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Abstract

Reconfigurable mobile planetary rovers are versatile platforms that may safely traverse clut-
tered environments by morphing their physical geometry. Planning paths for these adaptive
robots is challenging due to their many degrees of freedom, and the need to consider poten-
tially continuous platform reconfiguration along the length of the path. We propose a novel
hierarchical structure for asymptotically optimal (AO) sampling-based planners and specifi-
cally apply it to the state-of-the-art Fast Marching Tree (FMT*) AO planner. Our algorithm
assumes a decomposition of the full configuration space into multiple sub-spaces, and begins
by rapidly finding a set of paths through one such sub-space. This set of solutions is used to
generate a biased sampling distribution, which is then explored to find a solution in the full
configuration space. This technique provides a novel way to incorporate prior knowledge
of sub-spaces to efficiently bias search within existing AO sampling-based planners. Impor-
tantly, probabilistic completeness and asymptotic optimality are preserved. Experimental
results in simulation are provided that benchmark the algorithm against state-of-the-art
sampling-based planners without the hierarchical variation. Additional experimental results
performed with a physical wheel-on-leg platform demonstrate application to planetary rover
mobility and showcase how constraints such as actuator failures and sensor pointing may
be easily incorporated into the planning problem. In minimizing an energy objective that
combines an approximation of the mechanical work required for platform locomotion with
that required for reconfiguration, the planner produces intuitive behaviours where the robot
dynamically adjusts its footprint, varies its height, and clambers over obstacles using legged
locomotion. These results illustrate the generality of the planner in exploiting the platform’s
mechanical ability to fluidly transition between various physical geometric configurations,
and wheeled/legged locomotion modes, without the need for predefined configurations.

∗Work was performed while authors were affiliated with the Australian Centre for Field Robotics, The University of Sydney.



1 Introduction

Over the past five decades the use of mobile robotic rovers to perform in-situ scientific investigations on
the surface of Mars has been tremendously influential in shaping our understanding of this extraterrestrial
environment (Grotzinger et al., 2014; Arvidson et al., 2010; Arvidson et al., 2006). As robotic missions
have evolved, the desire to explore more unstructured terrain has increased. This thinking has exposed
mobility limitations with conventional rover designs such as getting stuck in soft soil or simply not being
able to access rugged terrain, as demonstrated in efforts to cross mega-ripple sand dunes by the NASA
Curiosity rover (Arvidson et al., 2017). Additionally, future rovers will need to assist human explorers with
surface operations such as haulage and construction during future long-duration human missions to the
Moon or Mars (Wilcox et al., 2007). Increased mobility and terrain traversability are key requirements when
considering designs for next generation planetary rovers. Coupled with these requirements is the need to
autonomously navigate unstructured terrain by taking full advantage of increased mobility.

Reconfigurable wheeled mobile robots (RWMRs) are a class of vehicle that may utilize many degrees of
freedom to traverse challenging terrain. This is done by combining wheeled and legged locomotion modes to
fluidly transition over, under or around unstructured obstacles by driving pseudo-omnidirectionally in com-
bination with morphing geometric structure. The effectiveness of such a mobility system is demonstrated
in the extensive field testing of the SherpaTT rover on a Martian analogue site with significant obstacles
and inclines (Cordes et al., 2018). To leverage RWMRs’ capabilities within the planetary exploration con-
text, techniques for autonomous decision making within platforms’ high-dimensional configuration space are
necessary. The major contributions of this article are the development of a motion planner for high-degree-
of-freedom (high-DOF) RWMRs in addition to the demonstration of such a planner in both simulated and
physical RWMR traversals over challenging terrain.

The main challenge in planning for RWMRs is to efficiently find a feasible low cost path given potentially
many degrees of freedom. The problem is to generate a sequence of transitions between initial and terminal
system states (configurations) while both avoiding environmental obstacles and satisfying internal kinematic
constraints. The sequence of transitions is to be optimized with respect to a cost function that is used to
define the objectives of the robot’s overall motion. In this article an approximation of the energy expenditure
of the robot is minimized.

Asymptotically optimal (AO) sampling-based planners make it feasible to plan paths for high-DOF robots
and converge towards an optimal solution. This article describes a modification to existing AO sampling-
based planners that both preserves AO and exploits prior knowledge of task structure to promote faster
convergence. Further, the proposed planning architecture assists in the search for narrow passageways, a
notable problem for many sampling-based planners. This approach enables the use of prior knowledge of
kinematic structure to inform the choice of hierarchical decomposition, but defined in a way that is more
flexible than in other hierarchical approaches. The state-space decomposition must still be provided a
priori, but the sub-tasks are continuous and generated probabilistically by the planner. The extent of the
configuration space explored by sub-tasks is defined by continuous parameters that may be automatically
tuned. The proposed planner is denoted as Hierarchical Bidirectional Fast Marching Trees (HBFMT*).

A main technical challenge in developing a hierarchical sampling-based planner is to define the information
flow between levels in a way that does not sacrifice completeness and optimality guarantees. The planner
decomposes the configuration space as a hierarchy of increasingly larger sub-spaces, each searched by a
Fast Marching Tree (FMT*) (Janson et al., 2015) variant. Solutions from adjacent levels are used to bias
search, thereby increasing path quality with equivalent computational resources. This technique is suited to
platforms that have intuitively identifiable low-dimensional kinematic structure, such as RWMRs, but may
also generalize to other high-DOF robots such as redundant manipulator arms.

It is shown that this approach retains the completeness and asymptotic optimality guarantees of FMT* (Jan-
son et al., 2015) by virtue of a fraction of its samples, ` being taken from a uniform distribution. Experimental



(a) Cube-like compact state. (b) Fully deployed single leg raised
state.

(c) Bridge configuration.

Figure 1: Various configurations of the reconfigurable MAMMOTH rover.

results in simulation show that HBFMT* outperforms FMT*, Bidirectional Fast Marching Trees (BFMT*)
(Starek et al., 2016), AO Rapidly-exploring Random Trees (RRT*) (Karaman and Frazzoli, 2011), Informed
RRT* (Gammell and Barfoot, 2014) and Batch Informed Trees (BIT*) (Gammell et al., 2015) in a variety
of environments.

Use of the planner with a physical RWMR system is also presented in a series of traverses over obstacle-
littered terrain. These trials utilize the MAMMOTH (Mars Analogue Multi-MOde Traverse Hybrid) rover
as the RWMR. This vehicle is capable of driving omnidirectionally, raising and lowering its ground clearance,
and reconfiguring its footprint. Some of the unique configurations of this robot are shown in Fig. 1. For
each traverse a safe path is generated for the MAMMOTH rover to follow using the HBFMT* algorithm. In
addition to physically validating the HBFMT* planner, capabilities for imposing motion constraints within
the planner are demonstrated. In some of the traverses, simulated actuator breakages or platform heading
constraints are introduced. By doing so, the versatility in planning for a variety of different configuration
spaces is illustrated. These experiments are some of the first globally planned traverses demonstrated with
a physical RWMR.

This article expands on the HBFMT* planner first introduced in (Reid et al., 2016a). All simulated and
physical experiments presented in this article utilize the MAMMOTH rover system summarized in (Reid
et al., 2014) and (Reid et al., 2016b). The article discusses related work in Sec. 2, formulates the motion
planning problem and presents background on the FMT* algorithm in Sec. 3. HBFMT* is presented in
Sec. 4, while analysis of the algorithm is provided in Sec. 5. Details specific to the MAMMOTH rover
planning problem are presented in Sec. 6 in preparation for the numerical experiments presented in Sec. 7
and physical experiments presented in Sec. 8. Conclusions and discussion of future work is provided in Sec. 9.

2 Related Work

In this section, we summarize the state-of-the-art in sampling-based planning as well as the use of hierarchical
planning frameworks to constrain large configuration spaces, thereby boosting computational efficiency. The
drawbacks of such frameworks, including over-biasing towards sub-spaces and lack of completeness and
optimality guarantees, are also discussed. Planning methodologies for real world high-DOF systems are
investigated to motivate the need for hierarchical sampling-based planning frameworks to better leverage
reconfigurability in the practical setting.



