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Abstract

This paper formally tests for time variation in the slope of the Phillips curve
using a variety of measures of inflation expectations and real economic slack. We
find that time variation in the slope of the Phillips curve depends on the measure
of inflation expectations rather than the measure of real economic slack. We find
strong evidence in support of the time-varying slopes of the Phillips curve with
different measures of inflation expectations. Thus, we conclude that the slope of
the Phillips curve is time-varying.

Keywords: Bayesian estimation, The slope of the Phillips curve, Unobserved Com-
ponents Model.
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1 Introduction

The original Phillips curve describes the empirical relationship between inflation and

unemployment rate (Phillips, 1958). Other versions that use related measures of real



economic activity are later considered. Estimating this relationship is important for a
number of reasons. For example, many central banks need to maintain both price stability
and full employment. But these two goals might be not consistent. Understanding the
trade-off between these two goals is therefore important. In addition, at the aftermath
of the financial crisis of 2008-2009, inflation remained stable while there was a surge in
unemployment rate. This is often referred to as the “missing disinflation” puzzle. One
explanation for the puzzle is that the slope of the Phillips curve has become flatter (e.g
Bean, 2006; Gaiotti, 2008; Ihrig et al., 2010; Kuttner and Robinson, 2010), which calls

into question of the stability of the Phillips curve.

Many papers have documented changes in the slope of the Phillips curve. Examples
include Ball and Mazumder (2011), Roberts (2006), Atkeson and Ohanian (2001), and
Mishkin (2007). To test for time variation in the slope of the Phillips curve, these papers
estimate constant-coefficient Phillips curve using split samples and check whether the
slope changes considerably across different samples. Rather than model the slope of
the Phillips curve as constant and compare the estimated slope of the Phillips curve in
different samples, some studies model the slope as time-varying. Examples include Stella

and Stock (2012), Chan et al. (2016), and Kim et al. (2014).

However, there are two issues for assuming the slope of the Phillips curve as time-varying.
First, the conclusion that the slope of the Phillips curve changes are challenged by some
recent studies. For example, Gordon (2013) finds that the slope of the Phillips curve is
stable by estimating a model with a hybrid Phillips curve. Coibion and Gorodnichenko
(2015) estimate many models with standard expectation-augmented Phillips curve using
a variety of measures of inflation expectations and find that evidence for changes in the
slope of the Phillips curve is mixed. Second, the time-varying parameter specification
might lead to over-parameterization compared to the constant-coefficient specification,

as pointed out by Chan et al. (2012), Nakajima and West (2013), and Belmonte et al.



(2014). Therefore, one should be cautious about modeling the slope of the Phillips curve

as time-varying without testing whether this specification is relevant.

Given these considerations, we consider a range of models with an embedded Phillips
curve using a variety of measures of inflation expectations and real economic slack. We
then test for time variation in the slope of these Phillips curves using the method proposed
by Chan (2018). We find that the Bayes factors prefer models with time variation in the
slope of the Phillips curve relationship than the restricted constant slope case. In addition,
we find that the posterior mass of the variance that governs the time variation in the slope
of the Phillips curve does not center around zero. Based on these strong evidence in favor
of the time-varying slope of the Phillips curve from unobserved components models, we

conclude that the slope of the Phillips curve is time-varying.

Formal tests of time variation in the slope of the Phillips curve are recently implemented
by Berger et al. (2016) and Karlsson et al. (2018). Karlsson et al. (2018) test for time
variation within the framework of a time-varying parameter Bayesian VAR using new
tools for model selection proposed by Chan and Eisenstat (2018). By comparing a bivari-
ate VAR with constant coefficients with a time-varying VAR, Karlsson et al. (2018) find
strong evidence in favor of the latter and conclude that the slope of the Phillips curve is
unstable. Instead of jointly testing time variation in all the parameters, our approach is

more specific and tests only if the slope coefficient of the Phillips curve is time-varying.

Our paper is most related to Berger et al. (2016). They estimate a model with a New
Keynesian Phillips Curve in which the trend inflation is interpreted as long-run inflation
expectations. They then test for time variation in the slope of the Phillips curves using
the stochastic model specification search approach proposed by in Frithwirth-Schnatter
and Wagner (2010). Berger et al. (2016) find that the time-varying slope specification is
rejected by the stochastic model specification search and conclude that the slope of the

Phillips curve is not time-varying.



Our paper is different from Berger et al. (2016) in three aspects. First, we consider a
wider range of measures of inflation expectations and economic slack. In particular, we
do not only consider the trend inflation as a measure of inflation expectations, but also
consider survey-based inflation expectations and a variety of measures of real economic
slack. Second, we directly compute the Bayes factor in favor of the model with a time-
varying Phillips curve via the method proposed by Chan (2018) rather than stochastic
model specification search as in Berger et al. (2016). Finally, unlike Berger et al. (2016),

we find strong evidence in favor of the time-varying slope of the Phillips curve.

The remainder of this paper is organized as the follows: in Section 2, we describe the
models with different specifications for the Phillips Curve. In Section 3 we describe how
we test the time variation in the slope of the Phillips curve. Section 4 describes the
results of the test for the time variation of the slope of the Phillips curve. In Section 5,

we conclude that the slope of the Phillips curve is time-varying.

2 Specifications for the Phillips Curve

We consider two classes of models for modeling the Phillips Curve: the univariate unob-
served components models with stochastic volatility and the bivariate unobserved com-
ponents models with stochastic volatility. For each model, we need a measure of inflation
expectations and a measure of economic slack. For the univariate models, the unobserved
component of real economic activities is the trend of real economic activities, z;, denoted
as z;. Then, we use the deviation from the trend, x; = 2z; — 2z}, as a measure of economic
slack. We will use observable measures for the inflation expectations, E;m; 1, such as
the average of the past four quarters inflation or Survey of Professional Forecasters(SPF)

inflation expectations.

