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Abstract

This paper formally tests for time variation in the slope of the Phillips curve

using a variety of measures of inflation expectations and real economic slack. We

find that time variation in the slope of the Phillips curve depends on the measure

of inflation expectations rather than the measure of real economic slack. We find

strong evidence in support of the time-varying slopes of the Phillips curve with

different measures of inflation expectations. Thus, we conclude that the slope of

the Phillips curve is time-varying.

Keywords: Bayesian estimation, The slope of the Phillips curve, Unobserved Com-

ponents Model.

JEL codes: C11, C32, E31.

1 Introduction

The original Phillips curve describes the empirical relationship between inflation and

unemployment rate (Phillips, 1958). Other versions that use related measures of real
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economic activity are later considered. Estimating this relationship is important for a

number of reasons. For example, many central banks need to maintain both price stability

and full employment. But these two goals might be not consistent. Understanding the

trade-off between these two goals is therefore important. In addition, at the aftermath

of the financial crisis of 2008-2009, inflation remained stable while there was a surge in

unemployment rate. This is often referred to as the “missing disinflation” puzzle. One

explanation for the puzzle is that the slope of the Phillips curve has become flatter (e.g

Bean, 2006; Gaiotti, 2008; Ihrig et al., 2010; Kuttner and Robinson, 2010), which calls

into question of the stability of the Phillips curve.

Many papers have documented changes in the slope of the Phillips curve. Examples

include Ball and Mazumder (2011), Roberts (2006), Atkeson and Ohanian (2001), and

Mishkin (2007). To test for time variation in the slope of the Phillips curve, these papers

estimate constant-coefficient Phillips curve using split samples and check whether the

slope changes considerably across different samples. Rather than model the slope of

the Phillips curve as constant and compare the estimated slope of the Phillips curve in

different samples, some studies model the slope as time-varying. Examples include Stella

and Stock (2012), Chan et al. (2016), and Kim et al. (2014).

However, there are two issues for assuming the slope of the Phillips curve as time-varying.

First, the conclusion that the slope of the Phillips curve changes are challenged by some

recent studies. For example, Gordon (2013) finds that the slope of the Phillips curve is

stable by estimating a model with a hybrid Phillips curve. Coibion and Gorodnichenko

(2015) estimate many models with standard expectation-augmented Phillips curve using

a variety of measures of inflation expectations and find that evidence for changes in the

slope of the Phillips curve is mixed. Second, the time-varying parameter specification

might lead to over-parameterization compared to the constant-coefficient specification,

as pointed out by Chan et al. (2012), Nakajima and West (2013), and Belmonte et al.
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(2014). Therefore, one should be cautious about modeling the slope of the Phillips curve

as time-varying without testing whether this specification is relevant.

Given these considerations, we consider a range of models with an embedded Phillips

curve using a variety of measures of inflation expectations and real economic slack. We

then test for time variation in the slope of these Phillips curves using the method proposed

by Chan (2018). We find that the Bayes factors prefer models with time variation in the

slope of the Phillips curve relationship than the restricted constant slope case. In addition,

we find that the posterior mass of the variance that governs the time variation in the slope

of the Phillips curve does not center around zero. Based on these strong evidence in favor

of the time-varying slope of the Phillips curve from unobserved components models, we

conclude that the slope of the Phillips curve is time-varying.

Formal tests of time variation in the slope of the Phillips curve are recently implemented

by Berger et al. (2016) and Karlsson et al. (2018). Karlsson et al. (2018) test for time

variation within the framework of a time-varying parameter Bayesian VAR using new

tools for model selection proposed by Chan and Eisenstat (2018). By comparing a bivari-

ate VAR with constant coefficients with a time-varying VAR, Karlsson et al. (2018) find

strong evidence in favor of the latter and conclude that the slope of the Phillips curve is

unstable. Instead of jointly testing time variation in all the parameters, our approach is

more specific and tests only if the slope coefficient of the Phillips curve is time-varying.

Our paper is most related to Berger et al. (2016). They estimate a model with a New

Keynesian Phillips Curve in which the trend inflation is interpreted as long-run inflation

expectations. They then test for time variation in the slope of the Phillips curves using

the stochastic model specification search approach proposed by in Frühwirth-Schnatter

and Wagner (2010). Berger et al. (2016) find that the time-varying slope specification is

rejected by the stochastic model specification search and conclude that the slope of the

Phillips curve is not time-varying.
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Our paper is different from Berger et al. (2016) in three aspects. First, we consider a

wider range of measures of inflation expectations and economic slack. In particular, we

do not only consider the trend inflation as a measure of inflation expectations, but also

consider survey-based inflation expectations and a variety of measures of real economic

slack. Second, we directly compute the Bayes factor in favor of the model with a time-

varying Phillips curve via the method proposed by Chan (2018) rather than stochastic

model specification search as in Berger et al. (2016). Finally, unlike Berger et al. (2016),

we find strong evidence in favor of the time-varying slope of the Phillips curve.

The remainder of this paper is organized as the follows: in Section 2, we describe the

models with different specifications for the Phillips Curve. In Section 3 we describe how

we test the time variation in the slope of the Phillips curve. Section 4 describes the

results of the test for the time variation of the slope of the Phillips curve. In Section 5,

we conclude that the slope of the Phillips curve is time-varying.

2 Specifications for the Phillips Curve

We consider two classes of models for modeling the Phillips Curve: the univariate unob-

served components models with stochastic volatility and the bivariate unobserved com-

ponents models with stochastic volatility. For each model, we need a measure of inflation

expectations and a measure of economic slack. For the univariate models, the unobserved

component of real economic activities is the trend of real economic activities, zt, denoted

as z∗t . Then, we use the deviation from the trend, xt = zt− z∗t , as a measure of economic

slack. We will use observable measures for the inflation expectations, Etπt+1, such as

the average of the past four quarters inflation or Survey of Professional Forecasters(SPF)

inflation expectations.

A rapidly growing literature highlights that trend inflation has important implications
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for the specification of the NKPC (e.g. Kozicki and Tinsley; Ascari, 2004; Cogley and

Sbordone, 2008). Thus, we also consider bivariate unobserved components models to

jointly model real economic activities and inflation. In the bivariate case, the additional

unobserved component is the trend inflation, denoted as τt. In the spirit of Beveridge

and Nelson (1981), τt can be interpreted as the long-run inflation expectations. The

estimated trend inflation usually has substantial variance. To reduce the variance of the

estimated trend inflation, Chan et al. (2018) estimate trend inflation by linking Blue Chip

ten years inflation forecasts to trend inflation. With the additional information from the

Blue Chip ten years inflation forecasts, the variance of τt decrease substantially. Thus,

in addition, we also consider the models with Phillips curve linking Blue Chip ten years

inflation forecasts, qt, to trend inflation, τt.