2.1 Sampling-Based Planning

There are two major classes of sampling-based planning algorithms: multi-query and single query. Multi-
query planners construct a roadmap of a space that can be queried with different initial and goal states
multiple times. Single-query planners solve a planning problem for a single initial and goal state pair.
Multi-query sampling-based techniques include the probabilistically complete probabilistic roadmap planner
(PRM) (Kavraki et al., 1996) and its AO variant PRM* (Karaman and Frazzoli, 2011). These techniques first
sample a batch of random nodes from a space, which are then connected to their nearest neighbours to form
a roadmap. This roadmap may then be searched using standard graph-search algorithms such as Dijkstra
or A*. PRM* ensures asymptotic optimality by considering edges to nodes within a nearest neighbourhood.
The nearest neighbourhood is defined by a distance rn that is a function of the number of nodes within the
current graph, the dimensionality of the planning problem and the volume of the space being explored:

rn ≥ 2
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where ζd is the Lebesgue measure of the unit-cost ball of dimension d and µ(Xfree) is the Lebesgue measure
of the free space. Eq. 1 is derived in (Janson et al., 2015). Much effort has been focused on developing
variants of PRMs that address the computational bottleneck of edge construction (Dobson and Bekris, 2014;
Esposito and Wright, 2016; Salzman et al., 2013). Additional improvements include heuristic techniques
that lazily check obstacle collisions along promising candidate paths as described for PRM in (Bohlin and
Kavraki, 2000) and for PRM* in (Hauser, 2015). Recent work by (Solovey and Kleinbort, 2018) has shown
that the connection radius rn may be reduced even further so that is on the order of n(−1/d) as opposed to
(log(n)/n)(−1/d) and retain an asymptotically (near-) optimal guarantee.

The AO guarantee derived in (Janson et al., 2015) is performed for a Euclidean space. AO guarantees for a
general space with a metric cost function are also discussed with minor modifications to Eq. (1) relating to
the Lebesgue measure of the space. Further study of AO guarantees for non-Euclidean spaces, specifically
kinodynamic spaces, are included in (Schmerling et al., 2015b), (Schmerling et al., 2015a), (Li et al., 2016),
(Hauser and Zhou, 2016), (Webb and Van Den Berg, 2013) and (Karaman and Frazzoli, 2010).

Examples of single-query planning algorithms include the RRT (LaValle and Kuffner, 2001) and its asymp-
totic optimal counterpart RRT* (Karaman and Frazzoli, 2011), the Expansive Space Trees (Hsu, 2000) and
the single query bidirectional probabilistic roadmap (SBL) (Sanchez and Latombe, 2003) planners. In the
RRT variants a state is sampled from a uniform distribution and a nearest neighbour state within the tree is
grown towards the sampled state. On each iteration of the RRT expansion a tree edge growth is attempted
and is successful if the edge has no collision with the environment or breaks an internal constraint of the
robot model. The algorithm iterates until the tree reaches a goal region or an expiry time is reached.

Single-query AO algorithms include RRT* (Karaman and Frazzoli, 2011), FMT* (Janson et al., 2015) and
BIT* (Gammell et al., 2015). Each of these techniques relies on sampling a number of states from the free
configuration space and growing a tree through these samples. As with PRM*, a nearest neighbourhood of
nodes is evaluated when expanding the tree from a single sample. This nearest neighbourhood is defined
by a distance rn as defined in Eq. (1). Both RRT* and BIT* are anytime planners, attempting to improve
a solution once it has been found. FMT* is not an anytime planner, instead relying on a predetermined
number of samples and building a tree through these samples. Variants of FMT* that make it anytime are
the anytime FMT* and Motion Planning with Lower Bounds algorithms, both presented in (Salzman and
Halperin, 2015).

As with the PRM variants, much emphasis has been put on improving the computational efficiency of single
query sampling-based planners. In (Arslan and Tsiotras, 2013), the AO RRT# planner is proposed where
tree leaves are characterized based on their potential to be apart of a better solution once an initial solution
has been found. Only the leaves that can possibly improve the solution may be re-wired. A similar idea is
used in Anytime RRTs (Ferguson and Stentz, 2006), C-FOREST RRT (Otte and Correll, 2013) and Informed



RRT* (Gammell et al., 2014) where once the RRT finds a solution only samples within an informed hyper-
ellipse are taken. The ellipse represents a bound on the largest possible cost-to-come plus cost-to-go distance
of a node. A promising avenue for increased planning performance is the combination of sampling-based
planning and deterministic sampling as opposed to random sampling as presented in (Janson et al., 2018). A
common practice within the planning literature for improving computational efficiency is using a k-nearest
neighbor (KNN) search as opposed to a radial nearest neighbor (RNN) search. As mentioned in (Janson
et al., 2015), KNN search is more adaptable to different obstacle spaces. During RNN search, for a node
next to an obstacle, a significant proportion of the neighborhood ball may be inside the obstacle, resulting in
a limited number of neighboring samples. In KNN search the neighborhood considered will be the k closest
nodes, therefore not limiting the number of samples.

2.2 Hierarchical Sampling-Based Planning

Hierarchical planning is a popular technique used to boost computational efficiency. This is demonstrated
by the SyCLoP algorithm detailed in (Plaku et al., 2010). The planner initially decomposes the workspace
of the robot into a discrete grid or set of triangular regions, which is then searched using a standard graph
search technique. The initial search returns a set of ‘lead’ regions, which are used to guide a sampling-based
planner through the full configuration space of the robot. As the exploration progresses, the corresponding
discrete regions are updated based on how successful the exploration is. A similar methodology is used within
the Exploration Exploitation Trees planner proposed in (Rickert et al., 2014). At the high-level, the robot
workspace is explored using a wavefront expansion ‘bubble’ planner that finds collision free ‘tunnels’ through
the workspace, which is based on a workspace decomposition planner proposed in (Brock and Kavraki, 2001).
The purpose of the high-level planner is to identify a coarse obstacle free structure of the environment. At the
low-level, an RRT-Connect algorithm (LaValle and Kuffner, 2001) is used to rapidly perform a bidirectional
search of the full configuration space. The RRT-Connect is guided by choosing frontier ‘bubbles’ that are
promising candidate regions for extending the plan towards the goal. As the RRT-Connect progresses, the
exploitation score of the associated workspace bubble is updated based on how successful it is in progressing
through the bubble.

The authors of both (Plaku et al., 2010) and (Rickert et al., 2014) describe their methodologies as trading off
between exploration and exploitation. The high-level workspace plans provide knowledge of the environment
that the low-level planners may exploit. If the high-level planner does not progress through certain regions
they both have mechanisms by which exploration of new workspace regions is promoted. Neither of these
algorithms maintain the probabilistic completeness guarantees of the sampling-based planners they use at
the low-level of their hierarchies. Both sets of authors argue that in practice the reliance on exploitation
of the workspace plan results in two to three orders of magnitude improvement in computational efficiency
as compared with RRT based search of the full configuration space. The HBFMT* algorithm presented in
this article exploits knowledge from a lower level sub-space plan and at the same time takes advantage of
the FMT* AO guarantee with biased sampling to retain AO and therefore completeness. A shortcoming
of hierarchical techniques is seen when the workspace plan does not capture the necessary complexities of
moving through a high-dimensional space. An example of such a case is discussed in Section 5. Fortunately,
for the reconfigurable wheeled mobile robot planning problem, most navigation cases have the workspace of
the rover’s body frame embedded within the full configuration space of the robot.

For the hierarchical planners already discussed, a sub-space is selected by intuition. A recent topic of
interest is in learning sub-spaces to assist in biasing full configuration space exploration. In (Rowekamper
et al., 2013), the planning problem for a planar mobile dual-arm manipulation robot is presented. A low-
dimensional configuration space projection is learned from a succession of paths being run between randomly
selected start and goal states in an example environment. A sampling-based planner is then run within this
projected space. In (Vernaza and Lee, 2012) low-dimensional structure is learned by finding the directions
in which the planning cost function varies principally. A set of the most influential principal components
together describe basis motions of the robot, which are used to describe the low-dimensional sub-space to
plan in. This technique is applied to a manipulation arm as well as a PR2, a dual manipulator arm and



mobile platform system. Most recently, in (Ichter et al., 2018) a sampling distribution is learned using a
conditional variational autoencoder, which is then explored by a FMT* planner. Unlike these planners,
the HBFMT* planning algorithm assumes a given state variable decomposition, but is the first principled
hierarchical sampling-based planner that retains performance guarantees.

The HBFMT* planner leverages the configuration space size reduction enabled by hierarchical planning,
however unlike the hierarchical planners presented so far, HBFMT* operates completely in continuous space
by using sampling-based planning at each hierarchy level. Ultimately, the performance of discrete grid-based
planners is limited by grid resolution and the ability to generate a cost map over the entire configuration
space. An added advantage of using a sampling-based planner at the high-level is that the configuration
space may be easily modified by introducing a modified cost function, collision detector and sampler. This
is more straightforward than using a discrete planner where a new cost-map would have to be generated
with each configuration space modification, which may become computationally intractable with an increase
in configuration space dimension. Like grid-based planners sampling-based planners are still exponential in
computational efficiency, however are much less susceptible to the curse of dimensionality.

