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Abstract— Autonomous underwater gliders frequently exe-
cute extensive missions with high levels of uncertainty due to
limitations of sensing, control and oceanic forecasting. Glider
path planning seeks an optimal path with respect to conflicting
objectives, such as travel cost and safety, that must be explicitly
balanced subject to these uncertainties. In this paper, we derive
a set of recursive equations for state probability and expected
travel cost conditional on safety, and use them to implement a
new stochastic variant of FMT∗in the context of two types of
objective functions that allow a glider to reach a destination
region with minimum cost or maximum probability of arrival
given a safety threshold. We demonstrate the framework using
three simulated examples that illustrate how user-prescribed
safety constraints affect the results.

I. INTRODUCTION

An autonomous underwater glider is an energy-efficient
mobile platform that is capable of monitoring the ocean for
long periods of time. Underwater gliders are used extensively
for applications such as environmental surveying [1], explo-
ration [2] and defence [3].

Gliders have minimal sensing capability and operate in
the open ocean. They only have precise localisation when
they are on the surface and can access global navigation
satellite systems such as GPS. While submerged, they are
subject to growing uncertainties that arise from control noise,
uncertain forecasts of ocean currents and imprecise underwa-
ter localisation, which inhibit closed-loop navigation. These
uncertainties can be resolved by surfacing, at the cost of
reduced speed of advance and increased risk of collision;
hence surfacing must be minimised. It is therefore important
to account for noisy state estimation to utilise the full
capability of a glider.

The uncertainty of a submerged glider’s state (most im-
portantly, position) grows over time, placing the glider at
increasing risk of catastrophic failure. While collisions with
reefs, facilities and vessels are important, political and reg-
ulatory boundaries must also be considered. In fact, virtual
obstacles may arise more frequently than physical obstacles
in the ocean and are critical for commercial operation of
gliders. Hence a path planning algorithm should consider
the likelihood of those failures while maximising its objec-
tive [4]. These considerations require evaluation of the state
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probability and the expected cost (i.e., energy consumption)
conditional on the path remaining collision-free.

Our approach to finding an optimal path with safety
constraints models failure as a singular event from which
the glider does not recover. We optimise the expected cost
by taking the expectation over paths in which failure does
not occur and constraining the expected probability of failure.
An exhaustive approach would be computationally expensive
and not scalable in the length of the control sequence.
Further, such an approach could not benefit from existing
computationally-efficient sampling-based path planners since
they require recursivity.

In this paper, we propose a stochastic variant of a
sampling-based planning algorithm for autonomous under-
water gliders. The key idea is a set of recursive equations
that calculate safety and cost distributions after executing
k + 1 controls using only the distributions after k con-
trols. The full trajectory history is not required. We exploit
this property by integrating the recursive state expansion
within a sampling-based planner called fast marching tree∗

(FMT∗) [5] which guarantees asymptotic optimality. We
present the stochastic variant of FMT∗in the context of two
objective functions. First, we consider a control policy that
minimises the conditional expected cost given a user-defined
safety threshold. Then, we consider a control policy that
maximises the probability of arriving inside a designated
region, conditional on collision-free transitions.

Our paper contributes a principled method to balance
between safety and energy cost using a recursive form
of state expansion that can be embedded in a variety of
sampling-based algorithms. We demonstrate three simulated
examples to show how the proposed framework can be used
for different settings. The first example shows how a control
policy is evaluated to measure the probability of safety and
the conditional expected cost. We then use the framework to
solve for the two objective functions and discuss how safety
constraints affect the results.

II. RELATED WORK

Path planning for autonomous underwater gliders often
aims to find an optimal path with respect to a single objective,
such as safety or energy cost. Since the glider is designed to
operate over an extended duration of time, minimising energy
cost has been of primary interest [6, 7]. In this work, both
physical and virtual obstacles are implicitly avoided while
finding the cost-optimal path. Treatments that neglect safety
underestimate the risk that an otherwise optimal may travel
dangerously close to obstacles [8]. On the other hand, safety



can also be optimised [9, 10]. In existing work, the planner
seeks the safest possible path considering risks from shipping
traffic and bathymetry [11]. Safety and cost are, however,
conflicting criteria; finding an optimal path for one aspect
may critically reduce its counterpart, as is shown in [4].
In this paper, we derive a framework that constrains risk,
allowing for an explicit balance between safety and cost.