We will estimate altogether eight models from these two classes of models, using Blue Chip

ten years inflation forecasts, qt, different measures of real economic slack, xt, and different

measures of inflation expectations, Etπt+1. we will give the details of the univariate and

bivariate unobserved components models in Section 2.1 and Section 2.2.

2.1 Univariate Unobserved Components Model with Stochastic

Volatility

Let πt and zt denote the inflation rate and level of economic activities respectively. And

let z∗t denote the trend of real activities. Then xt = zt − z∗t is a measure of the economic

slack such as unemployment gap or the output gap. Considering the following class of
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univariate unobserved components models with stochastic volatility:

πt − Etπt+1 = λt(zt − z∗t ) + επt , επt ∼ N (0, eht), (1)

λt = λt−1 + ελt , ελt ∼ N (0, ω2
λ), (2)

zt = z∗t + et, (3)

et = φ1et−1 + φ2et−2 + εet , εet ∼ N (0, ω2
e), (4)

where λt is the slope of the Phillips curve, Etπt+1 represents different measures for expec-

tations of inflation. λt and τt are modeled as random walk. et follows an AR(2) process.

We consider two different specifications for z∗t : when zt represents unemployment rate,

z∗t is modeled as random walk:

z∗t = z∗t−1 + ε
z∗t
t , ε

z∗t
t ∼ N (0, ω2

z∗). (5)

when zt represents output level, the growth of zt, ∆z∗t , is modeled as random walk:

∆z∗t = ∆z∗t−1 + ε
z∗t
t , ε

z∗t
t ∼ N (0, ω2

z∗). (6)

2.2 Bivariate Unobserved Components Model with Stochastic

Volatility

Next, we augment the univariate unobserved componets models to also model trend

inflation. More specifically, the class of bivariate unobserved components models with
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stochastic volatility can be specified as

πt − τt = λt(zt − z∗t ) + επt , επt ∼ N (0, eht), (7)

λt = λt−1 + ελt , ελt ∼ N (0, ω2
λ), (8)

τt = τt−1 + ετt , ετt ∼ N (0, egt), (9)

zt = z∗t + et, (10)

et = φ1et−1 + φ2et−2 + εet , εet ∼ N (0, ω2
e), (11)

As before, either z∗t or ∆z∗t is modeled as a random walk,

z∗t = z∗t−1 + ε
z∗t
t , ε

z∗t
t ∼ N (0, ω2

z∗), (12)

∆z∗t = ∆z∗t−1 + ε
z∗t
t , ε

z∗t
t ∼ N (0, ω2

z∗). (13)

In addition, we also link the trend inflation τt to the Blue Chip inflation forecasts by

adding the following equation:

qt = d0 + d1τt + εqt , εqt ∼ N (0, ω2
q ), (14)

where qt is Blue Chip ten years forecasts. Following Chan et al. (2018), we allow the

possibility that the forecasts are unrelated to the trend inflation by introducing the in-

tercept d0 and slope coefficient d1. When d0 = 0 and d1 = 1, the Blue Chip forecasts are

an unbiased measure of the trend inflation.

7



2.3 Specific Models

We provide a brief summary of the Philips curve models in Table 1. The details of these

models are provided in Appendix A. In Table 1, we denote yt and ut as the output and the

unemployment rate, respectively. y∗t is the potential output and νt represents the natural

unemployment rate. We have two measures of economic slack: the output gap, yt−y∗t and

the unemployment gap, ut − νt. We have four measures of inflation expectations: πet|t−1,

πet|t+1, τt, and qt. πet|t−1 represent backward-looking inflation expectations, measured

as the average of past four quarter inflation. πet|t+1 represent forward-looking inflation

expectations, measured as the SPF one year inflation forecasts. τt are the trend inflation.

qt are the Blue Chip ten years inflation forecasts. In M7 and M8, τt are estimated with

the additional information of Blue Chip ten years inflation forecasts, qt.

Table 1: Summary of the Phillips Curve Models.
Model Unobserved Component Economic Slack Inflation Expectations
M1 νt ut − νt πet|t−1
M2 νt ut − νt πet|t+1

M3 y∗t yt − y∗t πet|t−1
M4 y∗t yt − y∗t πet|t+1

M5 νt, τt ut − νt τt
M6 y∗t , τt yt − y∗t τt
M7 νt, τt ut − νt τt, qt
M8 y∗t , τt yt − y∗t τt, qt

3 Testing for Time Variation

In this section, we outline the methodology to test for time-variation. We first give an

overview of the Bayes factor and Savage-Dickey density ratio and then introduce a new

method of calculating the Bayes factor proposed by Chan (2018).
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3.1 Bayes Factor and Savage-Dickey Density Ratio

To demonstrate the method of testing for time variation in the slope of the Phillips curve,

we first consider the following unobserved components model with stochastic volatility:

πt − Etπt+1 = λtxt + επt , επt ∼ N (0, eht), (15)

λt = λt−1 + ελt , ελt ∼ N (0, ω2
λ), (16)

where πt is the inflation rate at time t, Etπt+1 is a measure of expected inflation at time

t + 1 given the information at time t, xt is a measure of real economic slack, λt is the

slope of the Phillips curve. We model the slope, λt, as a random walk process instead

of a stationary AR(1).1 To test whether the slope, λt, is time-varying, we can compare

the model (15)-(16) to a restricted version where the slope is constant, i.e., ω2
λ = 0.

Denote the former model as Model 1 and the restricted version Model 2. One popular

model comparison criterion for comparing these two models is the Bayes factor in favor

of Model 1 against Model 2, defined as

BF12 =
p(y | Model 1)

p(y | Model 2)
,

where p(y | Model i) is the marginal likelihood for Modeli. The corresponding posterior

odds ratio is defined as

p(Model 1 | y)

p(Model 2 | y)
=
p(Model 1)

p(Model 2)
× BF12.

Assume that the prior model probabilities are equal, i.e., p(Model 1) = p(Model 2), the

posterior odds ratio in favor of Model 1 reduces to the Bayes factor BF12. For example,

1Eisenstat and Strachan (2016) argue that the random walk assumption has two main advantages for
macroeconomic applications. First, the random walk specification can be a parsimonious approximation
to a stationary specification with high persistence. Second, random walk specification implies greater
smoothness than the stationary model with low persistence.
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BF12 = 10 means that model Model 1 is 10 times more likely than model Model 2 given

the data.