A rapidly growing literature highlights that trend inflation has important implications



for the specification of the NKPC (e.g. Kozicki and Tinsley; Ascari, 2004; Cogley and
Sbordone, 2008). Thus, we also consider bivariate unobserved components models to
jointly model real economic activities and inflation. In the bivariate case, the additional
unobserved component is the trend inflation, denoted as 7;. In the spirit of Beveridge
and Nelson (1981), 7, can be interpreted as the long-run inflation expectations. The
estimated trend inflation usually has substantial variance. To reduce the variance of the
estimated trend inflation, Chan et al. (2018) estimate trend inflation by linking Blue Chip
ten years inflation forecasts to trend inflation. With the additional information from the
Blue Chip ten years inflation forecasts, the variance of 7, decrease substantially. Thus,
in addition, we also consider the models with Phillips curve linking Blue Chip ten years

inflation forecasts, ¢;, to trend inflation, ;.

We will estimate altogether eight models from these two classes of models, using Blue Chip
ten years inflation forecasts, ¢;, different measures of real economic slack, x;, and different
measures of inflation expectations, E;m1 1. we will give the details of the univariate and

bivariate unobserved components models in Section 2.1 and Section 2.2.

2.1 Univariate Unobserved Components Model with Stochastic

Volatility

Let m; and z; denote the inflation rate and level of economic activities respectively. And
let z; denote the trend of real activities. Then x; = 2, — 2/ is a measure of the economic

slack such as unemployment gap or the output gap. Considering the following class of



univariate unobserved components models with stochastic volatility:

e — Eymir = M(2e — 27) + €7, eT ~ N(0,eM), (1)
Ae = A+ €7 e~ N(0,03), (2)
2 =2 + ey (3)
et = Q1e4-1 + p2er—2 + &y, ey ~ N(0,02), (4)

where \; is the slope of the Phillips curve, E;m;,; represents different measures for expec-
tations of inflation. A, and 7, are modeled as random walk. e, follows an AR(2) process.
We consider two different specifications for z;: when z; represents unemployment rate,

z; is modeled as random walk:

*

7=z e, i ~ N(0,w2). (5)

when z; represents output level, the growth of z;, Az}, is modeled as random walk:
Azf = Azl 4, e~ N(0,w2). (6)
2.2 Bivariate Unobserved Components Model with Stochastic

Volatility

Next, we augment the univariate unobserved componets models to also model trend

inflation. More specifically, the class of bivariate unobserved components models with



stochastic volatility can be specified as

T — T = M2 — 2)) +€F, er ~ N(0,eM), (7)
Ae=Ao1+6), e} ~ N(0,w3), (8)
T =Ti_1 + £, e; ~ N(0,e%), 9)
2 =2 + ey, (10)
er = Prer—1 + P2ero + €5, ey ~ N(0,w7), (11)

As before, either z; or Az is modeled as a random walk,

o=z te e ~N(0,02), (12)

Az = Azl +eF, &~ N(0,02). (13)

In addition, we also link the trend inflation 7; to the Blue Chip inflation forecasts by

adding the following equation:

q: :do—f—let‘i‘Efg, 5;1 NN(O,W?), (14>

where ¢; is Blue Chip ten years forecasts. Following Chan et al. (2018), we allow the
possibility that the forecasts are unrelated to the trend inflation by introducing the in-
tercept dy and slope coefficient d;. When dy = 0 and dy = 1, the Blue Chip forecasts are

an unbiased measure of the trend inflation.



2.3 Specific Models

We provide a brief summary of the Philips curve models in Table 1. The details of these
models are provided in Appendix A. In Table 1, we denote 1; and u; as the output and the
unemployment rate, respectively. y; is the potential output and 1, represents the natural
unemployment rate. We have two measures of economic slack: the output gap, y.—y; and
the unemployment gap, u; — v;. We have four measures of inflation expectations: Thie—1>
Tiet1> Te> and gq;. T,y Tepresent backward-looking inflation expectations, measured
as the average of past four quarter inflation. Ty41 Tepresent forward-looking inflation
expectations, measured as the SPF one year inflation forecasts. 7; are the trend inflation.
q; are the Blue Chip ten years inflation forecasts. In M7 and M8, 7; are estimated with
the additional information of Blue Chip ten years inflation forecasts, ¢;.

Table 1: Summary of the Phillips Curve Models.
Model Unobserved Component FEconomic Slack Inflation Expectations

M1 Vs U — Vg 7Tt€‘t71
M2 Vs U — Uy 7Tf‘ e+
M3 vy Ye —Yf Tijt—1
M4 vy Y — Yi ﬂ-te\t—l—l
M5 Vg, Ty U — Vg T

M6 Yy Tt Y — Yi Tt

M7 Vg, Ty Uy — Uy Tey G
M8 Uiy T Yt — Yi Tt, 4t

3 Testing for Time Variation

In this section, we outline the methodology to test for time-variation. We first give an
overview of the Bayes factor and Savage-Dickey density ratio and then introduce a new

method of calculating the Bayes factor proposed by Chan (2018).