2.3 Real World Planning for Reconfigurability

A common planning strategy used for real world high-dimensional legged, tracked or wheel-on-leg robotic
systems is to use a sampling-based planner within a planning hierarchy. Generally, these planners take the
form of a coarse footfall planner at the high level, and then a sampling-based planner for low-level leg swing
and body posture planning.

A recent hierarchical planner that uses RRT* at each level is presented in (Wermelinger et al., 2016).
In (Wermelinger et al., 2016), the three-tiered hierarchical planner, which will be denoted as Hierarchical
RRT* (HRRT*), is used to explore the space with successively finer resolution footprint models of the
ETHStar quadruped walking robot. The technique lends itself to planning within the coarse global map
available to the robot before its traverse with the coarse high-level RRT* planner. Local terrain information
gleaned from laser sensors is used to iteratively plan with the lower-level RRT* planners using an increasingly
higher resolution model of the platform’s footprint. HRRT* is targeted at the anytime planning problem
where local sensor information is updated throughout the robot’s traverse, whereas HBFMT* is focused on
reconfigurable systems and exploiting the various modes of traversing a terrain in a computationally efficient
manner.

The highly reconfigurable NASA/JPL Robosimian quadruped is described in (Karumanchi et al., 2016).
The platform’s four limbs each have seven DOF, resulting in a hyper-manoeuverable walking platform.
A hierarchical planner described in (Satzinger et al., 2015) is used to tame the high-dimensionality of the
platform by constraining the search space. Initially, a footfall planner returns a global path over unstructured
terrain, a body pose search then returns a central body motion that complies with inverse kinematic solutions
constrained by leg stances, and finally an RRT-Connect search returns a path for a swing-leg between footfall
states constrained by the central body motion. Hierarchical search used to constrain configuration space size
is also employed in the hexapod planner described in (Belter et al., 2015) and the articulated tracked vehicle
planner in (Brunner et al., 2015).

The NASA/JPL All-Terrain Hex-Limbed Extra-Terrestrial Explorer (ATHLETE) rover, with its 42 actuated
joints, also presents a challenging planning and control problem as discussed in (SunSpiral et al., 2012). A
hierarchical planning system that combines footfall planning and the SBL sampling-based planner (Sanchez
and Latombe, 2003) is used to plan safe leg raising and lowering paths over obstacle-littered terrain. Field
testing demonstrated the use of the planner to get around local rock obstacles and also dismount from a
mock habitat. Full body motion planning for ATHLETE is proposed in (Hauser et al., 2008), however has
only been demonstrated in simulation.

Like the work presenting ATHLETE we present a planner tailored to a high-DOF robot that may be used



to explore planetary analogue environments. This article is amongst the first to demonstrate the use of
hierarchical motion planning with asymptotic optimality guarantees with a real world robotic system.

3 Problem Formulation and Background

This section formalizes the planning problem for a high-DOF robotic system. Additionally, the FMT*
algorithm (Janson et al., 2015), on which HBFMT* is based, is summarized for convenience.

3.1 Problem Definition

Let X = [0, 1]d be a configuration space with dimension d ∈ N constrained to d ≥ 2. Let Xobs be the
obstacle region such that X \ Xobs is an open set. This implies that the free configuration space is a closed
set Xfree = cl(X \Xobs). We randomly sample n points from Xfree. Let X# = [0, 1]f be a sub-space that is
embedded within X where 1 ≤ f ≤ d. Any variable with the “#” super-script is used to denote a variable
related to the sub-space X#.

A path planning problem is denoted by a triplet (Xfree, xinit,Xgoal) where xinit is the initial state and Xgoal
is the goal region. In this work, the goal region is considered as a single state, described by xgoal. A path
is defined by a continuous mapping π : [0, 1] → Rd such that 0 7→ x1 and 1 7→ x2. Let Σ be the set of all
paths in X . A feasible path in the planning problem (Xfree, xinit,Xgoal) is a path that is collision free with
π(0) = xinit and π(1) = xgoal. Π = {π0, π1, ..., πk} is a set of k feasible paths sorted according to path cost.

The optimal path planning problem is to find a path π∗, assuming problem (Xfree, xinit,Xgoal) and an arc
cost function c : Σ → R≥0 such that c(π∗) = min {c(π) : π is feasible}, or to report failure. The optimal
path π∗ is δ-robustly feasible if every point along it is a minimum of δ away from Xobs.

3.2 FMT*

The FMT* algorithm, listed in Alg. 1, performs a recursive dynamic programming procedure to simulta-
neously explore and construct a single-query tree through a configuration space. The algorithm begins by
randomly sampling n nodes from a uniform distribution using the SampleUniform function and putting them
into the set S along with the the initial and goal nodes (lines 1-3). The tree T is then initialized with S and
root node xinit.

FMT* initialization is listed in Alg. 2. Tree T = (V,E,H,W ) is composed of tree nodes V , and edges E.
The open set of nodes is denoted as H, and W is the unvisited set. The tree nodes V are initialized as all of
the nodes in S, there are initially no edges in E, the nodes in the unvisited set to begin with are everything
but the root node xo, while the only node in the open set is xo .

The tree is then grown outward using a wavefront expansion, always finding the optimal solution to the
current node with respect to the available nodes and the prescribed metric cost function. After FMT*
initialization in Alg. 1 the tree expansion procedure is run until the goal node has been found, returning the
path π, or no goal has been found with no path returned (lines 5-11).

FMT* expansion, listed in Alg. 3, is performed by maintaining two sets of nodes: an open and an unvisited
set. More concisely, tree T = (V,E,H,W ) is composed of tree nodes V , and edges E. The open set of nodes
is denoted as H, and W is the unvisited set. Tree T is initialized with n nodes sampled from free space,
Xfree, in addition to the start node, xstart and goal node, xgoal. The algorithm maintains an open set, H,
and an unvisited set, W . Initially, xstart is placed in H, while every other node as well as the goal node is
placed in W . The node set, V is initialized containing xstart, while the edge set E is initialized as empty.



Algorithm 1: Fast Marching Tree (FMT*) (Janson et al., 2015)

Data: Xfree,xinit,xgoal,n
Result: π,T

1 success = false
2 stop expansion = false
3 S ← xinit ∪ xgoal∪ SampleUniform(n)

4 T ← Initialize(S,xinit)
5 z ← xinit
6 while stop expansion = false and success = false do
7 {T, z, sucess, stop expansion} ← Expand(T ,∅,z,∅)
8 if success = true then
9 π ← Path(xinit,xgoal,T)

10 else
11 π ← ∅

Algorithm 2: FMT* Initialize

1 function Initialize(S,xo)
2 V ← S, E ← ∅, W ← V \ {xo}, H ← {xo}
3 return T = (V,E,H,W )

The algorithm then performs a recursive dynamic programming procedure that propagates a wavefront of
state transitions (tree edges) outwards from the start node.

The expansion procedure starts by taking the lowest cost node z within the open set H and finding its nearest
neighbourhood Znear of nodes that are also within the unvisited set W (line 2). The Znear neighbourhood is
iterated over and connections are attempted between each of these nodes and the closest nodes to them that
are also in the open set Xnear. A connection to a node xmin in the nearest neighbourhood is attempted only
once; if a collision is detected on this candidate connection, no more attempts will be made to connect xmin
to any other node in the open set during this expansion iteration (lines 3-12). This is termed lazy collision
detection. Once all nearest neighbourhood nodes have been iterated over, all of the newly connected nodes
are added to the tree, taken out of the unvisited set and placed in H. The original lowest cost node within
the open set is also removed from the open set, never to be re-visited (line 13). Lastly, a new minimum open
set node z is assigned in preparation for the next expansion iteration (line 16). This expansion procedure
continues until the goal node is successfully found, or the open set is empty, implying that no nodes are left
to be expanded into and failure is returned. Like PRM* and RRT*, the nearest neighbourhood in FMT* is
defined by the radial distance given in Eq. (1).

FMT* is advantageous in that it uses lazy collision detection to reduce the number of expensive collision
checking operations, and converges to optimal solutions faster than RRT* and PRM* (shown experimentally
in (Janson et al., 2015) and (Starek et al., 2014)). Like RRT* and PRM*, FMT* is proven to be AO (Janson
et al., 2015). The proof may be modified to allow for non-uniform sampling distributions. The HBFMT*
planner presented in this article also exploits non-uniform sampling by biasing solutions found from FMT*
searches in sub-dimensional spaces. It is shown that the conditions for AO are preserved in Section 5.