The Bayes factor is commonly used to compare models. However, the main challenge here

is that it is often difficult to compute the marginal likelihood of models with time-varying

parameters.

Fortunately, one simpler method is available when we need to compute the Bayes factor

for nested models. Specifically, the Bayes factor can be calculated by using the Savage-

Dickey density ratio (Verdinelli and Wasserman, 1995). This approach requires only the

estimation of the unrestricted model. For example, the Bayes factor in favor of Model 1

against Model 2 can be obtained using the Savage-Dickey density ratio as

BF12 =
p(ω2

λ = 0)

p(ω2
λ = 0 | y)

,

where the numerator is the marginal prior density of ω2
λ evaluated at 0, and the denomi-

nator is the marginal posterior of ω2
λ evaluated at 0. Intuitively, if ω2

λ is more likely to be

0 under the prior density relative to the posterior density, this can be viewed as evidence

in favor for the time-varying slope of the Phillips curve. However, this easier method

cannot be directly applied in our setting due to two related issues. First, the value 0

is at the boundary of the parameter space of ω2
λ. Therefore, the Savage-Dickey density

ratio approach is not applicable. Second, ω2
λ is often assumed to have an inverse-gamma

prior, which has zero density at zero. To deal with these two difficulties, we follow the

method proposed by Chan (2018). Specifically, we use the so-called non-centered pa-

rameterization discussed in Frühwirth-Schnatter and Wagner (2010)—we work with the

unsigned standard deviation, ωλ, which has support on the whole real line. Then we

directly calculate the relevant Bayes factor using the Savage-Dickey density ratio.
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3.2 Non-centered Parameterization

Next, we briefly discuss the non-centered parameterization. First, we define λt = λ0 +

ωλλ̃t, then, the state space model in (15)-(16) can be written as follows:

πt − Etπt+1 = (λ0 + ωλλ̃t)xt + επt , επt ∼ N (0, eht), (17)

λ̃t = λ̃t−1 + ελ̃t , ελ̃t ∼ N (0, 1), (18)

where λ̃0 = 0.

In this model, we assume ωλ ∼ N (0, Vωλ), which has two main advantages. First, by

a change of variable (Kroese and Chan, 2014), the implied prior for ω2
λ is G(1

2
, 1
2Vωλ

).

This gamma prior has more mass concentrated around small values of ω2
λ. Therefore, it

provides shrinkage—a priori it favors the more parsimonious constant—coefficient model.

Second, it is a conjugate prior for ωλ, under the non-centered parameterization it therefore

facilitates computation. The sign of ωλ is not identified, but alteration of the sign dose

not change the likelihood value. After the non-centered parameterization of model (15)-

(16), the Bayes factor BF12 = p(ωλ = 0)/p(ωλ = 0 | y), obtained by using Savage-Dickey

density ratio, can be directly calculated by method proposed by Chan (2018).

4 Results

In this section, we first estimate six different models embedded with the Phillips curve,

M1-M6, and test the time variation in the slopes. In addition, we estimate two additional

model, M7 and M8, that use additional information of Blue Chip ten years inflation

forecasts. The details of estimation are provided in Appendix B. We then test the time

variation in the slopes of the Phillips curve under these two models.
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Our data consist of quarterly CPI inflation rate, (civilian seasonally adjusted) unem-

ployment rate from 1955Q1 to 2013Q1, SPF one year inflation forecasts from 1982Q1 to

2013Q1,2 and Blue Chip ten years inflation forecasts from 1982Q1 to 2013Q1.

To formally test if there is substantial time variation in the slope of the Phillips curve

λt, we compute the Bayes factor in favor of the six different unrestricted models, M1-M6,

against their corresponding restricted versions where λt is constant (ωλ = 0). The test

results for time variation of slopes of different models with the Phillips curve are shown

in Table 2.

Table 2: Estimated Log Bayes Factors and the Numerical Standard Errors.
M1 M2 M3 M4 M5 M6

Log BF 4.8 (0.08) 4.1 (0.12) 8.4 (2.05) 57.2 (3.57) 0.2 (0.03) 0.7 (0.06)

Overall for most models, the data prefer the version with time variation. Specifically,

the log Bayes factors associated with M1, M2, M3, M4 are all larger than 4, indicating

substantial time variation in the slope, λt. On the other hand, the log Bayes factors

associated with M5 and M6 are small but positive, suggesting slight evidence in favor of

time variation in λt.

To corroborate these model comparison results, we plot the posterior estimates of λt and

ωλ in Figures 1 and 3. First, Figure 1 shows the results for the Phillips curve specified as

the univariate unobserved components model with stochastic volatility. Figure 3 shows

the corresponding results for the bivariate unobserved components model with stochastic

volatility.

2We also consider median expected price change next 12 months covering the period 1982Q1-2013Q1
from University of Michigan inflation expectation survey data. In Appendix C, we show that the results
are similar to those of using SPF one year inflation forecasts.
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Figure 1: Estimated Slope λt and Density of ωλ for the Phillips Curves Specified as
Univariate Unobserved Components Model with Stochastic Volatility.
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Consistent with model comparison results, the right panel of Figure 1 shows that estimates

of the slopes of the Phillips curve, λt, under M1 and M2 are volatile and time-varying.

They are always negative, which is consistent with the idea of the Phillips curve—there is

a trade-off between inflation and the unemployment gap. Also, starting from the 1980s,

λt becomes flatter and is closer to zero. Estimates of the slopes of the Phillips curve, λt,

under M3 and M4 are also volatile but they mostly move around 0. This suggests that

real GDP gap has little effects on inflation. These results are similar to those in Berger

et al. (2016) and Chan and Grant (2017). They both find the magnitude of λt is small

when the economic slack is measured as the output gap. Comparing models with different

measures of inflation expectations, we find that the λt with the SPF one year forecasts is

smoother than the λt with the average of past four quarter inflation. To understand this

difference, we plot the SPF one year forecasts (solid line) and the average of past four

quarter inflation (dash line) in Figure 2.

Figure 2: Inflation Expectations, πet|t−1 and πet|t+1.

Figure 2 shows that the SPF one year forecasts are smoother than the average of past

four quarter inflation. Thus, the SPF one year forecasts lead to a smoother λt than the
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average of the past four quarters of inflation.