3.1 Bayes Factor and Savage-Dickey Density Ratio

To demonstrate the method of testing for time variation in the slope of the Phillips curve,

we first consider the following unobserved components model with stochastic volatility:

T — Bymip = Ny + €7, gp ~ N(07 eht)a (15)

A= N1+ 5?7 5? ~ N(O,wi), (16)

where 7, is the inflation rate at time ¢, E;m; 1 is a measure of expected inflation at time
t 4+ 1 given the information at time ¢, x; is a measure of real economic slack, ); is the
slope of the Phillips curve. We model the slope, \;, as a random walk process instead
of a stationary AR(1).! To test whether the slope, A, is time-varying, we can compare
the model (15)-(16) to a restricted version where the slope is constant, i.e., w3 = 0.
Denote the former model as Model 1 and the restricted version Model 2. One popular

model comparison criterion for comparing these two models is the Bayes factor in favor

of Model 1 against Model 2, defined as

p(y | Model 1)
BFi, = ’
p(y | Model 2)

where p(y | Model i) is the marginal likelihood for Model;. The corresponding posterior

odds ratio is defined as

p(Model 1 |y)  p(Model 1)
= X BFlg.
p(Model 2 | y)  p(Model 2)

Assume that the prior model probabilities are equal, i.e., p(Model 1) = p(Model 2), the

posterior odds ratio in favor of Model 1 reduces to the Bayes factor BF5. For example,

!Eisenstat and Strachan (2016) argue that the random walk assumption has two main advantages for
macroeconomic applications. First, the random walk specification can be a parsimonious approximation
to a stationary specification with high persistence. Second, random walk specification implies greater
smoothness than the stationary model with low persistence.



BF15 = 10 means that model Model 1 is 10 times more likely than model Model 2 given

the data.

The Bayes factor is commonly used to compare models. However, the main challenge here
is that it is often difficult to compute the marginal likelihood of models with time-varying

parameters.

Fortunately, one simpler method is available when we need to compute the Bayes factor
for nested models. Specifically, the Bayes factor can be calculated by using the Savage-
Dickey density ratio (Verdinelli and Wasserman, 1995). This approach requires only the
estimation of the unrestricted model. For example, the Bayes factor in favor of Model 1

against Model 2 can be obtained using the Savage-Dickey density ratio as

where the numerator is the marginal prior density of w} evaluated at 0, and the denomi-
nator is the marginal posterior of w3 evaluated at 0. Intuitively, if w3 is more likely to be
0 under the prior density relative to the posterior density, this can be viewed as evidence
in favor for the time-varying slope of the Phillips curve. However, this easier method
cannot be directly applied in our setting due to two related issues. First, the value 0
is at the boundary of the parameter space of w?. Therefore, the Savage-Dickey density
ratio approach is not applicable. Second, w3 is often assumed to have an inverse-gamma
prior, which has zero density at zero. To deal with these two difficulties, we follow the
method proposed by Chan (2018). Specifically, we use the so-called non-centered pa-
rameterization discussed in Frithwirth-Schnatter and Wagner (2010)—we work with the
unsigned standard deviation, wy, which has support on the whole real line. Then we

directly calculate the relevant Bayes factor using the Savage-Dickey density ratio.

10



3.2 Non-centered Parameterization

Next, we briefly discuss the non-centered parameterization. First, we define A\, = A\g +

wy A, then, the state space model in (15)-(16) can be written as follows:

Ty — Et7Tt+1 = ()\0 + WAXt)xt + 8?—, 5? ~ N(O, €ht>, (].7)

Xt = Xt—1 + 65, 5? ~ N(07 1), (18)

where Xo = 0.

In this model, we assume wy ~ N(0,V,,), which has two main advantages. First, by

a change of variable (Kroese and Chan, 2014), the implied prior for w} is G(3, 2Vlw)'
This gamma prior has more mass concentrated around small values of w?. Therefore, it
provides shrinkage—a priori it favors the more parsimonious constant—coefficient model.
Second, it is a conjugate prior for wy, under the non-centered parameterization it therefore
facilitates computation. The sign of wy is not identified, but alteration of the sign dose
not change the likelihood value. After the non-centered parameterization of model (15)-

(16), the Bayes factor BFj5 = p(wy = 0)/p(wx = 0 | y), obtained by using Savage-Dickey

density ratio, can be directly calculated by method proposed by Chan (2018).

4 Results

In this section, we first estimate six different models embedded with the Phillips curve,
M1-M6, and test the time variation in the slopes. In addition, we estimate two additional
model, M7 and M8, that use additional information of Blue Chip ten years inflation
forecasts. The details of estimation are provided in Appendix B. We then test the time

variation in the slopes of the Phillips curve under these two models.
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Our data consist of quarterly CPI inflation rate, (civilian seasonally adjusted) unem-
ployment rate from 1955Q1 to 2013Q1, SPF one year inflation forecasts from 1982Q1 to

2013Q1,% and Blue Chip ten years inflation forecasts from 1982Q1 to 2013Q1.

To formally test if there is substantial time variation in the slope of the Phillips curve
A¢, we compute the Bayes factor in favor of the six different unrestricted models, M1-M6,
against their corresponding restricted versions where ), is constant (wy = 0). The test
results for time variation of slopes of different models with the Phillips curve are shown
in Table 2.

Table 2: Estimated Log Bayes Factors and the Numerical Standard Errors.
M1 M2 M3 M4 Mb M6

Log BF 438 (0.08) 4.1 (0.12) 84 (2.05) 57.2 (357) 0.2 (0.03) 0.7 (0.06)

Overall for most models, the data prefer the version with time variation. Specifically,
the log Bayes factors associated with M1, M2, M3, M4 are all larger than 4, indicating
substantial time variation in the slope, A\;. On the other hand, the log Bayes factors
associated with M5 and M6 are small but positive, suggesting slight evidence in favor of

time variation in ;.

To corroborate these model comparison results, we plot the posterior estimates of A\; and
wy in Figures 1 and 3. First, Figure 1 shows the results for the Phillips curve specified as
the univariate unobserved components model with stochastic volatility. Figure 3 shows
the corresponding results for the bivariate unobserved components model with stochastic

volatility.