A variety of planning algorithms have been used to find
optimal paths for underwater gliders [12–14]. In particu-
lar, sampling-based algorithms have been widely used for
efficient computation [15–17]. Our recent work introduces
FMT∗ [5] as a promising method for glider path planning
due to its efficiency and asymptotic optimality [8, 18]. How-
ever, extending these algorithms to the stochastic and safety
constrained case is not straightforward, because safety and
cost at a state depend not only on the previous state but also
on the entire state history. Here, we derive a set of recursive
equations that satisfies the requirements for use in sampling-
based algorithms and thus can be widely applied.

III. AUTONOMOUS UNDERWATER GLIDER:
MODELS AND NOTATION

A. Trim-based glider model

A trim-based model for representing glider dynamics as
a kinematic model is presented in our previous work [8, 18]
and summarised here for convenience. The dynamics of an
underwater glider G in the presence of ocean currents that
vary slowly in space and time relative to its size and rate of
motion can be represented as

ẋ = f (x(t),u(t)) + Vc(t), (1)

where x(t) is the 12-dimensional glider state at time t, u(t)
is the control vector and Vc is the 3-dimensional ocean flow
vector. Further details can be found in [6].

The attitude of the glider is controlled by moving a
component of its mass relative to its centre of buoyancy
and it is propelled by changing its net buoyancy (e.g., by
pumping water in and out of a ballast tank). Wings convert
a component of the net vertical force acting on the glider to
forward horizontal thrust as the glider moves up and down in
the z-direction. Depending on the glider’s design, the control
vector u(t) may consist, for example, of forces urp acting
on the moving mass and umb

, the scalar rate at which the
ballast mass is changing, thus u(t) =

[
urp(t) umb

(t)
]T

.
Controlling the glider in this way is energy expensive

and therefore limits the endurance of the glider. We seek
to minimise control expenditure. Instead of continuously
varying the control over time, we use the concept of trim
states. A trim state is a state of dynamic equilibrium in which
the glider will continue indefinitely in the absence of further
control inputs [6]. Essentially, the glider cycles between
upward and downward motion and at each net buoyancy
inversion point or waypoint, which is triggered by reaching
a target depth, we set the controls and let the glider go until
it reaches the next waypoint (target depth).
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Fig. 1. Change in probability variances in with respect to different glide
angles and Gaussian control noise. A 2D (x − z) slice is shown for
illustration, with three different glide angles values γ. Dashed lines represent
control noise, solid black lines show deterministic paths in the absence of
control noise, and coloured lines indicate resulting distribution over position
at target depth.

Using trim states, the dynamic problem is reduced to a
kinematic problem, where the kinematic state xk of the glider
at the kth waypoint has of 6 degrees of freedom,

xk = [xk, yk, zk, γk, θk,mbk]
T
, (2)

where (xk, yk, zk) is the position of the glider at control
index k, γk ∈ [±γmin,±γmax] is the glide angle, θk is the
heading angle and mb is the ballast mass. We assume the
ballast tank is either empty or full (i.e., mb ∈ {0,mbmax}).
Changing trim state from xk to xk+1 at each waypoint incurs
a cost rk. We assume that trim transitions are instantaneous.

In this paper, we denote the sequences of glider states and
controls as

Xn = x0x1 · · ·xn = Xn−1xn

Un = u0u1 · · ·un = Un−1un.
(3)

Given two consecutive glider states xk and xk+1 with
control uk, a safety variable vk is true if the transition
is collision free. We denote Vn as the sequence of safety
variables over Xn. The transition cost from xk to xk+1

is denoted as r(xk,xk+1). In this paper, we use Euclidean
distance as a simple cost metric to demonstrate the proposed
framework; a more realistic approach would normally apply.