3.3 BFMT*

In general, the usage of bidirectional search within the planning problem may dramatically reduce the
amount of required exploration (LaValle, 2006). Additionally, bidirectional search has been shown to aid
in the discovery of narrow passageways for sampling-based planners (Starek et al., 2014; Jordan and Perez,



Algorithm 3: FMT* Expansion

function Expand(T = (V,E,H,W ),T ′ = (V ′, E′, H ′,W ′),z,xcollision)
1 Hnew ← ∅
2 Znear ← Near (V \ {z},z,rn) ∩W
3 for x ∈ Znear do

Xnear ← Near(V \ {x},x,rn) ∩H
xmin ← argminx′∈Xnear

{Cost(x,T) + Cost(x′x)}
4 if CollisionFree(xmin,x) then
5 E ← E ∪ {(xmin, x)}
6 Hnew ← Hnew ∪ {x}
7 W ←W \ {x}
8 T = (V,E)
9 if x ∈ V ′ and Cost(x,T) + Cost(x,T ′) < Cost(xcollision,T) + Cost(xcollision,T ′) then

10 xcollision ← x

11 if xmin = xgoal then
12 success = true

13 H ← (H ∪Hnew) \ {z}
14 if H = ∅ then
15 stop expansion = true

16 z ← argminx∈H{Cost(x,T)}
17 return {T = (V,E,H,W ), z, success, stop expansion, xcollision}

2013). Within the hierarchical planning framework proposed in this article, bidirectional search is employed
for this reduction in exploration while searching Xfree. It is also used to find multiple candidate paths while

searching X#
free as described in Sec. 4. BFMT* is a bidirectional variant of FMT* proposed in (Starek et al.,

2014).

BFMT* grows two FMT*s, T = (V,E,H,W ) and T ′ = (V ′, E′, H ′,W ′), rooted at the start and goal nodes
respectively. Pseudo-code for this function is presented in Alg. 4 and in (Starek et al., 2014). BFMT* starts
by sampling a set of states, S, from Xfree. The two trees are then initialized. The samples S, the start state
xinit and the goal state xgoal are first inserted into the V set of T , with xinit as the root node. The states
S, xinit and xgoal are also inserted into V ′ of T ′, with xgoal at its root. During each iteration of BFMT*
the tree T is expanded (line 7), termination conditions are checked (lines 8-16), and then success criteria are
checked (lines 17-20). At the end of an iteration a new minimum cost node z is selected from the alternate
tree T ′ (line 21). The two trees are then swapped (line 22), so that the alternated tree may be expanded on
the next iteration of algorithm. Tree expansion ceases once a termination condition has been encountered.

The termination condition of BFMT* may occur in one of two separate conditions (Starek et al., 2014). The
first is when the two trees initially intersect, occurring when a node is in the open set of both trees. This
is the “first path” termination condition, however it does not guarantee an optimal solution. The second
termination condition occurs when a node is in the open set of one tree, while not inside the open or unvisited
set of the other. This second “best path” condition results in a case where the node can no longer improve
its cost-to-come value from either tree root and is therefore the optimal solution given the sampled nodes.
When one of these termination conditions are encountered the path from π, which is the path from the initial
goal of the first tree T to the collision node xcollision, and then to the initial goal T ′ (lines 8-10 of Alg. 4).



Algorithm 4: Bidirectional Fast Marching Trees

function BFMT∗(Xfree,xinit,xgoal,n,Π,`,rsinge,rtunnel,tc)
1 S ← xinit ∪ xgoal∪ SampleFree (n,Π, `, rtunnel)

2 T ← Initialize(S, xinit)
3 T ′ ← Initialize(S, xgoal)

4 Π← ∅, z ← xinit, xcollision ← ∅
5 e← false, success← false,stop expansion← false
6 while stop expansion = false and success = false do
7 {T, z, success, stop expansion xcollision} ←Expand(T ,T ′,z,success,xcollision)
8 if (tc = FIRST and xcollision 6= ∅) or (tc = BEST and z ∈ (V ′ \H ′)) then
9 π ← Path(xcollision,T) ∪ Path(xcollision,T ′)

10 Π← Π ∪ π, success = true

11 else if tc = EXHAUSTIVE and z ∈ (V ′ \H ′) then
12 π ← Path(xcollision,T) ∪ Path(xcollision,T ′)
13 Π← Π ∪ π
14 SingeBranch(xcollision,T ,rsinge)
15 SingeBranch(xcollision,T ′,rsinge)
16 xcollision ← ∅, e← true

17 if H = ∅ and H ′ = ∅ and e = false then
18 stop expansion = true

19 else if H = ∅ and H ′ = ∅ and e = true then
20 success = true

21 z ← argminx′∈H′{Cost(x′,T ′)}
22 Swap(T,T’)

23 return Π

4 Hierarchical Bidirectional Fast Marching Trees (HBFMT*)

Intuitively, HBFMT* biases search of the full configuration space based on knowledge gathered from an
initial rapid search of a sub-space. To introduce HBFMT* we describe an example with the MAMMOTH
rover constrained to an 8-DOF space X operating within a confined environment shown in Fig. 2. This space
is composed of the 3-DOF position of the robot with respect to an inertial frame (xIB , yIB , zIB), the yaw of
the robot ψ and leg i′s hip rotation for each of the four legs qHi

. The robot starts in an open-stance state at
the diamond position, while its goal is to achieve a similar stance at the star position both shown in Fig. 2d.
Any feasible path requires reconfiguration of the robot to either traverse over and around block obstacles
or clamber over step obstacles. Initially, as in Fig. 2a, a sub-space X#

free is searched using BFMT*. The
sub-space describes the translation of the robot’s body with respect an inertial frame. Collision checking is
performed between the environment and the translating body of the robot without its legs. A set of paths,
Π#, is composed of feasible paths through X#

free and is shown in Fig. 2a. The full 8-DOF configuration space

of the robot is then sampled with a bias around the set of returned paths through X#
free as shown in Fig. 2b.

Another BFMT* instance then searches this biased distribution as in Fig. 2c. The bias is implemented using
a tunable tunnel radius, rtunnel that defines how focused the search of the solutions from the previous level
of the hierarchy is. A final path that traverses around and over the box obstacles is returned and shown in
Fig. 2d.

Before HBFMT* is defined, a modification to the termination condition of BFMT* is described. An “ex-
haustive” termination condition is introduced; pseudo-code is provided in Alg. 4. When a “best” or “first”
termination condition is found at a tree collision node xcollision,i, BFMT* returns the feasible path πi, where
i is the path index, and adds it to the set of alternative paths Π#. When a collision node is found it is singed.



(a) The BFMT* in X#
free.

The two returned paths
make up the set Π#.

(b) The samples in Xfree

projected into R2.
(c) The BFMT* in Xfree

projected into R2.
(d) The MAMMOTH rover

at various waypoints
along the path.

Figure 2: In the HBFMT* algorithm an initial exhaustive BFMT* search (a) of a uniformly sampled sub-
space returns a set of feasible paths. States from the full space are then sampled from a biased distribution
focused around the sub-space paths (b). A second BFMT* shown in (c) searches through the full state
samples. Lastly, in (d) a full state-space path is returned.

Algorithm 5: Hierarchical Bidirectional Fast Marching Trees

Data: Xfree,xinit,xgoal,n,rsinge,rtunnel
Result: Π

1 begin

2 Π# ← BFMT∗(X#
free,x

#
init,x

#
goal,n,∅,1,rsinge,rtunnel,EXHAUSTIVE)

3 Π← BFMT∗(Xfree,xinit,xgoal,n,Π#,`,∅,rtunnel,BEST)

All of its descendant nodes are found via a breadth first search starting from the collision node. All nodes
within a distance rsinge of the collision node or its descendants are removed from the open and unvisited
sets so that tree expansion may not continue through them. This singeing procedure is performed in both
FMT*s. Pseudo-code for the singeing procedure is presented in Alg. 7. BFMT* continues this search and
singe procedure until both trees’ open sets are exhausted.

HBFMT* is now formalized. Pseudo-code is listed in Alg. 5. The first step is to plan a path through the
sub-space X#

free using an exhaustive BFMT*, sampling uniformly from X#
free. Depending on the space X#

free

and the performance of the BFMT* search, there may be multiple unique paths returned to form the set
Π#.