2We also consider median expected price change next 12 months covering the period 1982Q1-2013Q1
from University of Michigan inflation expectation survey data. In Appendix C, we show that the results
are similar to those of using SPF one year inflation forecasts.

12
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Figure 1: Estimated Slope A\; and Density of wy for the Phillips Curves Specified as
Univariate Unobserved Components Model with Stochastic Volatility.
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Consistent with model comparison results, the right panel of Figure 1 shows that estimates
of the slopes of the Phillips curve, \;, under M1 and M2 are volatile and time-varying.
They are always negative, which is consistent with the idea of the Phillips curve—there is
a trade-off between inflation and the unemployment gap. Also, starting from the 1980s,
A+ becomes flatter and is closer to zero. Estimates of the slopes of the Phillips curve, A,
under M3 and M4 are also volatile but they mostly move around 0. This suggests that
real GDP gap has little effects on inflation. These results are similar to those in Berger
et al. (2016) and Chan and Grant (2017). They both find the magnitude of ); is small
when the economic slack is measured as the output gap. Comparing models with different
measures of inflation expectations, we find that the \; with the SPF one year forecasts is
smoother than the \; with the average of past four quarter inflation. To understand this
difference, we plot the SPF one year forecasts (solid line) and the average of past four

quarter inflation (dash line) in Figure 2.

I I I I ]
1980 1985 1990 1995 2000 2005 2010 2015

0 1

Figure 2: Inflation Expectations, Thie—1 and The41-

Figure 2 shows that the SPF one year forecasts are smoother than the average of past

four quarter inflation. Thus, the SPF one year forecasts lead to a smoother \; than the

14



average of the past four quarters of inflation.

The left panel of Figure 1 shows that the posterior densities of wy under M1, M2, M3,
and M4 are all bimodal and have almost no mass around 0. This can be viewed as strong

evidence in support of the time-varying A;.
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Figure 3: Estimated Slope )\; and Density of w) for the Phillips Curves with Bivariate
Unobserved Components Model with Stochastic Volatility.

The right panel of Figure 3 shows that estimates of the time-varying slopes of the Phillips

curve, \;, of M5 and M6 are insignificant and stable around 0. The left panel of Figure

15



3 shows that the posterior densities of wy, under M5 and M6 are bimodal, but have
a considerable mass around 0. However, compared to the prior density, the posterior
density at 0 is lower, suggesting w, is less likely to be 0 given the data. This is consistent

with the model comparison result that shows moderate evidence on time variation of A;.

To summarize our results so far, in the univariate case, the slope of the Phillips curve is
conclusively time-varying. In the bivariate case, the evidence on the time variation on

the slope of the Phillips curve is suggestive but not conclusive.
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Figure 4: Trend inflation: 7;.

The inconclusive evidence in the bivariate case could be due to the substantial variance
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of the estimated trend inflation. To investigate this possibility, we follow Chan et al.
(2018) who link trend inflation 7; to the Blue Chip inflation forecasts, which substantially
reduces the variance of the estimated trend inflation. Following them, we add additional
measurement, equation linking the trend inflation to the Blue Chip ten years inflation
forecasts to M5 and M6 respectively, and then we have M7 and M8. Figure 4 shows that
with the additional information from the Blue Chip ten years inflation forecasts, M7 and

MBS have a substantially smaller variance of the estimated trend inflation than M5 and

M6.
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Figure 5: Estimated slope A; and density of wy of M7 and M8

Next, we test the time variation in the slopes under M7 and M8. The log Bayes factors

17



associated with M7 and M8 are 3.5 (0.24) and 51.0 (3.46), respectively. These values
are large, indicating substantial time variation in the slope, ;. Consistent with model
comparison results of M7 and M8, Figure 5 shows that estimates of the slopes of the
Phillips curve, A, of M7 and M8 are volatile and the posterior densities of wy, under M7
and M8 are bimodal and have almost no mass around 0. This shows strong evidence in

favor of time variation in the slope.

In summary, in the univariate case, the slope of the Phillips curve is conclusively time-
varying. Moreover, in the bivariate case, the slope of the Phillips curve is also conclusively

time-varying with more precise estimates of the trend inflation, 7;.

5 Conclusion

In this paper, we estimate eight Phillips curve models and test for time variation in the
slopes of the Phillips curve under these models. The test shows that the Bayes factors
favor models with time variation in the slope of the Phillips curve relationship than the
restricted constant slope case. Further, we find that the posterior mass of the variance
that governs the time variation in the slope of the Phillips curve does not center around 0.
Our formal test provides strong evidence in favor of the time-varying slope of the Phillips
curve from unobserved components models. Therefore, we conclude that the slope of the

Phillips curve is time-varying.
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A Appendix: Details of the Specific Models

In this section, we outline the eight model M1-M8 in detail. In general, we have two classes
of models: univariate and bivariate unobserved components models. The former includes
M1-M4 which use different measures of economic slack and inflation expectations. The

latter includes M5-MS8. The specifications for each model are discussed below.

Al M1

M1 is a univariate unobserved components model where 7; is inflation. \; is the slope
of the Phillips curve. E;m; 1 is measured as the average of past four quarter inflation,
7Tte|t71:(7Tt|t,1 + Tje—2 + Typ—s + Tee—a)/4. Ay is modeled as random walk. u; represents

unemployment rate. e; follows an AR(2) process. NAIRU, 14, is modeled as random
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walk. Log of stochastic volatility, h;, is modeled as random walk.