We denote by Pn = p0 · · ·pn, where pk = [xk, yk, zk]T ,
the sequence of glider positions at states Xn. The trim
state τk that manoeuvres the glider from pk to pk+1 in the
presence of ocean flow Vc is

τk = [vk, γk, θk,mbk]
T
, (4)

where vk is the velocity, which is determined by the glide
angle, ballast mass and oceanic current. We refer to [6, 8]
for a description of how this trim state is calculated.

Let the control policy be π, which is a sequence of trim
states that is fixed during execution. This is because the glider
controller is open-looped and can only access its true final
position and forecast oceanic currents while surfaced. The
control instance at control index k is of the form

πk = [γdk , θ
d
k,m

d
bk, zk]T , (5)

where superscript d indicates ‘demanded’ and zk is the target
depth for the next transition. We slightly abuse previous
notation here to denote by Xπ , Uπ and Vπ the sequences
of state, control and safety induced by policy π.



B. Transition probability in trim state
The glider G is subject to noise in glide and heading angles

that arises from control and sensing uncertainties. In this
paper, we neglect noise in the depth z, since in practice the
associated uncertainty is small compared to other sources.

Given the desired control πk = [γdk , θ
d
k,m

d
bk, zk]T at the

k-th control instant, the glide and heading angles are subject
to Gaussian noise, such that

γ̂k ∼ N (γdk , σ
2
γk

)

θ̂k ∼ N (θdk, σ
2
θk

).
(6)

We denote the transition probability from state xk to xk+1

given policy π as Pπ(xk+1 | xk) and the probability of safe
transition as P(vk+1 | xkxk+1), where vk+1 is true when
all x ∈ (xk,xk+1] subject to control instance and ocean
currents are safe. For demonstration purposes, we omit the
influence of oceanic currents and the associated uncertainties.

Figure 1 illustrates how the control noise in (6) affects the
transition probability. The important properties are: 1) the
smaller the glide angle γ, the more distributed the transition
probability, and 2) the transition probability is not Gaussian
over the horizontal plane. We discuss the former property
later, in detail.

IV. PROBLEM FORMULATION

We consider a stochastic path planning problem for an
autonomous underwater glider subject to control noise as
described in Sec. III. Given a glider G with Gaussian control
noise in glide and heading angles γ and θ, initial surface
position x0 and final surface position xg , we seek an optimal
control policy π∗ with respect to objective functions that
are defined over probabilities and expected costs. We denote
by Pπ(· · · ) and Rπ(· · · ) the probability and expected cost
functions given policy π.

In [4], we showed that solving for a single objective often
induces a solution that is overly biased towards that objective,
while other parameters are ignored. For instance, maximising
the probability of success Pπ(V) may have unacceptably
high cost, and minimising the expected cost Rπ(V) may
induce a low probability of success. In this paper, we
formulate objective functions in such a way that one aspect is
optimised while the other acts as a constraint. We present two
types of such objective functions. We consider two problems
in this paper as follows.

Problem 1 (Minimise manoeuvre cost given satisfaction
threshold). Find the optimal control policy π∗ that minimises
the expected cost given satisfaction threshold α,

π∗ = arg min
π

Rπ(Vπ)

s.t. Pπ(Vπ) > α,
(7)

where Rπ(Vπ) is the expected cost given safe completion.

Problem 2 (Maximise the conditional in-region probability).
Find the optimal control policy π∗ that maximises the prob-
ability of surfacing within the desired region Rg ⊂ R2,

π∗ = arg max
π

Pπ(xn ∈ Rg | Vn), (8)

where n is the final trim control in policy π.

V. PROBABILISTIC EVALUATION OF CONTROL POLICY

We present algorithms for recursively evaluating a control
policy given a noisy controller. The functions critical for
solving the problems in Sec. IV are the conditional state
probability Pπ(xk+1 = x | Vk+1), the probability of being
positioned at x after k+1 control instants given collision-free
paths and the conditional state cost Rπ(xk+1 = x | Vk+1),
the corresponding expected cost.

The important aspect of these functions is that they are
defined recursively, in that the k + 1-th control can be
computed using only the result of the k-th control. Also, the
functions are over two known probability functions including
the transition probability Pπ(xk+1 | xk) and the probability
of safe transition Pπ(vk+1 | xkxk+1).