The left panel of Figure 1 shows that the posterior densities of ωλ under M1, M2, M3,

and M4 are all bimodal and have almost no mass around 0. This can be viewed as strong

evidence in support of the time-varying λt.

Figure 3: Estimated Slope λt and Density of ωλ for the Phillips Curves with Bivariate
Unobserved Components Model with Stochastic Volatility.

The right panel of Figure 3 shows that estimates of the time-varying slopes of the Phillips

curve, λt, of M5 and M6 are insignificant and stable around 0. The left panel of Figure
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3 shows that the posterior densities of ωλ under M5 and M6 are bimodal, but have

a considerable mass around 0. However, compared to the prior density, the posterior

density at 0 is lower, suggesting ωλ is less likely to be 0 given the data. This is consistent

with the model comparison result that shows moderate evidence on time variation of λt.

To summarize our results so far, in the univariate case, the slope of the Phillips curve is

conclusively time-varying. In the bivariate case, the evidence on the time variation on

the slope of the Phillips curve is suggestive but not conclusive.

Figure 4: Trend inflation: τt.

The inconclusive evidence in the bivariate case could be due to the substantial variance
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of the estimated trend inflation. To investigate this possibility, we follow Chan et al.

(2018) who link trend inflation τt to the Blue Chip inflation forecasts, which substantially

reduces the variance of the estimated trend inflation. Following them, we add additional

measurement equation linking the trend inflation to the Blue Chip ten years inflation

forecasts to M5 and M6 respectively, and then we have M7 and M8. Figure 4 shows that

with the additional information from the Blue Chip ten years inflation forecasts, M7 and

M8 have a substantially smaller variance of the estimated trend inflation than M5 and

M6.

Figure 5: Estimated slope λt and density of ωλ of M7 and M8

Next, we test the time variation in the slopes under M7 and M8. The log Bayes factors
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associated with M7 and M8 are 3.5 (0.24) and 51.0 (3.46), respectively. These values

are large, indicating substantial time variation in the slope, λt. Consistent with model

comparison results of M7 and M8, Figure 5 shows that estimates of the slopes of the

Phillips curve, λt, of M7 and M8 are volatile and the posterior densities of ωλ under M7

and M8 are bimodal and have almost no mass around 0. This shows strong evidence in

favor of time variation in the slope.

In summary, in the univariate case, the slope of the Phillips curve is conclusively time-

varying. Moreover, in the bivariate case, the slope of the Phillips curve is also conclusively

time-varying with more precise estimates of the trend inflation, τt.

5 Conclusion

In this paper, we estimate eight Phillips curve models and test for time variation in the

slopes of the Phillips curve under these models. The test shows that the Bayes factors

favor models with time variation in the slope of the Phillips curve relationship than the

restricted constant slope case. Further, we find that the posterior mass of the variance

that governs the time variation in the slope of the Phillips curve does not center around 0.

Our formal test provides strong evidence in favor of the time-varying slope of the Phillips

curve from unobserved components models. Therefore, we conclude that the slope of the

Phillips curve is time-varying.
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A Appendix: Details of the Specific Models

In this section, we outline the eight model M1-M8 in detail. In general, we have two classes

of models: univariate and bivariate unobserved components models. The former includes

M1-M4 which use different measures of economic slack and inflation expectations. The

latter includes M5-M8. The specifications for each model are discussed below.

A.1 M1

M1 is a univariate unobserved components model where πt is inflation. λt is the slope

of the Phillips curve. Etπt+1 is measured as the average of past four quarter inflation,

πet|t−1=(πt|t−1 + πt|t−2 + πt|t−3 + πt|t−4)/4. λt is modeled as random walk. ut represents

unemployment rate. et follows an AR(2) process. NAIRU, νt, is modeled as random
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walk. Log of stochastic volatility, ht, is modeled as random walk.

πt − πet|t−1 = λt(ut − νt) + επt , επt ∼ N (0, eht), (19)

ut = νt + et, (20)

et = φ1et−1 + φ2et−2 + εet , εet ∼ N (0, ω2
e), (21)

νt = νt−1 + ενt , ενt ∼ N (0, ω2
ν), (22)

λt = λt−1 + ελt , ελt ∼ N (0, ω2
λ), (23)

ht = ht−1 + εht , εht ∼ N (0, ω2
h). (24)

.

A.2 M2

M2 is a univariate unobserved components model where πt is inflation. λt is the slope of

the Phillips curve. Etπt+1 is measured as SPF one year inflation forecasts, πet+1|t. λt is

modeled as random walk. ut represents unemployment rate. et follows an AR(2) process.

NAIRU, νt, is modeled as random walk. Log of stochastic volatility, ht, is modeled as

random walk.

πt − πet+1|t = λt(ut − νt) + επt , επt ∼ N (0, eht), (25)

ut = νt + et, (26)

et = φ1et−1 + φ2et−2 + εet , εet ∼ N (0, ω2
e), (27)

νt = νt−1 + ενt , ενt ∼ N (0, ω2
ν), (28)

λt = λt−1 + ελt , ελt ∼ N (0, ω2
λ), (29)

ht = ht−1 + εht , εht ∼ N (0, ω2
h). (30)
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A.3 M3

M3 is a univariate unobserved components model where πt is inflation. λt is the slope

of the Phillips curve. Etπt+1 is measured as the average of past four quarter inflation,

πet|t−1=(πt|t−1 + πt|t−2 + πt|t−3 + πt|t−4)/4. λt is modeled as random walk. Cyclical com-

ponent, ct, follows an AR(2) process. yt represents real output level. Underlying output

trend growth, ∆y∗t , is modeled as random walk. Log of stochastic volatility, ht, is modeled

as random walk.

πt − πet|t−1 = λt(yt − y∗t ) + επt , επt ∼ N (0, eht), (31)

yt = y∗t + ct, (32)

ct = φ1ct−1 + φ2ct−2 + εct , εct ∼ N (0, ω2
c ), (33)

∆y∗t = ∆y∗t−1 + εy∗t , εy∗t ∼ N (0, ω2
y∗), (34)

λt = λt−1 + ελt , ελt ∼ N (0, ω2
λ), (35)

ht = ht−1 + εht , εht ∼ N (0, ω2
h). (36)

A.4 M4

M4 is a univariate unobserved components model where πt is inflation. λt is the slope

of the Phillips curve. Etπt+1 is measured SPF one year inflation forecasts, πet+1|t. λt is

modeled as random walk. yt represents real output level. Cyclical component, ct, follows

an AR(2) process. Underlying output trend growth, ∆y∗t , is modeled as random walk.
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Log of stochastic volatility, ht, is modeled as random walk.