T — i1 = Me(ur — 1) + €7, eT ~ N(0,eM), (19)
U = Vp + €y, (20)
et = Q1611 + P2€y2 + €4, ey ~ N(0,02), (21)
vy = v + &y, eV ~ N(0,w?), (22)
A= Mo+ &), e} ~ N(0,w3), (23)
hy = hy_y + el el ~ N(0,w?). (24)
A2 M2

M2 is a univariate unobserved components model where 7; is inflation. ), is the slope of
the Phillips curve. E;m;y; is measured as SPF one year inflation forecasts, 7rt€+1‘t. A¢ 1S
modeled as random walk. u; represents unemployment rate. e, follows an AR(2) process.

NAIRU, 14, is modeled as random walk. Log of stochastic volatility, h;, is modeled as

random walk.

T — Ty = Me(ur — v) + €7, eT ~ N(0,e™), (25)
U = Uy + €y, (26)
er = Q1e4-1 + P2er—2 + &7, ey ~ N(0,02), (27)
V=1 + &f, eV ~ N(0,w?), (28)
A= N1+ 7, g ~ N(0,63), (29)
hy = hyy + el el ~ N(0,w3). (30)
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A3 M3

M3 is a univariate unobserved components model where 7; is inflation. \; is the slope
of the Phillips curve. E;m; 1 is measured as the average of past four quarter inflation,
7rf|t71:(7rt|t,1 + T2 + Tyje—3 + Tye—a)/4. Ay is modeled as random walk. Cyclical com-
ponent, ¢, follows an AR(2) process. y; represents real output level. Underlying output
trend growth, Ay, is modeled as random walk. Log of stochastic volatility, A, is modeled

as random walk.

T — T = MY — yf) + &7, er ~N(0,€), (31)
Yo =y + e, (32)

Ct = Q1011 + PaCr2 + &, ey ~ N(0,072), (33)

Ay = Agiy + el SN0, (6

A= N1+ €7, er ~ N(0,w3), (35)

he = hy_q + €l el ~ N(0,w7). (36)

A4 M4

M4 is a univariate unobserved components model where 7, is inflation. \; is the slope
of the Phillips curve. E;m;1; is measured SPF one year inflation forecasts, 7y e A¢ 1S
modeled as random walk. y; represents real output level. Cyclical component, ¢;, follows

an AR(2) process. Underlying output trend growth, Ayf, is modeled as random walk.
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Log of stochastic volatility, h;, is modeled as random walk.

T — T = MY — Y1) + &7, ef ~N(0,€M), (37)
Y=y, +c, (38)
Gt = Q1611 + PaCi2 + £, ey ~ N(0,w2), (39)
Ayl = Ay | + &), eVt ~ J\/’(O,wj*), (40)
A= N1 F e, e} ~ N(0,w3), (41)
hy = hi_y + €}, el ~ N(0,w}). (42)
A5 M5

M5 is a bivariate unobserved components model where 7, is inflation. ), is the slope of
the Phillips curve. Long-run inflation expectations are measured as trend inflation 7, and
follow a random walk. J); is modeled as a random walk. w; represents unemployment
rate. e; follows an AR(2) process. NAIRU, 14, is modeled as random walk. Two log of

stochastic volatility variables, h; and g;, are modeled as a random walk.

~ N(0, "), (43)

Ty — Ty = )\t(ut — Vt> + 5?, S

=+

T =Ti1+ €, el ~ N(0,e%), (44)

U = l/t+6t,

e = Prei—1 + Paer_o + €, gf ~ N<07W2)7 (45)
Vi =1 + ey, gV ~ N(0,w?), (46)
At = A1+, e) ~ N(0,w?), (47)
hy = hy_y + €, el v N(0, W), (48)
9t = gi1 + €, el ~ N(0,w)). (49)
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A.6 M6

M6 is a bivariate unobserved components model where 7; is inflation. ); is the slope of
the Phillips curve. Long-run inflation expectations are measured as trend inflation 7, and
follow a random walk. J); is modeled as a random walk. ; represents the real output
level. Cyclical component, ¢, follows an AR(2) process. Underlying output trend growth,
Ayf, is modeled as a random walk. Two log of stochastic volatility variables, h; and g,

are modeled as a random walk.

T — T = Ny — yf) +&f, ep ~ N(0,¢M), (50)
T =Ti_1+ €, e] ~ N(0,e%), (51)

Ye =y + i, (52)

Ct = Q1011 + PaCi—2 + €, ey ~ N(0,02), (53)

Ayl = Ay; | + &7, el™ ~ N(0, wz*), (54)
A =A1+e), ep ~ N(0,03), (55)

he = ey + €7, et ~ N(0,w3), (56)

9 = g1 + €, ef ~ N(0,7). (57)

AT M7

MT7 is a bivariate unobserved components model where 7, is inflation. ); is the slope of
the Phillips curve. Long-run inflation expectations are measured as trend inflation 7, and
follow a random walk. \; is modeled as a random walk. w; represents unemployment
rate. e, follows an AR(2) process. NAIRU, v, is modeled as a random walk. Two log of

stochastic volatility variables, h; and g;, are modeled as a random walk. ¢; is Blue Chip
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ten years inflation forecasts.