In this paper, we assume that the Markov property holds
true over the environment. Notably, the transition and tran-
sition safety probabilities at control index k+1 only depend
on those at k and k + 1, such that

Pπ(xk+1 | xk) ≡ Pπ(xk+1 | xk, · · · )
Pπ(vk+1 | xk,xk+1) ≡ Pπ(vk+1 | xk,xk+1, · · · ).

(11)

Then, we have the conditional safety probability Pπ(Vk+1 |
Vk) that is derived as

Pπ(Vk+1 | Vk) ≡ Pπ(Vk | Vk,vk+1)Pπ(Vk+1)

Pπ(Vk)

≡ Pπ(Vk+1)

Pπ(Vk)

(12)

Intuitively, the conditional safety probability is the probabil-
ity of safety during Xk+1 given safety during Xk.

A. Probability over glider state given success

We are interested in determining the probability distri-
bution of the state of the glider after the k-th control
instant, namely Pπ(xk). However, this form is not the right
representation because it also considers failed paths (i.e.,
obstructed paths). With safety in mind, we consider the
probability conditional on success, Pπ(xk | Vk).

The conditional probability at control index k+ 1 is com-
puted recursively by integrating over a conditional product
probability function for xk and xk+1. Using the Markov
property, the conditional product probability function is
shown in (9), The conditional safety probability Pπ(Vk+1 |
Vk) serves as a normaliser to the integral in (9), which
can be easily computed. It is important to note that the
conditional state probability at k+1 is recursively computed
only with transition and safety probability.

Using the Markov property, we can express the conditional
satisfaction property at control index k as

Pπ(Vk) = Pπ(v0) ·
k∏
i=1

Pπ(Vi | Vi−1)

= Pπ(Vk−1) · Pπ(Vk | Vk−1).

(13)



Pπ(xk+1 | Vk+1) =

∫
xk∈R2

Pπ(xk,xk+1 | Vk+1) · dxk

=
1

Pπ(Vk+1 | Vk)

∫
xk∈R2

Pπ(vk+1 | xk,xk+1) · Pπ(xk+1 | xk) · Pπ(xk | Vk) · dxk
(9)

Rπ(xk+1 | Vk+1) = Eπ
[
r0 + · · ·+ rk+1 | Vk+1,xk+1

]
= Eπ

[
k+1∑
i=0

ri | Vk+1,xk+1

]

=

∫
x0∈R2

· · ·
∫
xk∈R2

Pπ(x0 · · ·xk | Vk+1,xk+1) ·
k∑
i=0

r(xi,xi+1) · dx0 · · · dxk

=

∫
x0∈R2

· · ·
∫
xk∈R2

Pπ(x0 · · ·xk | Vk+1,xk+1) ·
(
r(xk,xk+1) +

k−1∑
i=0

r(xi,xi+1) · dx0

)
· · · dxk

=

∫
xk∈R2

Pπ(vk+1 | xk,xk+1) · Pπ(xk+1 | xk) · Pπ(xk | Vk)

Pπ(Vk+1 | Vk) · Pπ(xk+1 | Vk+1)

·

(∫
x0∈R2

· · ·
∫
xk−1∈R2

P(Xk−1 | Vk,xk) ·
(
r(xk,xk+1) +

k−1∑
i=0

r(xi,xi+1) · dx0

)
· dx0 · · · dxk−1

)
· dxk

=

∫
xk∈R2

Pπ(vk+1 | xk,xk+1) · Pπ(xk+1 | xk) · Pπ(xk | Vk)

Pπ(Vk+1 | Vk) · Pπ(xk+1 | Vk+1)
·
(
r(xk,xk+1) +R(xk | Vk)

)
· dxk

=

∫
xk∈R2

Pπ(vk+1 | xk,xk+1) · Pπ(xk+1 | xk) · Pπ(xk | Vk) ·
(
r(xk,xk+1) +R(xk | Vk)

)
· dxk

Pπ(Vk+1 | Vk) · Pπ(xk+1 | Vk+1)
(10)

Note that the probability is recursively computed from the
sequence of conditional safety probabilities described in (12).
The algorithm for finding the probability is shown in Alg. 1.

