation of a to b in the OIM
model, written dirOIM(a, b), is defined as

{dir(loc(i, j), loc(i′, j′)) : pij ∈ {1, 3}, pi′j′ ∈ {2, 3}, 1 ≤ i, i′ ≤ m, 1 ≤ j, j′ ≤ n}.

It is clear that the converseness criterion is satisfied in above interpretation (e.g., if
dirOIM(a, b) = {NW,N} then dirOIM(b, a) = {SE, S}).

As dirOIM(a, b) is a nonempty subset of CD (which has 9 elements), there are at most
29 − 1 = 511 different cardinal direction relations in the OIM model. Because there are
1677 valid OIMs, the interpretation for the OIM model is not injective. We here give an
example.

Example 4. Suppose a, b, c, d and r, s are regions (see Figure 5). Then we have

Figure 5. Illustrations of regions a, b, c, d, r and s

dirOIM(a, b) = dirOIM(c, d) = {NW,N,W,O},

dirOIM(r, s) = dirOIM(s, r) = {NW,N,NE,E, SE, S, SW,W},

but

OIM(a, b) =

1 1 0
1 3 2
0 2 2

 6=
0 1 0

1 3 2
0 2 2

 = OIM(c, d),

OIM(r, s) =

1 1 1
1 2 1
1 1 1

 6=
2 2 2

2 1 2
2 2 2

 = OIM(s, r).

That is to say, after interpretation, the cardinal direction relation of a to b is considered
the same as that of c to d in the OIM model, though their objects interaction matrices
are different. Meanwhile, in a ‘surrounds’ relation, the OIM model (after interpretation)
cannot distinguish which region is the surrounding region and which is the surrounded
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region. These configurations are, however, distinguishable in the DRM model even after
interpretation. Consider these configurations in the DRM model, we have

dirDRM(a, b) = {NW,N,W,O} 6= {N,W,O} = dirDRM(c, d),

dirDRM(r, s) = {NW,N,NE,E, SE, S, SW,W} 6= {O} = dirDRM(s, r).

Therefore, after interpretation, the OIM model fails to distinguish many configurations
that are distinguishable before. In particular, it loses the ability to distinguish between
the IA relations b and m of the projections of regions on x- and y-axes (cf. Proposition 4).
More importantly, the surrounds relation given above suggests that the OIM model may
lead to counterintuitive interpretations in some situations.

When considering consistent pairs of DRMs, the following theorem asserts that the
OIM model is less expressive than the DRM model after interpretation.

Theorem 3. Suppose a, b are two regions. Then dirOIM(a, b) can be derived from
dirDRM(a, b) and dirDRM(b, a), but not vice versa.

Proof : Recall that Theorem 1 has shown that OIM(a, b) can be derived from RA(a, b),
DRM(a, b) and DRM(b, a). Moreover, the RA relation is needed only when the x- or
y-projection of a and b related by IA relation b or m (or their converses). After interpre-
tation, however, the difference between b and m disappears. This implies that dirOIM(a, b)
can be uniquely determined by DRM(a, b) and DRM(b, a). Since the interpretation in the
DRM model is bijective, we know dirOIM(a, b) can be derived from dirDRM(a, b) and
dirDRM(b, a).

The opposite direction does not hold, because there are 1621 different consistent pairs
of direction relation matrices but only 511 different dirOIM(a, b). �

The reduced expressivity and the counterintuitive examples therefore put doubts on
the OIM interpretation given in (Schneider et al. 2012).

5. The consistency problem of the OIM model

The consistency problem is the central reasoning problem in qualitative spatial and
temporal reasoning (QSTR). Many other reasoning problems (such as the entailment
problem and the minimal labelling problem) may be reduced to the consistency problem
(see e.g. (Cohn and Renz 2008)). Generally speaking, the consistency problem in QSTR
is to decide whether a set of constraints on variables are satisfiable (i.e. whether the
variables can be realised by spatial or temporal entities such that all the constraints are
satisfied), where the constraints can only use relations from the relation model. We here
concentrate on the consistency problems of the OIM model and the DRM model.