T — 1 = M(uy — 1) + €7, el ~ N(0, eht), (58)
Tt = T¢—1 + 5;, 51— ~ N(O, egt)7 (59)

Uy = Vg + €y,

ey = P1€1-1 + G262 + €4, ey ~ N(0,072), (60)
vy = v + e, g/ ~ N(0,w?), (61)
A= A1+ e, e} ~ N(0,w?), (62)
hy = hey + £, et ~ N(0,w), (63)
Gt = g1 + €7, el ~ N(O,wz), (64)
g = do + di1i + €}, el ~ N(0, wg). (65)

A.8 M8

MBS is a bivariate unobserved components model where 7; is inflation. \; is the slope of
the Phillips curve. Long-run inflation expectations are measured as trend inflation 7, and
follow a random walk. \; is modeled as a random walk. 3, represents the real output
level. Cyclical component, ¢;, follows an AR(2) process. Underlying output trend growth,
Ayf, is modeled as a random walk. Two log of stochastic volatility variables, h; and g,

are modeled as a random walk. ¢, is Blue Chip ten years inflation forecasts.
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=T = M(ye — yi) + €7, el ~ N(0,eM),

Ty = Ti—1 + &, el ~N(0,e%),
Y =y +c,
Ct = G101 + P2Ci—2 + €, ey ~ N(0, W?);
Ay; = Ay + &, et ~ N(0,w;.),
A= A1 +ep, e} ~ N(0,w3),
hy = hy_y + €l el ~ N(0,w3),
Gt = Gi—1 + €, el ~ N(0,w)),
¢ = do + di7i + €F, el ~ N(0,w).
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B Appendix: Estimation Details

In this appendix we provide the details of the priors and estimation for M5, M6 and M7
are outlined in this section. Estimation for M1 and M2 is similar to M5, estimation for
M3 and M4 is similar to M6, and estimation for M8 is similar to M7. Thus, for brevity,

we omit estimation details for these five models.

B.1 M5
B.1.1 Prior

The parameters under M5 are 7, v, ¢, A\, Ao, wy, w2, w2, h, g.

We assume the following priors:

70 = 0, 71 ~ N (70, V7e%), Ao ~ N(ag, V), eo = 0, e_1 =0,
oA~ N0, V), wy =Vl wn = Vo2, W~ TG(ve, ), wE~ TG (v, S,
V., =02, V,, =02, V., = 0.25% Ve =3, S, =1x (v, — 1),
Vy, = 0.252, V, = 10, V, = 10, v, =3, S, =1 (v, —1),
ag=—025  Vi=(Vi,, Vi),  B=(ao,0), ¢ ~ N(¢o, V), V, =1,
b0 = (0.5:0.2).

B.1.2 Likelihood

In this section, we derive the densities of m# = (7y,...,77) and v = (uy,...,ur), which

will be used to construct the posterior sampler.

Let

Ay = diag(Ao + W,\Xl, Ao + CL)AXQ, Ao + OJ,\XS, Sy Ao F WAXT)'
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Then, we have

T—7—MA\(u—v)=¢e"
Then, the log conditonal density of 7 is

~ 1
log p(m | 7, u, v, ¢, Ay Aoy Why W, Wy We, B) X —§<7T—T—A)\(u—V)),S;I(W—T—A/\(u—l/)),

where
S, = diag(e, ez s . ehr).
Let
1 0 0 0 0
—¢p 1 0 0 .. 0
Hy=1-¢y —¢2 1 0 0
0
| 0 —p1 —¢2 1]
Then, we have
H¢€ = e°.

Then, the log conditional density of u is

T 1
log p(u | v, e,w,, we, ¢) x —Elong — ﬁ(u —v) HyHy(u—v).

B.1.3 Sampling 7

In this section, we derive the joint prior density of 7 = (7y,...,7r)’, which will be used

to construct the posterior sampler of 7.
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Let

Sy = (Vzeot, e%,e% ... eT).
and _ -
1 0 0 0 0
-1 1 0 0 0
0 -1 1 0 0
H—

0o 0 -1 1 0
0
0 0 -1 1

Then, we have

Hr =¢".

Then,
T~ N(0,H'S,H™).

Then, the log prior density for 7 is
1 Iy o—1
log p(1) = —57 H'S,"Hr.
Then, we have

logp(T | T, u,v,e, ¢7 7€, Wy, Xa )‘Oa Wh, W, Wy, h7 g)

1 1
o —E(T,S;IT — 278 (1 — A\ (u —v))) — §T’H'5’g—1HT.

Then, the conditional distribution of 7 is

T NN(?,KT_l),
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where

7T=K (S (m— Ax(u—1))), K.=S5'+H'S;'H.

™

Since K, is a band matrix, 7 can be sampled using the precision sampler of Chan and

Jeliazkov (2009).

B.1.4 sample h and ¢

we sample h and g, following Kim et al. (1998).

B.1.5 Sample v

In this section, we construct the posterior sampler of v.

We have
v~ N, H 7 \W2H™).

Then, the log prior density of v is

T 1
log p(v) = 5 log w? — wv’H’Hu.

v

Then, the posterior distribution of v is

N, K1,

v

32



where

B Hé]‘L;s HH

K, T + ALSTTA,
and
H' Hju
D= KU~ — ST (1 — 7 — Ayu)).

e

B.1.6 Sample ¢

In this section, we construct the posterior sampler of ¢.

Let
b= ¢1
P2
and i i
o  C_1
c1 Co
Xoe=1¢c ¢ |
| CT-1 CT—2]
then, we have
e = Xy0+ €.

Then, the conditional distribution of ¢ is

¢~ N (6, K;)1(p € R)
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where

!
X¢e

2
We

n XX
6= K (V; 0+ ¢

-1 _ /-1
) K¢ —V¢ +

e

B.1.7 Sample P\

In this section, we construct the posterior sampler of A

We have
H)\ = EX.

Then, X is distributed as
N@O,H'H™Y).

Then, the log prior density of \is

1 ~ ~
logp(A\) = —§(>\’H’H)\).