πt − πet|t+1 = λt(yt − y∗t ) + επt , επt ∼ N (0, eht), (37)

yt = y∗t + ct, (38)

ct = φ1ct−1 + φ2ct−2 + εct , εct ∼ N (0, ω2
c ), (39)

∆y∗t = ∆y∗t−1 + εy∗t , εy∗t ∼ N (0, ω2
y∗), (40)

λt = λt−1 + ελt , ελt ∼ N (0, ω2
λ), (41)

ht = ht−1 + εht , εht ∼ N (0, ω2
h). (42)

A.5 M5

M5 is a bivariate unobserved components model where πt is inflation. λt is the slope of

the Phillips curve. Long-run inflation expectations are measured as trend inflation τt and

follow a random walk. λt is modeled as a random walk. ut represents unemployment

rate. et follows an AR(2) process. NAIRU, νt, is modeled as random walk. Two log of

stochastic volatility variables, ht and gt, are modeled as a random walk.

πt − τt = λt(ut − νt) + επt , επt ∼ N (0, eht), (43)

τt = τt−1 + ετt , ετt ∼ N (0, egt), (44)

ut = νt + et,

et = φ1et−1 + φ2et−2 + εet , εet ∼ N (0, ω2
e), (45)

νt = νt−1 + ενt , ενt ∼ N (0, ω2
ν), (46)

λt = λt−1 + ελt , ελt ∼ N (0, ω2
λ), (47)

ht = ht−1 + εht , εht ∼ N (0, ω2
h), (48)

gt = gt−1 + εgt , εgt ∼ N (0, ω2
g). (49)

25



A.6 M6

M6 is a bivariate unobserved components model where πt is inflation. λt is the slope of

the Phillips curve. Long-run inflation expectations are measured as trend inflation τt and

follow a random walk. λt is modeled as a random walk. yt represents the real output

level. Cyclical component, ct, follows an AR(2) process. Underlying output trend growth,

∆y∗t , is modeled as a random walk. Two log of stochastic volatility variables, ht and gt,

are modeled as a random walk.

πt − τt = λt(yt − y∗t ) + επt , επt ∼ N (0, eht), (50)

τt = τt−1 + ετt , ετt ∼ N (0, egt), (51)

yt = y∗t + ct, (52)

ct = φ1ct−1 + φ2ct−2 + εct , εct ∼ N (0, ω2
c ), (53)

∆y∗t = ∆y∗t−1 + εy∗t , εy∗t ∼ N (0, ω2
y∗), (54)

λt = λt−1 + ελt , ελt ∼ N (0, ω2
λ), (55)

ht = ht−1 + εht , εht ∼ N (0, ω2
h), (56)

gt = gt−1 + εgt , εgt ∼ N (0, ω2
g). (57)

A.7 M7

M7 is a bivariate unobserved components model where πt is inflation. λt is the slope of

the Phillips curve. Long-run inflation expectations are measured as trend inflation τt and

follow a random walk. λt is modeled as a random walk. ut represents unemployment

rate. et follows an AR(2) process. NAIRU, νt, is modeled as a random walk. Two log of

stochastic volatility variables, ht and gt, are modeled as a random walk. qt is Blue Chip
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ten years inflation forecasts.

πt − τt = λt(ut − νt) + επt , επt ∼ N (0, eht), (58)

τt = τt−1 + ετt , ετt ∼ N (0, egt), (59)

ut = νt + et,

et = φ1et−1 + φ2et−2 + εet , εet ∼ N (0, ω2
e), (60)

νt = νt−1 + ενt , ενt ∼ N (0, ω2
ν), (61)

λt = λt−1 + ελt , ελt ∼ N (0, ω2
λ), (62)

ht = ht−1 + εht , εht ∼ N (0, ω2
h), (63)

gt = gt−1 + εgt , εgt ∼ N (0, ω2
g), (64)

qt = d0 + d1τt + εqt , εqt ∼ N (0, ω2
q ). (65)

A.8 M8

M8 is a bivariate unobserved components model where πt is inflation. λt is the slope of

the Phillips curve. Long-run inflation expectations are measured as trend inflation τt and

follow a random walk. λt is modeled as a random walk. yt represents the real output

level. Cyclical component, ct, follows an AR(2) process. Underlying output trend growth,

∆y∗t , is modeled as a random walk. Two log of stochastic volatility variables, ht and gt,

are modeled as a random walk. qt is Blue Chip ten years inflation forecasts.
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πt − τt = λt(yt − y∗t ) + επt , επt ∼ N (0, eht), (66)

τt = τt−1 + ετt , ετt ∼ N (0, egt), (67)

yt = y∗t + ct, (68)

ct = φ1ct−1 + φ2ct−2 + εct , εct ∼ N (0, ω2
c ), (69)

∆y∗t = ∆y∗t−1 + εy∗t , εy∗t ∼ N (0, ω2
y∗), (70)

λt = λt−1 + ελt , ελt ∼ N (0, ω2
λ), (71)

ht = ht−1 + εht , εht ∼ N (0, ω2
h), (72)

gt = gt−1 + εgt , εgt ∼ N (0, ω2
g), (73)

qt = d0 + d1τt + εqt , εqt ∼ N (0, ω2
q ). (74)
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B Appendix: Estimation Details

In this appendix we provide the details of the priors and estimation for M5, M6 and M7

are outlined in this section. Estimation for M1 and M2 is similar to M5, estimation for

M3 and M4 is similar to M6, and estimation for M8 is similar to M7. Thus, for brevity,

we omit estimation details for these five models.

B.1 M5

B.1.1 Prior

The parameters under M5 are τ , ν, φ,λ̃, λ0, ωλ, ω
2
e , ω

2
ν , h, g.

We assume the following priors:

τ0 = 0, τ1 ∼ N (τ0, Vτe
gt), λ0 ∼ N (a0, Vλ0), e0 = 0, e−1 = 0,

ωλ ∼ N (0, Vωλ), ωg = V
1/2
ωg , ωh = V

1/2
ωh , ω2

e ∼ IG(νe, Sωe), ω2
ν ∼, IG(νν , Sων ),

Vωh = 0.2, Vωg = 0.2, Vωλ = 0.252, νe = 3, Sωe = 1 ∗ (νe − 1),

Vλ0 = 0.252, Vτ = 10, Vg = 10, νν = 3, Sων = 1 ∗ (νν − 1),

a0 = −0.25, Vβ = (Vλ0 , Vωλ), β̂ = (a0, 0), φ ∼ N (φ0, Vφ), Vφ = I2,

φ0 = (0.5; 0.2).