Definition 10. (constraint) Let M be the set of valid objects interaction matrices
(direction relation matrices, resp.), and V = {v1, ..., vt} be a set of spatial variables. A
constraint is a formula of form viαvj , where α is a subset of M. An assignment π is a
function from V to the set of regions. Constraint viαvj is satisfied by π if the OIM (the
DRM, resp.) of π(vi) to π(vj) is in α, i.e. OIM(π(vi), π(vj)) ∈ α (DRM(π(vi), π(vj)) ∈ α,
resp.). The consistency problem is to decide, given a set of constraints, whether there
exists an assignment satisfying all the constraints.

The consistency problem over many relation models is NP-hard in general, but becomes
tractable when only special constraints are considered.
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Definition 11. ((in)complete basic network) A constraint viαvj is called a basic con-
straint, if α = {M} is a singleton, where M is a valid matrix in M. In such a case, the
constraint is also written as viMvj . A complete basic network is a set of constraints that
contains a basic constraint for each pair of variables; An incomplete basic network is a
set of constraints that contains either a basic constraint or the universal constraint for
each pair of variables.

The consistency problem of the DRM model has been investigated in (Skiadopoulos
and Koubarakis 2004, 2005, Navarrete et al. 2007, Zhang et al. 2008, Liu et al. 2010, Liu
and Li 2011) and, in particular, the following results have been obtained.

Theorem 4. (Liu et al. 2010, Liu and Li 2011) The consistency problem of the DRM
model is NP-complete. The consistency of a complete basic DRM network can be decided
in cubic time, but the consistency problem becomes NP-complete for incomplete basic
networks.

We have similar conclusion for the OIM model.

Theorem 5. The consistency problem of the OIM model is NP-complete. The consis-
tency of a complete basic OIM network can be decided in cubic time, but the consistency
problem becomes NP-complete for incomplete basic networks.

Proof : (sketch) The cubic algorithm for the OIM model is quite analogous to that for
the DRM model given in (Liu et al. 2010, Liu and Li 2011). Suppose N = {viMijvj} is
a complete basic constraint network of the OIM model, where Mij is a valid OIM. The
algorithm consists of three steps. The first step fixes the mbr of each variable. The edges
of these mbrs generate a grid. Step 2 removes from each mbr a number of tiles in the
grid that are forbidden by the constraints, and gets a candidate solution. Step 3 then
verifies whether the candidate is indeed a solution.

Step 1. By Lemma 4, the RA relation between vi and vj is uniquely determined
by Mij . Therefore the OIM network entails an RA network of the variables. If the RA
network is unsatisfiable, the OIM constraint network is also unsatisfiable. If the RA
network is satisfiable and let {mi} be a solution where each mi is a rectangle, then it
can be proved that N is satisfiable iff it has a solution {ai} such that the mbr of ai is
mi. We then try to find such a solution (if it exists) in the following steps.

Step 2. Denote byG the grid generated by all edges of these rectanglesmi. Initially we
assume variable vi is exactly mi. Constraint viMijvj determines the occupancy matrices
OMGi,j (vi), where Gi,j is the grid generated by the edges of mi and mj . Note that Gi,j is
coarser than G. Let t be a tile in Gi,j . Assume that the entry of OMGi,j (vi) corresponding
to t is zero. Then vi should have empty intersection with tile t, and thus should have
empty intersection with all the tiles from grid G that are contained in t. Therefore we
should remove these tiles from vi. For each constraint viMijvj and each zero entry of
Mij , we remove a number of tiles in G from vi as above. Finally, each vi is the union of
the remaining tiles, which is contained in mi. Denote the union of these tiles by ai.

Step 3. It can be proved that if N is satisfiable, then {ai} obtained in Step 2 is
a solution of N . Therefore this step verifies whether each pair of ai and aj meets the
constraint viMijvj . If so, then N is satisfiable. Otherwise, N is unsatisfiable.
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The first step requires O(n3) time, where n is the number of variables. A naive imple-
mentation of the remaining steps requires O(n4) time, which could be improved to O(n3)
with a careful design of the representation of regions (see (Liu et al. 2010) for details).
Therefore, for complete OIM basic constraint networks, the consistency problem can be
solved in cubic time.