Let

A, = diag(ul —Vi,U2 — Vo, U3 — V3,...,UT — VT)-
Then, we have

1 .~ ~ ~

—§(w§)\'AuS;1Au)\) — 2N Awn S H(m — 7 — Aoly)).
\ is distributed as
N KDY,

where

~

A= K}Tl(Auw)\S;l(ﬂ' — T — )\0Au>>, KX = HIH + wiAuS;lAu
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B.1.8 Sample )\; and w,

In this section, we construct the posterior sampler of Ay and wy.
Let X3 = (u —v, AN and B = (A, wy ),

Then, we have

T—1=XgB+e".

Then, § is distributed as
NG, K;Y,

where

Ks=V;' + X3S X, B =K (Vi Bo+ XpS; (m — 7).

B.1.9 Sample w?

In this section, we show the posterior sampler of w?.
The conditional distribution of w? is

T

5 S+ 5le = Xo6) (e = X,0))

G (v. + 5

B.1.10 Sample w?

In this section, we show the posterior sampler of w?.

The conditional distribution of w? is

T 1
ZG(v, + 5 S., + él/lHlHI/).
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B.2 M6
B.2.1 Prior

The parameters under M5 are 7, y*, v, ¢, A, Ao, Wy, W7, Wi

We assume the following priors:

70 =0, 71~ N (70, V7e%), Ao ~ N(ag,Vy,), co =0, c_1 =0,
wy ~N(0,V,,), Wy = VJ!Q, wp, = VJ,L/Q, W ~IG(Ve, S,), Wi ~ U0,V ),
V., =0.2, V., = 0.2, V., =0.252, Ve=13 S, =1x (v, — 1),
Vy, = 0.252, V. = 10, V, = 10, vy~ Ny, V) Vi, = 0.001,
ap=—025, V= (Vi,, V), B = (ao,0), V, = 100 * I, V, =1,

Yo = (750, 750), ¢ ~ N(¢0, V¢), ¢0 = (134, —07)
B.2.2 Likelihood

In this section, we derive the densities of 7 = (my,...,77) and y = (y1,...,yr), which

will be used to construct the posterior sampler.

Let

Ay = diag()\o + WAX1, Ao + CUAXQ, Ao + W)\Xg, D P CUAXT).

Then, we have

T—T—MN(y—y*") =¢e".

Then, the log conditional density of 7 is

* N 1 * -_— *
logp(m | 7,y, Y™, ¢, A\, Ao, Wh, Wy, Wy, we, h) —§(W—T—Ax(y—y NS Hm—1—Ax(y—y*)),
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where

S, = diag(e, ez s . ehr).

Let

1 0 0 0 .. 0
-9 1 0 0 .. 0
0
0 —¢1 —¢2 1]
Then, we have
y=y +c
H¢C = e°
Then, the log conditional density of y is
* * ok T 2 1 *\/ 7/ *
log p(y | ¥*, ¢, Wy, we, &, Y5, Y1) X —5 logw; — z_oﬂ(y —y" ) HyHy(y — y*)

B.2.3 Sampling 7

In this section, we derive the densities of 7 = (74, ...

the posterior sampler of 7.
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Let

Sg — (‘/;691, 6927 693, . ’69T>
and _ -
10 0 0 0
-1 1 0 0 0
0o -1 1 0 0
H—

0 0 —-11 0
0
0 0 —1 1

Then, we have

Hr =¢".

Then,
T~ N(O,H'S,H™).

Then, the log prior density for 7 is
1 Iy o—1
log p(1) = —57 H'S,"Hr.
and we have

logp(T | ™Y, y*’ C, ¢7 Yy Wey Wy, )‘) Aﬂ)wha Wi, Wy, ha g)

1 1
x —5(7',5;17' — 278 (1 — M (y — ")) — §T/H/SQ_1HT.

Then, the conditional distribution of 7 is

T NN(?,KT_l),
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where

T=K (SN (= Ay —y))), K.=S8"+H'S'H.

B.2.4 Sample h and g

we sample h and g, following Kim et al. (1998).

B.2.5 Sample y*

In this section, we construct the posterior sampler of y*. Let

1 0 0 0 0

1 -2 0 0 0
Hy=10 1 -2 1 0
0

0 1 -2 1

then we have

HQy* _ &’y* + Ey*

where
~ * * * !/
Ay = (yO + AyO? _y070a cee 70) .
Let
ay* - H;l&y*
Then,

y*~ Nays,wy. (HyHy) ™).
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Then, the log prior density of y* is

log p(y”) = =5 logwye — 5= (y" — ) HyHa(y" — ).
y*
The posterior distribution of y* is
Ny K5,

where
H.H H'H
po= o T2 LN SN,
w? Wy
and
o~ _ H,H y HIH Oy % _
7= K (Y 22 S AT — T — Ayy)).
w? Wi

B.2.6 Sample ¢

In this section, we construct the posterior sampler of ¢.

Let
o1

o5

ASS
Il
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and

_ . . .
C1 Co
Xo=1 ¢ o
| CT—1 CT—2 ]
then, we have
C = X¢¢ + 86.

Then, the conditional distribution of ¢ is
0~ N(§, K)o € R)

where

~ X'c X' X
_ pe—lyy—1 ¢ -1 _ -1 i
o=Ky (Vy ¢0+7)> K, =V, + 2

B.2.7 Sample v

In this section, we construct the posterior sampler of ~.

Let
v = (Y,¥y"1)
and _ _
2y5 — ¥4
3Yp — 2y*,4
Qryx = =AY

(T+ 1V)ys — Ty*,
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where

2 -1

3 -2
X, =

T+1 -T

Then,

y* =X,y + Hy'eV.

Then, the conditional distribution of v is

N@H K
where
X! H)Hyy* X/ HYHy X
o pe-1y-1 2 t2Y _ -1 yTT27 T2y
7= B e =) By=Vit =

B.2.8 Sample Py

In this section, we construct the posterior sampler of A

Let

H)\ = 5X.