The set of paths Π# is then passed to a second BFMT* instance along with a sampling variable `. This
second BFMT* search starts by sampling n states from Xfree to create the tree nodes V as detailed in Alg. 6.
A collection of n` samples are taken from a uniform distribution over Xfree to comply with asymptotic
optimality conditions discussed in Sec. 5. Every second path within Π# is reversed and then all of the
paths within Π# are concatenated to form a path λ that goes back and forth between the goal and end
nodes (lines 2-7). The sub-space components of n(1 − `) states are sampled from a Gaussian distribution
N (dλ, rtunnel) where dλ is a uniformly sampled distance along λ (line 11). The parameter rtunnel, the tunnel
radius, determines how wide the biased search region around λ is. Currently, this variable is tuned manually,
however in future work it is desired that this variable based on results from multiple searches of X#

free. The
remaining sub-space components are sampled uniformly (line 13). A sample is only added to the set S if it
is valid, having no collisions with obstacles, respects kinematic constraints and is within the configuration
space boundaries (lines 14-15). An example of a resulting set of sampled nodes in Xfree projected into R2

is shown in Fig. 2b. Once the biased set of samples S has been found, the second BFMT* instance explores
the set and returns the best path through the resulting tree as shown in Fig. 2d.



Algorithm 6: Sample Free

1 function SampleFree(n,Π,`,rtunnel)
2 λ← [ ]
3 for i = 1 to |Π| do
4 if i mod 2 = 0 then
5 λ← [λ Reverse(Πi)]

6 else
7 λ← [λ Πi]

8 m← n
9 while m > 0 do

10 if m < (1− `)n then
11 x← SampleBiased(λ,rtunnel)

12 else
13 x← SampleUniform

14 if IsValid(x) then
15 m← m− 1, S ← S ∪ x

return S

Algorithm 7: Singe Branch

1 function SingeBranch(z,T ,rsinge)
2 /* Perform breadth-first search of the sub-tree with its root at node z. */

3 A← BreadthFirstSearch(z,T)
4 A← A∪ Near(T ,A,rsinge)
5 H ← H \A, V ← V \A
6 H ′ ← H ′ \A, V ′ ← V ′ \A

5 Analysis

In this section the asymptotic optimality of HBFMT* is shown and the effects of its tuning parameters are
discussed. Asymptotic optimality (and thus, probabilistic completeness) of HBFMT* is proved by observing
that the terminal stage of the algorithm is BFMT* with a non-uniform sampling distribution and a metric
cost function. The following theorem characterizes asymptotic optimality in terms of the number of sample
nodes.

Theorem 5.1. Let π : [0, 1] be a feasible path with strong δ-clearance, δ > 0. ζ is the Lebesgue measure
of the unit-cost ball and µ(Xfree) is the Lebesgue measure of the free space. Consider running HBFMT* by
sampling n nodes from a distribution ϕ and executing to completion using any termination criteria and a
radius

rn = 2(1 + η)
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) 1
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d
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d
(

1
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) 1
d
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for a parameter η ≥ 0 and n` > 1. Let cn denote the cost of the path returned by HBFMT* and c∗ be the
optimal path cost, then limn→∞ P(cn > (1 + ε)c∗) = 0 for all ε > 0 (which defines AO).

Proof. The terminal stage of HBFMT* implements BFMT* operating in Xfree, using a metric cost function
and samples from probability distribution ϕ that is lower bounded by `. To prove AO of HBFMT* it
therefore suffices to show that BFMT* is AO under these two conditions. Firstly, any metric cost function
satisfies the AO conditions for FMT* (Sec. 5 of (Janson et al., 2015)). Secondly, we can represent ϕ as
a mixture distribution, composed of a uniform distribution that is sampled with probability ` and a non-
uniform distribution that is sampled with probability 1− ` (Janson et al., 2015). This results in a uniform



Figure 3: The “Spin to Win” environment in which the MAMMOTH rover must drive out of the narrow
passageway, change its yaw angle by 180◦, and then drive back into the narrow passageway. The start state
is at the diamond location, while the goal state is at the star location.

distribution being sampled n` times, and thus the proof of AO of FMT* is preserved. Likewise, for BFMT*,
limn→∞ P(cn > (1 + ε)c∗) = 0 for all ε > 0 (Starek et al., 2014).

The performance of HBFMT* compared with BFMT* and FMT* is largely dependent on the sub-space
X#
free that is initially sampled and the resulting distribution ϕ generated in Xfree. It is generally the case

for reconfigurable mobile robots that X# is the workspace of the vehicle, which is in the translational R3

Euclidean space. However, if the platform requires a specific orientation or joint articulation motion that
is not contained within the biased search region in Xfree, the algorithm may not perform as well as FMT*
and BFMT* and may be dependent on samples taken from the uniform component of ϕ. Currently, the
sub-space X#

free is chosen a priori, however a topic of future work is incorporation of autonomous selection
of these spaces given a certain environment and robot model. Examples of such low-dimensional structure
identification can be found in (Rowekamper et al., 2013) and (Vernaza and Lee, 2012).

An example environment in which a dominant dimensions outside of R3 are present is called “Spin to Win”
and is shown in Fig. 3. The MAMMOTH rover starts in a narrow passageway, and its goal position is inside
the same narrow passageway, however the yaw angle is rotated by 180◦. To get to the goal state from the
initial state the rover must drive out of the passageway, change its heading and then drive back into the
passageway. The use of HBFMT* exploring R3 in its first hierarchy level would not perform very well given
that the yaw dimension is a dominant one within the full planning problem. This problem may be addressed
by including the yaw of the robot within X#. By doing this, a second problem arises. If the body without
legs is used for collision detection within the first hierarchy level it will be able to yaw by 180◦ within the
narrow passageway, unlike the full rover model. It therefore becomes apparent that the footprint dimensions
are also dominant within this problem and a BFMT* or FMT* that uniformly samples X may be more
useful.

The singe radius, rsinge parameter affects the number of alternative paths within Π#. By increasing the
size of the singe radius a larger sub-set of the two trees’ nodes are prohibited from being expanded through.
The effect of varying rsinge is shown in Fig. 4. The figure illustrates the resulting alternative paths through
Xfree in an environment with many possible homotopic paths to choose from. As a rule of thumb the rsinge
parameter should define a ball that is larger than the radius that defines the ball that can completely envelop
the body of the robot being planned for. Any smaller value will most likely result in redundant sub-space
paths that will implicitly create a sampling bias towards the region of the full space that they lie in. As rsinge
gets larger the number of alternate paths found will decrease. Therefore, if it is desired that the number



(a) rsinge = 0.5 m (b) rsinge = 1 m (c) rsinge = 1.5 m (d) rsinge = 2 m

Figure 4: The paths through X#
free generated by the exhaustive BFMT* with varying rsinge values. The

samples taken from the biased sampling distribution generated around the X#
free paths are also shown.

(a) rtunnel = 0.1 kJ. (b) rtunnel = 0.2 kJ

(c) rtunnel = 0.3 kJ (d) rtunnel = 0.4 kJ

Figure 5: The effect of different tunnel radii sizes on samples in Xfree taken from a biased distribution

focused around a path found from an exploration of X#
free.

of sub-space paths be smaller so as to focus on a smaller exploration region in the final hierarchy level, the
rsinge value should be increased. The choice of rsinge is a trade-off between a focused sampling distribution
in Xfree and knowledge of existing sub-space paths embedded within Xfree.

An additional parameter that affects the performance of HBFMT* is the biased sampling distribution vari-
ance rtunnel. A small value for rtunnel results in focused sampling around the nodes in Π#, thereby increasing
the planner’s reliance on the sub-state solutions Π#, and making the planner more susceptible to missing
necessary motions. A large value for rtunnel results in a distribution resembling uniformity or a distribution
with an accumulation of samples at the boundaries of Xfree. This removes any advantage or even worsens
HBFMT*’s performance compared with BFMT* or FMT*. Fig. 5 highlights the effect of different values for
rtunnel on the sampling distribution in Xfree.

Both rsinge and rtunnel require tuning given robot and environment models. An experiment that varies rsinge
and rtunnel for planning problems in different environments is provided in Sec. 7 to empirically demonstrate
the effect that these parameters have on algorithm performance.
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(b) The MAMMOTH rover leg.

Figure 6: Labelled view of the MAMMOTH rover and its sub-components.