B.1.2 Likelihood

In this section, we derive the densities of π = (π1, . . . , πT )′ and u = (u1, . . . , uT )′, which

will be used to construct the posterior sampler.

Let

Λλ = diag(λ0 + ωλλ̃1, λ0 + ωλλ̃2, λ0 + ωλλ̃3, . . . , λ0 + ωλλ̃T ).
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Then, we have

π − τ − Λλ(u− ν) = επ.

Then, the log conditonal density of π is

log p(π | τ, u, ν, c, λ̃, λ0, ωh, ωλ, ων , ωc, h) ∝ −1

2
(π− τ −Λλ(u−ν))′S−1π (π− τ −Λλ(u−ν)),

where

Sπ = diag(eh1 , eh2 , eh3 , . . . , ehT ).

Let

Hφ =



1 0 0 0 . . . 0

−φ1 1 0 0 . . . 0

−φ1 −φ2 1 0 . . . 0

...
...

...
...

. . . 0

0 . . . . . . −φ1 −φ2 1


.

Then, we have

Hφe = εe.

Then, the log conditional density of u is

log p(u | ν, e, ων , ωe, φ) ∝ −T
2

logω2
e −

1

2ω2
e

(u− ν)′H ′φHφ(u− ν).

B.1.3 Sampling τ

In this section, we derive the joint prior density of τ = (τ1, . . . , τT )′, which will be used

to construct the posterior sampler of τ .

30



Let

Sg = (Vτe
g1 , eg2 , eg3 , . . . , egT ).

and

H =



1 0 0 0 . . . 0

−1 1 0 0 . . . 0

0 −1 1 0 . . . 0

0 0 −1 1 . . . 0

...
...

...
...

. . . 0

0 . . . . . . 0 −1 1


.

Then, we have

Hτ = ετ .

Then,

τ ∼ N (0, H−1SgH
′−1).

Then, the log prior density for τ is

log p(τ) = −1

2
τ ′H ′S−1g Hτ.

Then, we have

log p(τ | π, u, ν, e, φ, γ, e, ων , λ̃, λ0, ωh, ωλ, ωg, h, g)

∝ −1

2
(τ ′S−1π τ − 2τ ′S−1π (π − Λλ(u− ν)))− 1

2
τ ′H ′S−1g Hτ.

Then, the conditional distribution of τ is

τ ∼ N (τ̂ , K−1τ ),
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where

τ̂ = K−1τ ((S−1π )(π − Λλ(u− ν))), Kτ = S−1π +H ′S−1g H.

Since Kτ is a band matrix, τ can be sampled using the precision sampler of Chan and

Jeliazkov (2009).

B.1.4 sample h and g

we sample h and g, following Kim et al. (1998).

B.1.5 Sample ν

In this section, we construct the posterior sampler of ν.

We have

ν ∼ N (0, H ′−1ω2
νH
−1).

Then, the log prior density of ν is

log p(ν) = −T
2

logω2
ν −

1

2ω2
ν

ν ′H ′Hν.

Then, the posterior distribution of ν is

N (ν̂, K−1ν ),
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where

Kν =
H ′φHφ

ω2
e

+
H ′H

ω2
ν

+ Λ′λS
−1
π Λλ

and

ν̂ = K−1ν (
H ′φHφu

ω2
e

− S−1π Λλ(π − τ − Λλu)).

B.1.6 Sample φ

In this section, we construct the posterior sampler of φ.

Let

φ =

φ1

φ2


and

Xφ =



c0 c−1

c1 c0

c3 c2
...

...

cT−1 cT−2


,

then, we have

e = Xφφ+ εe.

Then, the conditional distribution of φ is

φ ∼ N (φ̂,K−1φ )1(φ ∈ R)
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where

φ̂ = K−1φ (V −1φ φ0 +
X ′φe

ω2
e

), K−1φ = V −1φ +
X ′φXφ

ω2
e

.

B.1.7 Sample λ̃

In this section, we construct the posterior sampler of λ̃.

We have

Hλ̃ = ελ̃.

Then, λ̃ is distributed as

N (0, H−1H ′−1).

Then, the log prior density of λ̃ is

log p(λ̃) = −1

2
(λ̃′H ′Hλ̃).

Let

Λu = diag(u1 − ν1, u2 − ν2, u3 − ν3, . . . , uT − νT ).

Then, we have

−1

2
(ω2

λλ̃
′ΛuS

−1
π Λuλ̃)− 2(λ̃′ΛuωλS

−1
π (π − τ − λ0Λu)).

λ̃ is distributed as

N (
̂̃
λ,K−1

λ̃
),

where

̂̃
λ = K−1

λ̃
(ΛuωλS

−1
π (π − τ − λ0Λu)), Kλ̃ = H ′H + ω2

λΛuS
−1
π Λu.
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B.1.8 Sample λ0 and ωλ

In this section, we construct the posterior sampler of λ0 and ωλ.

Let Xβ = (u− ν,Λuλ̃) and β = (λ0, ωλ)
′,

Then, we have

π − τ = Xββ + επ.

Then, β is distributed as

N (β̂, K−1β ),

where

Kβ = V −1β +X ′βS
−1
π Xβ, β̂ = K−1β (V −1β β0 +X ′βS

−1
π (π − τ)).

B.1.9 Sample ω2
e

In this section, we show the posterior sampler of ω2
c .

The conditional distribution of ω2
e is

IG(νe +
T

2
, Sωe +

1

2
(e−Xφφ)′(e−Xφφ)).

B.1.10 Sample ω2
ν

In this section, we show the posterior sampler of ω2
ν .

The conditional distribution of ω2
ν is

IG(νν +
T

2
, Sων +

1

2
ν ′H ′Hν).
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B.2 M6

B.2.1 Prior

The parameters under M5 are τ , y∗, γ, φ, λ̃, λ0, ωλ, ω
2
c , ω

2
y∗ .