Then, X is distributed as

N, H'H'™).

Then, the log prior density of N is

~ 1 ~ ~
logp(\) = —§(A’H’H)\).
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Let

Ay = diag(yr — Y1, 42 — Y5, Ys — Ys» - - - Y1 — Y1)

Then, we have
1 o~ ~ ~
—§(w§)\/AyS;1Ay)\) — 2N AywASH(m — 7 — AAy)).

X is distributed as
N, K,

where

~

X = K (AanS, (m — 7 — Aoh,)), K; = H'H + w2\, S7 A,

B.2.9 Sample \j and w)

In this section, we construct the posterior sampler of \g and wj.

Let X5 = (y — y*,AyX) and § = (Ao, wy)’, then, (50) can be written as
T—T7=XgB+e".

Then, [ is distributed as

where

Ky =V + X3S Xp, B:Kgl(VB*160+XgS;1(w—r)).
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B.2.10 Sample w?

In this section, we show the posterior sampler of w?.

The conditional distribution of w? is

L St (e — X0 (e — Xo0)).

ZG(v.
g(u+2 5

B.2.11 Sample wy-

In this section, we show the posterior sampler of wy«.

The conditional density of wy~ is not a standard density, however, can be sampled by

using Griddy-Gibbs .

B.3 M7

In equation (65) we link Blue Chip ten years inflation forecasts to trend inflation, so the
differences of estimation details between M7 and M5 are that M7 have different sampler
for 7, and has two more samplers for d = (dy d;) and wg. For brevity, we only display

the estimation details for 7, d = (dy d1), and w?.
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B.3.1 Prior

T0 = Oa T~ N(7_07 ‘/;'egt)a )\0 ~ N(a07 V)\o)a €y = 07 €1 = 07
wy~N(0,V,,,), wy~N(0,V,,), wh~N(0,V,,), w?~IG(v.,S,.), w,~2IGvy,5,)

V., =0.2, V,, =02, V,, = 0.252, v, =3, S, = 1% (v, — 1),
Vi, = 0.25% V; = 10, V, = 10, v, =3, Sy, = 1% (v, —1),
a0 =025, Vi=(ViVon)s  B=1(a0,0),  &~N(do,Vp), Vs =1L,
$o =(0.5;0.2), wi~ZIG(vg Ss,), v, =3, S, = 1 (v — 1), pa=(0 1),
Va=1.
B.3.2 Likelihood
In this section, we derive the densities of # = (7, ..., mr)’, which will be used to construct

the posterior sampler.

Let

Ay = diag(Ao + W/\Xla Ao + W,\Xza Ao + w,\X:«z, Aot WAXT)~

Then, we have

T—T7—MA(u—v)=¢".

Then, the log conditional density of 7 is
~ 1
log p(7 | T,u, v, ¢, X, Ao, Wh, Wx, Wy, We, Wy, d, h) X —5(W—T—A)\(U—V))/S;l(W—T—AA(U—V)),

where

S, = diag(e, ez s . ehr).
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B.3.3 Sampling 7

In this section, we construct the posterior sampler of 7.

Let
Sy = (Veedt, e%, e%, ... eIT).
and _ _
1 0 0 0 0
-1 1 0 0 0
0o -1 1 0 0
H =
0o 0 —-11 0
0
0 0 -1 1
Then, we have
Hr =€

Then,
T~ N(0,H'S,H ™).

Then, the log prior density for 7 is

1
log p(1) = —§T/H/SQ_1HT.

(74) can be written as

q = d01T+le+EZ, g* NN(O,W?IT)
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Therefore, we have

log(p(q|do, dy, T, wg)) x — (q — doly — di7) (q — doly — dy 7).

2&)3 IT
Then, we have

lng(T | ™ u,v,e, ¢7 Y5 We, Wy, Xa )\07 Wh, Wy, wga wqa d? hvg)

x —%(7'5;17' —27'S M7 — Ay(u— 1)) — %T/H/SQ_IHT — %(T'ag—zT — 27’%).
Then, the conditional distribution of 7 is
T~ N7 K,
where
P = K((S5)r — An(u— ) + D0 dolr) ;gd"lT) ), Ko=S7+H'S]H + w?i.

B.3.4 Sampling d

In this section, we construct the posterior sampler of d. Let

X'r = (1T T),
d - (do dl)

Then (74) can be written as
qg=X,d+ &
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Then we have

1
log(p(gldo, d, 7 w7)) o —5—(q = X;d) (g = Xrd).
q

we also have

tog(p(d)) o~ (d — na) V™' (d — o)

Then, the posterior d is distributed as N (d, K;'), where

XX,
Kd:( w2 +Vd 1)7
q
XL )
d=Ki' (S50 + Vi ha)

B.3.5 Sampling w;

In this section, we show the posterior sampler of wg.

T

T 1
wg ~ IQ(ng + 5, qu -+ 5 Zgat).
t=1
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C Appendix: Additional Results
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Figure 6: Estimated Slope A; and Density of w, for M2 and M4 with University of
Michigan Inflation Expectation Survey Data.

Figure 6 shows that using University of Michigan inflation expectation survey data, M2
and M4 still have similar time-varying \; with the case of using SPF data case in M2 and
M4. Also, Figure 6 shows that the posterior densities of wy under M2 and M4 are bimodal
and have almost no mass around 0 in the University of Michigan inflation expectation

survey data case. The log Bayes factors associated with M2 and M4 using University of
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Michigan inflation expectation survey data are 4.0 (0.71) and 58.3 (3.84), respectively.
They are close to 4.1 (0.12) and 57.2 (3.57), which are the log Bayes factor associated

with M2 and M4 in Table 2.
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