6 Planning for the MAMMOTH Rover

The RWMR used in all experiments is the MAMMOTH rover shown earlier in Fig. 1 and described in detail
in (Reid et al., 2014). The physical MAMMOTH rover has a mass of 75 kg and 16 points of actuation. Its
maximum footprint is 1500 mm by 1500 mm, while its most compact footprint is 650 mm by 650 mm. It
may drive and steer each of its wheels independently and continuously allowing for omnidirectional driving.
Each hip actuator can be moved between ±270◦ to change the footprint of the vehicle. Lastly, each leg is
a parallel structure. The legs can raise and lower between −20◦ and 70◦ relative to the transverse plane of
the rover’s body.

A simulated model of MAMMOTH rover used for planning, shown in Fig. 7, has an 8-DOF configuration
space. It may translate its body frame B relative to its inertial frame I along the xIB , yIB and zIB directions.
Its roll, pitch and yaw positions are denoted by φ, θ and ψ respectively. In all experiments we hold φ and
θ constant at 0◦, while ψ is free to rotate. Additionally, the four hip joints, qH1,...,qH4 may rotate, thereby
changing the robot’s contact footprint. A randomly sampled state x contains values for each of these eight
degrees of freedom. The state x also contains four thigh joint variables, qU1

,..., qU4
that are calculated as

a function of the eight degrees of freedom as well as the local terrain profile. Additional dependent joints
that are driven to meet a desired configuration are the ankle joints, qS1 , ..., qS4 and wheel joints, qA1 , ..., qA4 .
These joint positions and rates are determined as a function of the desired velocity of the platform. The
MAMMOTH rover limb numbers and joint names are labelled in Figure 6.

6.1 Collision-Based Feedback Sampling

The 8-DOF configuration space does not characterize the capability of the MAMMOTH rover to raise one
leg off the ground at a time. This ability is critical when the rover needs to clamber over obstacles. To allow
this clambering behaviour to emerge, a sampling feedback method is used. If it is found that a sample from
the 8-DOF space is deemed invalid due to leg i colliding with an obstacle, the sample is checked again with
leg i raised. This is done by changing the leg’s qUi

value so that the leg is in its fully raised configuration.
If this new leg-raised state is not in collision with obstacles and obeys static stability constraints, then it
is deemed a valid sample Xfree. Alg. 8 provides pseudo-code for the sampling implementation used for the
MAMMOTH rover planning problem. The new space being planned through has 9-DOF as there can only
be one leg raised at a time.



By not uniformly sampling a configuration space that includes dimensions that describe the robot’s ability to
raise and lower its legs off the ground, asymptotic optimality and completeness guarantees are removed from
the planner. To reduce this effect of feedback sampling, a sampling strategy that ensures that the 8-DOF X
space is sampled uniformly for a minimum proportion, (1 − f), of the n samples is used. The correct way
of ensuring these guarantees would be to uniformly sample the full 9-DOF space. As part of the collision
detection procedure, the rover’s static stability is checked according to the model described in (Papadopoulos
and Rey, 1996). This characterizes static stability by finding the minimum angle between the force vector
extending from the rover’s centre of mass and the vector connecting each wheel/ground contact point. In
all of the experiments performed to validate the motion planner a moderate stability margin of about 10◦ is
used.

Algorithm 8: Sample Free Mammoth State With Collision Feedback

1 function SampleFree(n,Π,l,rtunnel)
2 λ← [ ]
3 for i = 1 to |Π| do

if i mod 2 = 0 then
λ← [λ Reverse(Πi)]

else
λ← [λ Πi]

4 m← n
5 while m > 0 do
6 if m < (1− l)n then
7 x← SampleBiased(λ,rtunnel)

8 else
9 x← SampleUniform

10 q
U
← MammothIK(x)

11 if IsValid(x) then
12 m← m− 1, S ← S ∪ x

else
13 for i← 1 to 4 do
14 if LegCollision(i) then
15 q

U
(i)← qU .bounds.min

16 if IsValid(x) then
17 m← m− 1, S ← S ∪ x

return S

6.2 Cost Functions

For planning with HBFMT* two cost functions are required. The first is the cost function associated with
the sub-space X#, while the second is the cost associated with the full configuration space X . In considering
the MAMMTOH rover planning problem, state transition costs approximate the amount of mechanical work
in a state transition. When planning in X#, the cost function used is:

J#(xi, xi+1) ≈ µMg
√

(∆xIB)2 + (∆yIB)2 + gmbody∆zIB , (3)



while in X the cost function is:

J(xi, xi+1) ≈ µMg
√

(∆xIB)2 + (∆yIB)2

+ gmbody∆zIB

+ gmleg(∆z
I
leg,1 + ∆zIleg,2 + ∆zIleg,3 + ∆zIleg,4)

+ µmbodygrleg∆ψ

+ µmleggrleg(|∆ψ − (qH1,i+1 − qH1,i)|+ |∆ψ − (qH2,i+1 − qH2,i)|
+ |∆ψ − (qH3,i+1 − qH3,i)|+ |∆ψ − (qH4,i+1 − qH4,i)|). (4)

In each of equations, ∆ is the absolute difference over a single dimension. Additionally, mbody = 30 kg is
the mass of the rover’s central chassis, mleg = 10 kg is the mass of a single leg, M = (mbody + 4mleg) is the
total mass of the rover, rleg = 0.7 m is the average reach of the center of mass of a single rover leg, µ = 0.1
is an approximate rolling resistance coefficient for the rover’s wheels, and ∆zIleg,i is the change in height of
the centre of mass of limb i relative to the inertial frame. The constants used to generate the cost functions
are an approximations; an item of future work is to incorporate a high fidelity physical model of the rover
into the planner to more accurately calculate energy expenditure. The traversal cost of a path is the sum of
its state transition costs:

c(π) =

b−1∑
i=0

J(xi, xi+1), (5)

where b is the number of waypoints in the path.

7 Numerical Experiments

The aims of the numerical experiments are to evaluate HBFMT*’s performance against state-of-the-art
sampling-based planners, including FMT*, BFMT*, RRT*, Informed RRT* and BIT*; demonstrate the
algorithm’s suitability to path planning for RWMRs using the system described in Sec. 6 and four distinct
environments described in Sec. 7.1; and to evaluate the sensitivity of the hierarchical planning framework to
parameter tuning.

Numerical experiments are performed using a variety of environments that are designed to highlight the
advantages and disadvantages of HBFMT*. Planners are evaluated on the returned path cost, required
computation time, as well as the probability of successfully finding a path at a certain computation time.
All experiments are performed on a flat terrain that is cluttered with obstacles.

All planners are implemented with the Open Motion Planning Library (OMPL) version 1.1.0 (Sucan et al.,
2012). OMPL implementations for FMT*, RRT*, Informed RRT* and BIT* have been used. The BFMT*
and HBFMT* implementations are our own. Experiments are run on a 3.4 GHz Intel i7 processor with
32 GB of RAM running Linux Ubuntu 16.04 LTS. In all planners the Geometric Nearest-neighbor Access
Tree (GNAT) algorithm (Gipson et al., 2013) is used to perform nearest neighbourhood queries, while the
Flexible Collision Library (FCL) (Pan et al., 2012) is used to perform all collision checks.

7.1 Environments

Three separate environments are used to perform the experiments. The first two are purely simulated
environments, however the third is based on an actual environment constructed within a Mars analogue
environment. The three environments have the following designations: (a) Gauntlet, (b) Alternatives, and
(c) Mars Lab Corridors. Each of the environments is shown in Fig. 7 along with the initial and goal states
of the rover.



(a) Gauntlet. (b) Alternatives. (c) Mars Lab Corridors.

Figure 7: The three environments used in the numerical experiments along with the initial and goal states
of the rover.

Table 1: The planners used in the numerical benchmarking experiment and whether or not the corresponding
OMPL implementation was used. The numbers of samples per batch is given in MATLAB vector notation
<start number>:<increment number>:<end number>.

Planner OMPL Trials/batch Samples/batch
HBFMT* No 50 1000:1000:5000, 5000:5000:25000
FMT* Yes 50 1000:1000:5000, 5000:5000:25000
BFMT* No 50 1000:1000:5000, 5000:5000:25000
BIT* Yes 50 Anytime planner
RRT* Yes 50 Anytime planner
Informed RRT* Yes 50 Anytime planner

In the Gauntlet environment, the rover must navigate around/over box obstacles, through a tunnel and
through a narrow passageway to get to its goal. This environment contains a single homotopy class of paths
embedded within the Euclidean translational sub-space of the rover. HBFMT* is able to focus its search
on this single family of paths. The Alternatives environment is designed to contain two homotopy classes
of paths within the Euclidean translational sub-space. The robot may choose to clamber over the four step
obstacles, or drive around and over the many block obstacles. Clambering over obstacles is energy intensive,
so an optimal solution should lie in the region with the block obstacles. In order to successfully traverse the
Mars Lab Corridors environment the robot must clamber over the set of step obstacles in the middle of the
environment. A solution for this environment is only achievable if the planner considers the robot’s ability to
raise individual legs off the terrain. This is achieved by using the collision-based sampling feedback strategy
described in Sec. 6.1.