For incomplete basic networks, a polynomial reduction from 3-SAT to the consistency
problem can be devised, which is similar to the one devised for the DRM model in (Liu
and Li 2011).

�

The only difference between the cubic algorithm for the OIM model and that for the
DRM model given in (Liu et al. 2010) is that the latter makes an assumption about
the RA relation between a pair of variables when the DRM model fails to determine
it uniquely (cf. Proposition 4). Because OIM(a, b) uniquely determines RA(a, b), the as-
sumption is no longer necessary and the algorithm is thus slightly simpler.

As in the case of the DRM model, similar computational complexity results can be
obtained for connected regions.

Remark 4. The cubic algorithm for OIM can, as in the case of DRM, be adapted to
dealing with connected regions. The only extra work is to find a maximal connected
component (mcc) of each ai after Step 2. The target mcc should have mi as its mbr,
and there is at most one such mcc. If there is no such mcc for some variable vi, then
we conclude that the constraint network is unsatisfiable. Otherwise, we replace each ai
obtained in Step 3 with such a mcc and check whether these mccs forms a solution.

6. Remarks and conclusion

A number of criteria for models of cardinal directions have been proposed in (Schneider
et al. 2012), one of which is called the converseness criterion. For two regions a, b, the
converseness criterion requires that dir(a, b) should be the converse of dir(b, a). For
example, if dir(a, b) = {N,NW}, then dir(b, a) should be {S, SE}. Unlike the DRM
model, the OIM model meets the converseness requirement and is thus claimed to be
superior to the DRM model in (Schneider et al. 2012).

For extended objects such as regions, however, the necessity of the converseness require-
ment is arguable. First, though mathematically sound, the converseness criterion is not
always in accordance with human cognition. For example, we agree that Rome surrounds
The Vatican, but definitely not vice versa. Similar counterintuitive interpretations hap-
pen to several other predicates defined in (Schneider et al. 2012) (also see Figure 1).
Second, if a model M of cardinal directions does not meet the converseness criterion, we
can use a pair of cardinal directions (dir(a, b),dir(b, a)) in M to represent the directional
information between two regions a, b. Write Dir(a, b) = (dir(a, b),dir(b, a)). In this way,
we transform M into a model that enjoys the converseness property. From Dir(a, b) =
(dir(a, b),dir(b, a)) we can directly infer that Dir(b, a) = (dir(b, a),dir(a, b)).

Our Theorem 1 asserts that the objects interaction matrix OIM(a, b) is equivalent to
the combination of the RA relation RA(a, b) and the direction relation matrices DRM(a, b)
and DRM(b, a). This shows that the OIM model is more expressive than the DRM model
in the tiling phase, but our Theorem 2 also implies that most (1573 out of 1677, or about
94%) OIM relations are exactly bi-DRM relations.

Our Theorem 3 asserts that the OIM model becomes less expressive than the DRM
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model after interpretation. This is mainly due to the interpretation function used in the
OIM model (see Definition 9). To meet the converseness requirement, Schneider et al.
treat both regions a, b as equal partners and assert that a cardinal direction, say NW,
holds between a, b if there is, roughly speaking, a part of a which is to the northwest of
some part of b. This limits the possible cardinal directions to 511, even if dirOIM(a, b) and
dirOIM(b, a) are considered together. In contrast, the DRM model identifies 1621 different
consistent pairs (dirDRM(a, b),dirDRM(b, a)). This shows that the interpretation function
used in (Schneider et al. 2012) for OIM is inappropriate. To get a better interpretation,
we suggest to use the interpretation function for DRM (see Definition 8) and consider
consistent pairs of cardinal directions.

Furthermore, our Theorem 5 shows that the reasoning mechanisms developed for the
DRM model can also be transplanted to the OIM model and similar computational
complexity results are obtained.

In conclusion, we have shown that, if we represent the cardinal direction of two regions
by a consistent pair of DRMs, then OIM is not so different from DRM but actually
almost the same.
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