B. Conditional state cost

The conditional state cost R(xk+1 | Vk+1) is computed
recursively at control index k + 1 given that at control
index k, using the conditional probability Pπ(xk | Vk).
The proof and method of computation are shown in (10),
where r(xk,xk+1) is the state transition cost.

Similarly, computing the expected cost Rπ(xk+1) given a
policy may not make sense, because the result includes failed
paths. Hence, we use the conditional state cost R(xk+1 |
Vk+1). The expected conditional cost given success is

R(Vk) =

∫
xk∈R2

R(xk | Vk) · P(xk | Vk) · dxk, (14)

similar to Pπ(Vk+1). The computational algorithm is given
in Alg. 1.

VI. STOCHASTIC SAMPLING-BASED PLANNING WITH
SAFETY CONSTRAINTS

In this section, we present a stochastic planning framework
based on the recursive equations introduced in Sec. V.
We present a stochastic FMT∗implementation, which is a
stochastic variant of the sampling-based algorithm FMT∗.
The deterministic components of the original algorithm are
replaced with recursive functions to introduce uncertainty.

Algorithm 1 Expected cost of action given success
Inputs: X, Pv, Rv, Pxv, Rxv, u = {λ, θ,∆z}
Outputs: X′, Pv′ , Rv′ , Px′v′ , Rx′v′

1: enumerate X1 and get 5-sd rectangle to get pre-X1
2: calculate non-collision prob over pre-X1
3: shrink and compute X1 and dX1 (or dA1 for area)
4: X′ ← Evenly spaced such that P(x′ | x, u ± σ) > 0

for all x ∈ X
5: n′ = |X′|
6: Px′v′ [0 · · ·n′]← 0
7: Rx′v′ [0 · · ·n′]← 0
8: for all x ∈ X s.t. Pxv[x] > 0 do
9: for all x′ ∈ X′ s.t. Px′v′ [x

′] > 0 do
10: px′x ← P(x′ | x, u)
11: cx′x ← C(x′ | x)
12: rx′x ← R(x′ | x)
13: Px′v′ [x

′]← cx′x · px′x ·Pxv[x]
14: Rx′v′ [x

′]← cx′x · px′x ·Pxv[x] · (rx′x + Rxv[x])

15: Px′v′ ← Px′v′/Pv′v

16: Rx′v′ ← Rx′v′/Pv′v/Px′v′

17: Pv′v ←
∑

x′∈X′ Px′v′ [x
′]

18: Pv′ ← Pv · Pv′v

19: Rv′ ←
∑

x′∈X′(Rx′v′ [x
′] ·Px′v′ [x

′])
20: reduce X’



Algorithm 2 Stochastic FMT∗

Inputs: sample set V , starting sample v0 ∈ V , destination
sample vf ∈ V , transition probability P(x′ | x), collision
probability P(vi | xixi+1), constrained objective Ω

1: Initialise P0(x0 | V) = 1, 0 otherwise
2: Vopen ← v0
3: Vunvisited ← V \v0
4: for all z ∈ Vopen such that z ← arg Ω∗(Vopen) do
5: for all x ∈ Vunvisited do
6: Find Y ⊆ Vopen such that P(v | (y → x)) > 0 and y

satisfies constraint in Ω
7: Find control instants π(y, x) for all y ∈ Y
8: Find Py→x(·) and Ry→x(·) for all y ∈ Y
9: Find y∗ ∈ Y such that y∗ ← arg Ω∗(Vopen)

10: Add x to Vopen and remove from Vunvisited
11: Add z to Vclosed and remove from Vopen
12: if vf ∈ Vopen then
13: Find control policy π∗ from v0 to vf
14: return

We then discuss how we modified the original algorithm
to achieve energy-oriented manoeuvres and how the change
affects the algorithm.

A. FMT∗overview

The FMT∗algorithm starts with a set of sample nodes V
in the state space (as in PRM∗). The samples are initially
labelled as unvisited aside from the initial position v0, which
is labelled as opened. Detailed FMT∗implementations for
deterministic gliders are shown in [8, 18].