7.2 Experiment Setup

For the benchmarking experiments, paths are found for the four environments using a set of sampling-based
planners: HBFMT*, BFMT*, FMT*, BIT*, RRT* and Informed RRT*. A batch of trials is composed of 50
planner executions. For HBFMT*, BFMT* and FMT*, distinct batches are assigned between 1000 and 5000
nodes with 1000 node increments and between 5000 and 25000 nodes with 5000 node increments. HBFMT*
additionally uses 1000 nodes to sample X#

free. For BIT*, RRT* and Informed RRT*, single batches of 50
trials are used with an expiry time of 350 s. For RRT* and Informed RRT*, a goal-bias probability of 5%
is used. This setup data is detailed in Table 1.

Table 2: The tuning parameters used for HBFMT* for each environment.
Environment rsinge [m] rtunnel [kJ] ` [-]
Gauntlet 2 0.1 0.2
Alternatives 3 0.75 0.2
Mars Lab Corridors 2 0.3 0.2



Tuning parameters for HBFMT* are different for each environment as detailed in Table 2. HBFMT* begins
by sampling the X# space associated with the translational mechanical work of the rover. In this case the
rover’s body without legs is used for collision checking. Based on observations of best practice from (Janson
et al., 2015), k-nearest neighbour versions of all of the planners are used. As discussed in Section 2 k-
nearest neighbor search is more adaptable to a variety of obstacle configurations than its radial-nearest
neighbor counterpart. The value kn, which denotes the number of nearest neighbour nodes, is calculated as
kn,FMT∗ = 2de/d log(n) for the FMT* variants, and kn,RRT∗ = (e + e/d) log(n) for RRT*. For HBFMT*,
kn is determined by changing the number of nodes n to n` as in Eq. 2.

7.3 Results

All experimental results are presented in path cost versus time and success rate versus time plots. Results
for the Gauntlet environment are shown in Fig. 8, Alternatives in Fig. 10 and Mars Lab Corridors in Fig. 11.
In each of these figures, excluding Fig. 11 for Mars Lab Corridors, separate results are presented with
no feedback sampling (NFS) and with feedback sampling (FS). Only results using feedback sampling are
presented for Mars Lab Corridors given that leg lift manoeuvres are required to successfully traverse the
environment. Additionally, the cost versus time plots in these figures are in a standard box plot format.
Each box for the FMT* variant planners represents a distinct number of samples as described in Table 1.
Similarly, in the success rate versus time plots, circles represent a distinct number of samples from the FMT*
variant planners. A timelapse of a feasible solution from the Gauntlet environment is presented in Fig. 9.
This example path illustrates fluid transition between intuitively discrete locomotion modes such as driving,
clambering and footprint reconfiguration.

7.3.1 Gauntlet

From Figure 8, an obvious observation from the Gauntlet experiments is HBFMT*’s ability to find feasible
solutions. For both the NFS and FS cases, HBFMT* returns more successful paths than any of the other
planners. For the NFS case HBFMT* begins returning feasible paths 100% of the time in the 20,000 node
batch. BFMT* and FMT* are the next most successful planners with an approximately 70% success rate by
the 20,000 to 25,000 node batches. The anytime planners perform poorly in this environment for the NFS
case with an approximately 5% success rate at the 350 s expiry time. Another significant improvement by
the HBFMT* planner is the computation time when compared with BFMT* and FMT*. For 25,000 nodes
the average computation time difference is 80 s with FMT* and 100 s with BFMT*.

When analyzing path cost results it must be noted that the reported cost data is only for the trials that
successfully returned a path. For both the NFS and FS cases HBFMT* outperforms all other planners and
begins to find successful solutions faster. For the NFS case there is an approximate cost percentage difference
of 5% between the HBFMT* and FMT* variants between 120 s and 250 s. For the FS case on the other hand
there is a larger 15% margin during the same time period. To explain this difference, it first must be noted
that HBFMT* returns a similar cost in a similar timeframe in both the NFS and FS cases. BFMT* and
FMT* have difficulty finding a path through the first narrow passageway shown in Fig. 9 in the NFS case.
With FS, FMT* and BFMT* are able to use samples where the robot is straddling the low boundary walls.
This results in a significant improvement in successfully returning paths, however due to energy intensive
leg raising manoeuvres being utilized the average path cost increases. BIT* also has a notable increase in
success rate when FS is enabled, however the cost of BIT*’s returned paths is 50% to 33% more expensive
than the FMT* variants.

7.3.2 Alternatives

In the Alternatives environment HBFMT* may find paths through X#
free over the two homotopic regions.

These regions include the area with the four steps and the area with block obstacles. The X#
free search of



Figure 8: Experimental results from planners solving for a path through the Gauntlet environment. The left
column shows results with no feedback sampling and the right column shows results with feedback sampling.

HBFMT* results in a biased sampling distribution in Xfree that is focused over both distinct sections of the
space. The cheaper cost region will lie in the region riddled with box obstacles. To traverse the area with
four steps would require many energy intensive leg lifts. Additionally, finding a path over the step obstacles
with feedback sampling is extremely unlikely given the four high-dimensional narrow passageways that are
generated by the four required clambering manoeuvres.

Even though the number of samples available in the box obstacle region is diluted by sampling of the step
region, a notable cost improvement between HBFMT* and the other planners is observed, especially for
batches with smaller numbers of samples. Due to its bias around a sub-region of the enviornment’s box
region, HBFMT* converges to 100% successful solutions by 20 s; faster than any other planner when using
NFS. BIT*, FMT* and BFMT* however are also relatively quick to converge to 100%, with BIT* reaching
100% convergence by 65 s, and BFMT*/FMT* by 100 s.

For the feedback sampling case the FMT* variants get close to but do not completely converge to 100%
success rates. BIT* on the other hand does converge to 100% by 45 s. As mentioned in Sec. 6.1, due to the
ninth ‘leg-raise’ dimension not being included in Xfree and only being sampled if a leg collision occurs, AO
and PC guarantees are removed. This effect is not noticeable with the anytime BIT* planner however given
that it may resort to previously found solutions and not rely on a wavefront of edges expanding through a
single batch of nodes.

HBFMT* once again consistently returns better cost paths faster than all of the other planners, especially
at lower computation times (< 100 s). For the NFS case there is an average cost difference of 25% at 60 s
and 14% at 180 s between HBFMT* and BFMT*/FMT*. For the FS case, the margins are similar with
27% difference at 60 s and 14% difference at 195 s.



(a) Isometric view. (b) Top view.

(c) Leg 1 raises over the
boundary wall.

(d) Straddling position with
leg 1 lowered.

(e) Narrow passageway
transition.

(f) Leg 1 raises over the
boundary wall again.

Figure 9: A path generated by BFMT* using 25,000 nodes in which the MAMMOTH rover straddles the
low boundary wall in the narrow passageway at x ≈ 11 m and y ≈ 7 m. The bottom row of images show
the leg raising manoeuvres the MAMMOTH rover performs to clamber over the boundary wall.

7.3.3 Mars Lab Corridors

The Mars Lab Corridors environment forces the MAMMOTH rover to perform a clambering manoeuvre
to traverse the ‘S’-shaped obstacle at the centre of the space. For this reason, only the FS case is used in
the Mars Lab Corridors experiment. The manoeuvre required for the robot to clamber over the obstacle
represents a high-dimension narrow passageway where the robot must find a set of sequential moves to
clamber over the obstacle while remaining stable. This narrow passageway sequence of manoeuvres includes
one or more leg raises and yaw re-orientations. Bidirectional search is commonly used to address the narrow
passageway problem and its efficacy is evident from the success versus computation time plot in Fig. 11.
HBFMT* gets to 90% success by the 15,000 node batch, while BFMT* gets to just above 50% by 15,000
nodes. FMT* and the uni-directional anytime planners see success rates at or below 20% for all computation
times. Due to its focussed exploration, HBFMT* is able to outperform BFMT* in terms of success rate.