We assume the following priors:

τ0 = 0, τ1 ∼ N (τ0, Vτe
gt), λ0 ∼ N (a0, Vλ0), c0 = 0, c−1 = 0,

ωλ ∼ N (0, Vωλ), ωg = V
1/2
ωg , ωh = V

1/2
ωh , ω2

c ∼ IG(νc, Sωc), ω2
y∗ ∼ U(0, Vωy∗ ),

Vωh = 0.2, Vωg = 0.2, Vωλ = 0.252, νc = 3 Sωc = 1 ∗ (νc − 1),

Vλ0 = 0.252, Vτ = 10, Vg = 10, γ ∼ N (γ0, Vγ) Vωy∗ = 0.001,

a0 = −0.25, Vβ = (Vλ0 , Vωλ), β̂ = (a0, 0), Vγ = 100 ∗ I2, Vφ = I2,

γ0 = (750; 750), φ ∼ N (φ0, Vφ), φ0 = (1.34;−0.7).

B.2.2 Likelihood

In this section, we derive the densities of π = (π1, . . . , πT )′ and y = (y1, . . . , yT )′, which

will be used to construct the posterior sampler.

Let

Λλ = diag(λ0 + ωλλ̃1, λ0 + ωλλ̃2, λ0 + ωλλ̃3, . . . , λ0 + ωλλ̃T ).

Then, we have

π − τ − Λλ(y − y∗) = επ.

Then, the log conditional density of π is

log p(π | τ, y, y∗, c, λ̃, λ0, ωh, ωλ, ωy∗ , ωc, h) ∝ −1

2
(π−τ−Λλ(y−y∗))′S−1π (π−τ−Λλ(y−y∗)),
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where

Sπ = diag(eh1 , eh2 , eh3 , . . . , ehT ).

Let

Hφ =



1 0 0 0 . . . 0

−φ1 1 0 0 . . . 0

−φ1 −φ2 1 0 . . . 0

...
...

...
...

. . . 0

0 . . . . . . −φ1 −φ2 1


.

Then, we have

y = y∗ + c,

Hφc = εc.

Then, the log conditional density of y is

log p(y | y∗, c, ωy∗ , ωc, φ, y∗0, y∗−1) ∝ −
T

2
logω2

c −
1

2ω2
c

(y − y∗)′H ′φHφ(y − y∗)

B.2.3 Sampling τ

In this section, we derive the densities of τ = (τ1, . . . , τT )′, which will be used to construct

the posterior sampler of τ .
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Let

Sg = (Vτe
g1 , eg2 , eg3 , . . . , egT )

and

H =



1 0 0 0 . . . 0

−1 1 0 0 . . . 0

0 −1 1 0 . . . 0

0 0 −1 1 . . . 0

...
...

...
...

. . . 0

0 . . . . . . 0 −1 1


.

Then, we have

Hτ = ετ .

Then,

τ ∼ N(0, H−1SgH
′−1).

Then, the log prior density for τ is

log p(τ) = −1

2
τ ′H ′S−1g Hτ.

and we have

log p(τ | π, y, y∗, c, φ, γ, ωc, ωy∗ , λ̃, λ0, ωh, ωλ, ωg, h, g)

∝ −1

2
(τ ′S−1π τ − 2τ ′S−1π (π − Λλ(y − y∗)))−

1

2
τ ′H ′S−1g Hτ.

Then, the conditional distribution of τ is

τ ∼ N (τ̂ , K−1τ ),
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where

τ̂ = K−1τ ((S−1π )(π − Λλ(y − y∗))), Kτ = S−1π +H ′S−1g H.

B.2.4 Sample h and g

we sample h and g, following Kim et al. (1998).

B.2.5 Sample y∗

In this section, we construct the posterior sampler of y∗. Let

H2 =



1 0 0 0 . . . 0

1 −2 0 0 . . . 0

0 1 −2 1 . . . 0

...
...

...
...

. . . 0

0 . . . . . . 1 −2 1


.

then we have

H2y
∗ = α̃y∗ + εy

∗

where

α̃y∗ = (y∗0 + ∆y∗0,−y∗0, 0, . . . , 0)′.

Let

αy∗ = H−12 α̃y∗ .

Then,

y∗ ∼ N(αy∗ , ω
2
y∗(H ′2H2)

−1).
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Then, the log prior density of y∗ is

log p(y∗) = −T
2

logω2
y∗ −

1

2ω2
y∗

(y∗ − αy∗)′H ′2H2(y
∗ − αy∗).

The posterior distribution of y∗ is

N (ŷ∗, K−1y∗ ),

where

Ky∗ =
H ′φHφ

ω2
c

+
H ′2H2

ω2
y∗

+ Λ′λS
−1
π Λλ

and

ŷ∗ = K−1y∗ (
H ′φHφy

ω2
c

+
H ′2H2αy∗

ω2
y∗

− S−1π Λλ(π − τ − Λλy)).

B.2.6 Sample φ

In this section, we construct the posterior sampler of φ.

Let

φ =

φ1

φ2


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and

Xφ =



c0 c−1

c1 c0

c3 c2
...

...

cT−1 cT−2


then, we have

c = Xφφ+ εc.

Then, the conditional distribution of φ is

φ ∼ N (φ̂,K−1φ )1(φ ∈ R)

where

φ̂ = K−1φ (V −1φ φ0 +
X ′φc

ω2
c

), K−1φ = V −1φ +
X ′φXφ

ω2
c

B.2.7 Sample γ

In this section, we construct the posterior sampler of γ.

Let

γ = (y∗0, y
∗
−1)

and

αy∗ =



2y∗0 − y∗−1

3y∗0 − 2y∗−1

. . .

(T + 1)y∗0 − Ty∗−1


= Xγγ
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where

Xγ =



2 −1

3 −2

...
...

T + 1 −T


.

Then,

y∗ = Xγγ +H−12 εy
∗
.

Then, the conditional distribution of γ is

N (γ̂, K−1γ )

where

γ̂ = K−1γ (V −1γ γ0 +
X ′γH

′
2H2y

∗

ω2
y∗

), Kγ = V −1γ +
X ′γH

′
2H2Xγ

ω2
y∗

.

B.2.8 Sample λ̃

In this section, we construct the posterior sampler of λ̃.

Let

Hλ̃ = ελ̃.

Then, λ̃ is distributed as

N(0, H−1H ′−1).

Then, the log prior density of λ̃ is

log p(λ̃) = −1

2
(λ̃′H ′Hλ̃).
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Let

Λy = diag(y1 − y∗1, y2 − y∗2, y3 − y∗3, . . . , yT − y∗T ).

Then, we have

−1

2
(ω2

λλ̃
′ΛyS

−1
π Λyλ̃)− 2(λ̃′ΛyωλS

−1
π (π − τ − λ0Λy)).

λ̃ is distributed as

N (
̂̃
λ,K−1

λ̃
),

where

̂̃
λ = K−1

λ̃
(ΛyωλS

−1
π (π − τ − λ0Λy)), Kλ̃ = H ′H + ω2

λΛyS
−1
π Λy.