The algorithm incrementally grows a branching tree until
no opened nodes remain. The procedure eventually finds an
optimal solution. At every branching instant, we first find an
open node z ∈ Z with the lowest overall cost. From z, we
find a set of unvisited nodes xNear with the least transition
cost. For each unvisited node x ∈ xNear, we find the open
node y for which the sum of the cumulative cost at y and
the transition cost from y to x is the minimum. After we
find such an open node y, we then check if the transition
is collision free. If it is, we set z to closed and any newly
connected states in xNear become opened.

B. Stochastic variant of FMT∗

In stochastic FMT∗, which we present as Alg. 2, we find a
set of sample positions pi = [xi, yi, zi]

T ∈ R3. Each sample
position serves as a reference node from which we derive
the corresponding control instant. A node vi ∈ V is given as

vi =
[
xi yi zi pvi rvi pxvi rxvi

]
, (15)

where pvi, rvi, pxvi and rxvi correspond to P(V), R(V),
P(x | V) and R(x | V) that achieve Ω∗(vi), where Ω is the
objective function of interest.

For Problem 1, we impose an additional constraint on
Alg. 2 so that an edge is built when the safety condition
is met. For Problem 2, we add an additional value pri to

TABLE I
EVALUATION OF A GIVEN CONTROL POLICY IN FIG. 2 FOR

CONDITIONAL SAFETY PROBABILITY AND EXPECTED COST

k 0 1 2 3 4
Pπ(Vk) 1 0.7971 0.7616 0.7587 0.7001
Rπ(Vk) 0 494.917 667.709 960.576 1303.407

all vi ∈ V , which denotes the conditional in-region proba-
bility P(x ∈ Rg | V) that we maximise (i.e., Ω∗(vgoal) =
pr,goal).

Algorithm 2 starts with one open node Vopen = v0 at the
starting position given prior distributions P0(·) and R0(·).
At each open node z ∈ Vopen, the algorithm finds the set
of unvisited nodes x ∈ Vunvisited with non-zero transition
probability (i.e., P(v | (y → x)) > 0). We enumerate the set
and compute Py→x(·) and Ry→x(·) and find y∗ ∈ Y that
is optimal with respect to the given constrained objective
function Ω∗. The edge from y∗ to x is added to the tree
and the distributions are updated (i.e., Px(·) = Py∗→x(·)
and Rx(·) = Ry∗→x(·)). The algorithm finishes when the
best z ∈ Vopen is the goal.

C. Analysis

Stochastic FMT∗ignores the branching bound in FMT∗,
where branching from a node is bounded by distance or num-
ber of candidate nodes (i.e., k-nearest neighbours). Although
the computational complexity increases from O(n log n)
to O(n2 log n), this modification is beneficial in the context
of energy consumption. Recalling that energy is consumed
when changing trim state, manoeuvring in a straight line is
more efficient than an industry-standard ‘sawtooth’-like path
generated by fixed glide angles.

We fully exploit the benefits of recursive functions by
integrating them naturally into the existing FMT∗framework.
With this property, the computational complexity for each
iteration is constant and invariant with respect to time horizon
or number of control instants, because we use results from
the previous iteration to update the next. Unlike deterministic
FMT∗, where collision checking is done after finding an
optimal solution, we check for collision beforehand. This is
due to two reasons: 1) computing Py→x(·) and Ry→x(·) is
much more expensive than collision checking, and 2) the
uncertainty of the environment means that probability of
success is not solely determined by collision.

Although we forego lazy collision checking, this
FMT∗variant is still computationally efficient relative to
other sampling-based methods such as PRM. A stochastic
variant of PRM using the same recursive framework would
require enumeration of every valid transition in the environ-
ment, whereas stochastic FMT∗only enumerates a portion of
the transitions, similar to the deterministic case.