B.2.9 Sample λ0 and ωλ

In this section, we construct the posterior sampler of λ0 and ωλ.

Let Xβ = (y − y∗,Λyλ̃) and β = (λ0, ωλ)
′, then, (50) can be written as

π − τ = Xββ + επ.

Then, β is distributed as

N (β̂, K−1β ),

where

Kβ = V −1β +X ′βS
−1
π Xβ, β̂ = K−1β (V −1β β0 +X ′βS

−1
π (π − τ)).
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B.2.10 Sample ω2
c

In this section, we show the posterior sampler of ω2
c .

The conditional distribution of ω2
c is

IG(νc +
T

2
, Sωc +

1

2
(c−Xφφ)′(c−Xφφ)).

B.2.11 Sample ωy∗

In this section, we show the posterior sampler of ωy∗ .

The conditional density of ωy∗ is not a standard density, however, can be sampled by

using Griddy-Gibbs .

B.3 M7

In equation (65) we link Blue Chip ten years inflation forecasts to trend inflation, so the

differences of estimation details between M7 and M5 are that M7 have different sampler

for τt and has two more samplers for d = (d0 d1) and ω2
q . For brevity, we only display

the estimation details for τt, d = (d0 d1), and ω2
q .
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B.3.1 Prior

τ0 = 0, τ1 ∼ N (τ0, Vτe
gt), λ0 ∼ N (a0, Vλ0), e0 = 0, e−1 = 0,

ωλ ∼ N (0, Vωλ), ωg ∼ N (0, Vωg), ωh ∼ N (0, Vωh), ω2
e ∼ IG(νe, Sωe), ω2

ν ∼, IG(νν , Sων ),

Vωh = 0.2, Vωg = 0.2, Vωλ = 0.252, νe = 3, Sωe = 1 ∗ (νe − 1),

Vλ0 = 0.252, Vτ = 10, Vg = 10, νν = 3, Sων = 1 ∗ (νν − 1),

a0 = −0.25, Vβ = (Vλ0 , Vωλ), β̂ = (a0, 0), φ ∼ N (φ0, Vφ), Vφ = I2,

φ0 = (0.5; 0.2), ω2
q ∼ IG(νq, Sωq), νq = 3, Sωq = 1 ∗ (νq − 1), µd = (0 1),

Vd = I2.

B.3.2 Likelihood

In this section, we derive the densities of π = (π1, . . . , πT )′, which will be used to construct

the posterior sampler.

Let

Λλ = diag(λ0 + ωλλ̃1, λ0 + ωλλ̃2, λ0 + ωλλ̃3, . . . , λ0 + ωλλ̃T ).

Then, we have

π − τ − Λλ(u− ν) = επ.

Then, the log conditional density of π is

log p(π | τ, u, ν, c, λ̃, λ0, ωh, ωλ, ων , ωc, ωq, d, h) ∝ −1

2
(π−τ−Λλ(u−ν))′S−1π (π−τ−Λλ(u−ν)),

where

Sπ = diag(eh1 , eh2 , eh3 , . . . , ehT ).
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B.3.3 Sampling τ

In this section, we construct the posterior sampler of τ .

Let

Sg = (Vτe
g1 , eg2 , eg3 , . . . , egT ).

and

H =



1 0 0 0 . . . 0

−1 1 0 0 . . . 0

0 −1 1 0 . . . 0

0 0 −1 1 . . . 0

...
...

...
...

. . . 0

0 . . . . . . 0 −1 1


.

Then, we have

Hτ = ετ .

Then,

τ ∼ N (0, H−1SgH
′−1).

Then, the log prior density for τ is

log p(τ) = −1

2
τ ′H ′S−1g Hτ.

(74) can be written as

q = d01T + d1τ + εz, εz ∼ N (0, ω2
q IT ).
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Therefore, we have

log(p(q|d0, d1, τ, ω2
q )) ∝ −

1

2ω2
q IT

(q − d01T − d1τ)′(q − d01T − d1τ).

Then, we have

log p(τ | π, u, ν, e, φ, γ, ωe, ων , λ̃, λ0, ωh, ωλ, ωg, ωq, d, h, g)

∝ −1

2
(τ ′S−1π τ − 2τ ′S−1π (π − Λλ(u− ν)))− 1

2
τ ′H ′S−1g Hτ − 1

2
(τ ′

d21
ω2
qIT

τ − 2τ ′
d1(q − d01T )

ω2
q

).

Then, the conditional distribution of τ is

τ ∼ N (τ̂ , K−1τ ),

where

τ̂ = K−1τ ((S−1π )(π − Λλ(u− ν)) +
d1(q − d01T )

ω2
q

), Kτ = S−1π +H ′S−1g H +
d21
ω2
q IT

.

B.3.4 Sampling d

In this section, we construct the posterior sampler of d. Let

Xτ = (1T τ),

d = (d0 d1).

Then (74) can be written as

q = Xτd+ εq.

47



Then we have

log(p(q|d0, d1, τ, ω2
q )) ∝ −

1

2ω2
q

(q −Xτd)′(q −Xτd).

we also have

log(p(d)) ∝ −1

2
(d− µd)′V −1d (d− µd).

Then, the posterior d is distributed as N (d̂, K−1d ), where

Kd = (
X ′τXτ

ω2
q

+ V −1d ),

d̂ = K−1d (
X ′τq

ω2
q

+ V −1d µd).

B.3.5 Sampling ω2
q

In this section, we show the posterior sampler of ω2
q .

ω2
q ∼ IG(νω2

q
+
T

2
, Sωq +

1

2

T∑
t=1

ε2q,t).
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C Appendix: Additional Results

Figure 6: Estimated Slope λt and Density of ωλ for M2 and M4 with University of
Michigan Inflation Expectation Survey Data.

Figure 6 shows that using University of Michigan inflation expectation survey data, M2

and M4 still have similar time-varying λt with the case of using SPF data case in M2 and

M4. Also, Figure 6 shows that the posterior densities of ωλ under M2 and M4 are bimodal

and have almost no mass around 0 in the University of Michigan inflation expectation

survey data case. The log Bayes factors associated with M2 and M4 using University of
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Michigan inflation expectation survey data are 4.0 (0.71) and 58.3 (3.84), respectively.

They are close to 4.1 (0.12) and 57.2 (3.57), which are the log Bayes factor associated

with M2 and M4 in Table 2.
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