VII. CASE STUDIES

We present simulated examples of the underwater glider
using our stochastic planner. We demonstrate how a control
policy is evaluated and present an example where we com-
pare our framework to a industry-standard approach with



(a) Conditional state probability over control policy (b) Conditional expected cost over control policy

Fig. 2. Evaluation of control policy (16) conditional to collision-free path. The glider starts at [0, 0, 0]T and the ocean floor is shown in shaded black.
Black lines indicate deterministic paths in the absence of control noise. Coloured regions indicate conditional state probability (a) and expected cost (b)
distributions. Blue represents low probability/cost; yellow represents high probability/expected cost. Target depths zk are labelled. Oblique and top-down
views are shown.

respect to probabilistic satisfaction and expected cost. For
demonstration purposes, we set the actuation noise for glide
and heading angles to 0.5 rad and 0.8 rad, respectively.
As mentioned in Sec. III-B, we omit the ocean currents Vc

for clearer demonstration of the recursive framework, which
is otherwise capable of accounting for stochastic ocean
currents.

A. Evaluating a control policy

In this example, we evaluate the conditional state prob-
ability and cost after completing each control instance in
a policy π in the presence of underwater obstacles. We
consider a policy

π(k) =

k λk θk zk (m)
0 -0.1571 1.2217 -80
1 0.1745 0.7854 -50
2 -0.1396 0.4189 -90
3 0.2618 -0.5236 0

, (16)

where λk, θk and zk are the desired glide angle, heading and
depth at the k-th control instant.

Starting from p0 = [0, 0, 0]T , the conditional state prob-
abilities and costs after each control instance are shown in
Fig. 2. Table I shows the probability of success Pπ(Vk) and
the expected cost Rπ(Vk) at the k-th time step. The result
shows that the success probability is 0.7001 and the expected
cost is 1303.407 at the end of the manoeuvre.

The figures illustrate clearly how conditional probability
propagates over the control instants. The position estimates
show how obstacles affect the estimates of dive-out position.
Unlike existing work that approximates position estimates
using a Gaussian assumption with mean and variance, our
framework is non-Gaussian and therefore provides more
accurate results for underwater gliders where safety of the
platform is critical.

B. Minimise the expected cost given probability threshold

In this example, we synthesise control policies that min-
imise conditional state cost given various probability thresh-
olds. The objective function is described in Problem 1.
In Fig. 3, we demonstrate the conditional state probabil-
ities Pπ∗(x | V) for the case with no threshold (i.e.,



TABLE II
MINIMISING THE CONDITIONAL STATE COST GIVEN SAFETY CONSTRAINTS IN FIG. 3. THE SATISFACTION PROBABILITIES Pπ∗ (Vk) AND THE

EXPECTED COSTS Rπ∗ (Vk) ARE SHOWN FOR THREE DIFFERENT SAFETY THRESHOLD α.

Safety Constraint k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

P
π
∗
(V

k
) No safety constraint 1 0.6624 0.5584 0.5373 0.5288 – –

Pπ∗ (Vk) > 0.6 1 0.9627 0.8009 0.7209 0.6315 0.6296 –
Pπ∗ (Vk) > 0.9 1 0.9987 0.9548 0.9395 0.9225 – –
Pπ∗ (Vk) > 0.99 1 1 1 1 1 1 1

P
π
∗
(V

k
) No safety constraint 0 288.3 590.0 802.4 1017.0 – –

Pπ∗ (Vk) > 0.6 0 321.0 630.0 876.2 986.5 1120.9 –
Pπ∗ (Vk) > 0.9 0 222.2 537.4 762.6 1081.4 – –
Pπ∗ (Vk) > 0.99 0 230.7 556.2 773.9 890.4 1003.2 1115.7

(a) No safety constraint (i.e., α = 0) (b) Given Pπ∗ (V) > 0.9 (c) Given Pπ∗ (V) > 0.99

Fig. 3. Minimum conditional state costs given different probability threshold α. Glider paths and state distributions are shown as in Fig. 2. Changes in
depth are also shown; dark lines indicate deterministic paths and shaded lines indicate ocean floor geometry.

(a) 1-cycle, Pπ1 (x2 ∈ Rg | V2) = 0.1865 (b) 3-cycle, Pπ3 (x6 ∈ Rg | V6) = 0.5540 (c) FMT∗, Pπ∗ (x10 ∈ Rg | V10) = 0.7098

Fig. 4. Conditional in-region probability distributions for the industry-standard (a-b) and the FMT∗-based method (c). The target region is shown as
a green circle with radius r = 50m. Glider paths and state distributions are shown as in Fig. 2. Changes in depth are also shown; dark lines indicate
deterministic paths and target depths zk are labelled.

minimising the cost without considering safety) and the
cases with thresholds 0.6, 0.9 and 0.99. The satisfaction
probabilities Pπ∗(Vk) and the expected costs Rπ∗(Vk) are
presented in Table II. Note that the ‘sawtooth’-like motion is
inevitable since the glide angle cannot go below its minimum
as described in Sec. III (i.e., |γ| ≥ γmin).

The result shows that the satisfaction probability for each
scenario is always higher than the minimum constraints. With
no safety constraint, the safety probability is Pπ∗(V) =

0.5288. This safety probability is the minimum guaranteed
by the framework. Note that high conditional state probabil-
ity at a position given a policy does not necessarily mean that
the glider is more likely to reach the the same position with a
different policy. This is because the probability is conditional
on overall safety; all the failed path are neglected in the prob-
ability distributions. For example, the conditional probability
for α = 0 seems to be higher than that for α = 0.99 whilst
the safety probabilities are 0.5288 and 1, respectively.



An important observation is that the expected cost gen-
erally increases as the safety threshold increases. This is
due to two reasons. First, the state probability distribution
becomes more spread out while reducing the transition cost
when the glider angle is small, as shown in Fig. 1. As
a result, the path at α = 0.99 makes a number of sharp
transitions to maintain the distribution density. Second, the
glider tries to move further away from the obstacle, which
could incur higher cost. This observation validates our claim
that the proposed framework is able to balance between two
conflicting objective functions.

C. Maximise the conditional in-region probability

In this example, we synthesise a control policy that
maximises the probability of surfacing within a pre-specified
region. Formally, we maximise Pπ∗(xn ∈ Rg | Vn), where
n is the number of control instants and Rg is the goal region,
as presented in Problem 2. We compare our result with the
industry-standard approach where the glider follows a pre-
defined sawtooth-like path with a fixed glide angle.

Starting from [0, 0, 0]T , the glider is required to reach a
circle located at [1000, 0, 0]T with a radius of 50 m as drawn
in green in Fig. 4. We demonstrate the conditional state
probabilities for three different policies: 1) sawtooth-based
1-cycle policy (Fig. 4a-c), 2) sawtooth-based 3-cycle policy
(Fig. 4d-f), and 3) FMT∗-based optimal policy (Fig. 4g-i).

The result shows that the proposed framework outperforms
the sawtooth-based approach. As discussed in Sec. VII-B,
this is because the conditional state probability becomes
more dense with higher glide angle. Since the 1-cycle policy
inherently has smaller glide angles, the resulting distribu-
tion is much less concentrated than that with greater glide
angles. The in-region probabilities are 0.1865 and 0.5540,
respectively, while the FMT∗-based approach achieves a
success probability of 0.7098. It is important to note that
cost, however, is generally minimised when glide angles are
small, resulting in a shorter path.

VIII. CONCLUSION

This paper has presented a stochastic variant of a navi-
gation planner for autonomous underwater gliders. We have
addressed the inherent computational bottleneck in balancing
safety and cost, and derived a recursive framework that
accurately computes the probability and expected cost con-
ditional on safety constraints. The recursive functions allow
for utilisation of existing sampling-based planners such as
FMT∗. We have presented two types of objective function,
where we 1) minimise conditional expected cost for a given
safety threshold, and 2) maximise conditional in-region goal
probability. We argue that the proposed framework is general
enough to formulate more complex objectives.

Although our framework is fully capable of admitting
stochastic ocean currents, there are important extensions to
be addressed. Finding the transition and transition safety
probabilities subject to stochastic ocean currents is compu-
tationally difficult. This bottleneck can be addressed with
an efficient streamline-based algorithm [7]. Also, replanning

can be necessary when the forecast ocean current varies over
time [19]. Beyond path planning, we also would like to com-
bine our framework with task planning algorithms [20, 21].
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