If a solution is found, BFMT* and HBFMT* perform relatively similarly. If the clambering manoeuvre over
the S-shaped obstacle is found, it is straight forward for any of the planners to achieve a solution that is
close to the optimal given the absence of additional obstacles.

Generally, HBFMT* is observed to improve path quality with a smaller computation time. Notably, on
average HBFMT* returns a greater number of lower-cost feasible solutions sooner than the other planners
for all the environments presented.

7.4 Parameter Tuning

An experiment investigating the robustness of the algorithm given varying parameter values of singe radius
rsinge and tunnel radius rtunnel is performed. In this experiment the HBFMT* planner is run for the
MAMMOTH rover in the Gauntlet, Alternatives and Mars Lab Corridors environments with the same start



Figure 10: Experimental results from planners solving for a path through the Alternatives environment. The
top row shows successful path cost versus time in standard box plot format. The left column shows results
with no feedback sampling and the right column shows results with feedback sampling.

and goal configurations shown in Fig. 7. A total of 100 separate batches of trials are run, with 50 trials per
batch. Each batch has a different rsinge and rtunnel combination. The rsinge parameter is varied between
0.5 m and 5 m, while rtunnel is varied between 0.1 kJ and 1.8 kJ.

The results of this experiment are shown in Fig. 12. Each mesh vertex represents the average of the 50 trials
run for a specific rsinge and rtunnel combination. The results for the Gauntlet environment demonstrate

that lower cost is returned as the biased sampling gets more focused around the single X#
free homotopy

class available in the environment. In Alternatives, it is seen that when rsinge is large and rtunnel is small
the number of successful traverses drops. This is caused by biased samples not being placed in the half of
the environment filled with block obstacles and only being placed over the step obstacles. The planner has
difficulty finding a path over the four step obstacles and therefore the success rate drops. Additionally, the
Alternatives plot shows that if rtunnel is too small then the biased sampling is too focused and cannot find
configurations that successfully avoid the large number of block obstacles along the optimal path. A similar
effect is seen with the Mars Lab Corridors environment.

8 Plan Following

The objective of the plan following trials are to (a) demonstrate the physical MAMMOTH rover following
paths generated by the proposed HBFMT* planner; to (b) validate the cost function used in the planner
against the actual energy expenditure by the physical platform; to (c) demonstrate actuator constraints
(i.e. faults or sensor pointing restrictions) being incorporated into the plan; and to (d) highlight practical
considerations of the MAMMOTH planning problem not originally considered in the numerical experiments.
All successful experiment trials conducted may be viewed at https://goo.gl/5MC6Ib.

https://goo.gl/5MC6Ib


Figure 11: Experimental results from planners solving for a path through the Mars Lab Corridors environ-
ment using feedback sampling.

(a) Gauntlet (b) Alternatives (c) Mars Lab Corridors

Figure 12: Path cost and success rates for HBFMT* with 5000 nodes in each environment with varying
rsinge and rtunnel values.

8.1 Experiment Setup

All experiments are performed at the Sydney Powerhouse Museum Mars Lab, a 20 m by 7 m space designed
as a Mars analogue. The Mars Lab is a sandy terrain littered with rock obstacles.

The experiments are divided into trials where a single traverse of an environment is attempted. The execution
time for a traverse is started as soon as motion in any actuator starts. Traverse execution time ends when
the rover is within a tolerance ε of the final state. This ε was set as 0.05 kJ for all trials. All trials are
performed by running the motion planner before the traverse is begun. The planner’s generated path is
given to the path follower which is used to control the motion of the rover. The rover drives along the path
until it reaches its goal state.

Trials are run for all environments using either n =5000 or n =10,000 samples in Xfree and 5000 samples in

X#
free. Varying stability margins are used, while HBFMT* parameters are held constant over each trial at



(a) Mars Lab Boxes from near xinit. (b) Mars Lab Boxes from near xgoal.

(c) Mars Lab Corridors from near xinit. (d) Mars Lab Corridors from near xgoal.

Figure 13: The two environments used in the plan following experiment. Obstacles within the environment
are cardboard boxes, rocks and boundary walls.

rsinge = 0.2 m, rtunnel = 0.2 kJ and ` = 0.2. Obstacle-based feedback sampling is enabled for all trials to
allow the robot to raise legs over obstacles.

The path following experiments are run on two separate environments: Mars Lab Boxes and Mars Lab
Corridors. The Mars Lab Boxes environment is a long thin wedge of the Mars Lab that is on a flat surface
and is littered with box obstacles. The environment forces the robot to modify its footprint and possibly
raise legs off the ground to get from one end of the space to the other. Each of the cardboard boxes in
the environment is given an identifying number as shown in Fig. 13a and 13b. The Mars Lab Corridors
environment is the same as the one described in Sec. 7.1 and shown in Figs. 13c and 13d. To traverse this
environment, the rover must lift at least one leg over the ‘S’-shaped obstacle in the centre of the space. The
three sections of the ‘S’ are denoted as ‘Base’, ‘Middle’ and ‘Top.’ The environment is used to showcase how
the planner accommodates for clambering manoeuvres using feedback sampling.

The initial and goal states for all trials are given in images of the two environments in Fig. 13. Obstacles
within the environments consist of rocks and cardboard boxes. The planner has a map of the environment
and the obstacles. All obstacles are inflated by a radius of 10 cm in the map. Obstacle inflation is needed
due to uncertainty in the translational localization solution of the platform. Robot localization is performed
using an array of fiducial markers mounted on the ceiling of the Mars Lab, an upwards facing camera and
inertial measurement unit mounted on board the robot. The triangulated translational solution has an
accuracy of ±10 cm.

In selected trials sampling constraints are applied to various hip joint rotations or the body yaw rotation.
These trials serve to highlight how the planner may be easily modified to accommodate for such cases as
broken actuators or sensor pointing constraints. These trials are also performed to highlight how constraining
the dimensionality of the explored configuration space may be beneficial in finding lower cost paths. To apply
these constraints the sampling range of the associated constrained sub-space is reduced. Table 3 presents
each of the successful path following trials executed by the MAMMOTH rover and the type of constraint(s)



applied during the trial.

Table 3: Setup details for each of the successful path traversals executed with the physical MAMMOTH
rover.

Trial Env. n β [◦] Constraint

10 Boxes 5,000 6 None
29 Boxes 5,000 23 None
47 Boxes 5,000 23 None
56 Boxes 10,000 23 None
55 Boxes 10,000 14 qH1 = 0◦

32 Boxes 10,000 14 qH1 = 0◦, qH3 = 0◦

49 Boxes 10,000 14 qH1
= 0◦, qH4

= 0◦

38 Boxes 10,000 23 ψ = 0
61 Corridors 5,000 14 qH1

= 0◦, qH4
= 0◦

66 Corridors 10,000 14 qH1
= 0◦, qH4

= 0◦

8.2 Experimental Results

A total of 66 trials are attempted, 10 of which are successful in traversing the pre-planned path completely
without hitting any obstacles or experiencing other faults. Out of the remaining 46 trials, seven trials are
‘partially successful,’ in which the corner of an obstacle is hit but the robot’s traversal is not impeded. A set
of 21 trials are stopped due to a collision with an obstacle. The majority of obstacle collisions are caused by
a noisy localization solution, while three are caused by obstacles not being included in the map. Tip-over
stability failures occurred five times. These are caused by the use of too small a stability margin within
the planner, or the introduction of an incline due to thigh linear actuator positions having different stroke
values. Nine trials fail due to software faults, while the remaining two trials fail due to low battery charge
on the emergency stop remote control system.

Time-lapse images taken from trials 56 and 61 are provided in Fig. 14 and Fig. 16 respectively. To demon-
strate that the proposed planner can produce plans that can be followed by a real world reconfigurable rover,
two separate trials (trials 56 and 61) from the two environments are presented in detail. Plots providing a
detailed comparison between the physical and simulated trials are provided in Figs. 15 and 17.

For each trial a planned path is generated by HBFMT*, a simulation of the trial that uses the path following
controller is run and then the physical traverse is attempted. Results from each of these steps are compared
to validate the performance of the physical system in following a planned path. To validate the cost function
used in planning with the physical system the root mean squared error (RMSE) and normalized root mean
squared error (NRMSE) between each sub-space in each trial is found between the physical traverses and
planned paths. The RMSE and NRMSE are calculated as:

RMSE(Ĵi) =

√
E
[
(Ĵ i − J i)2

]
, (6)

NRMSE(ŵi) =

√
E
[
(Ĵ i − J i)2

]
Ĵimax

− Ĵimin

(7)

where Ĵi is the vector of accumulated mechanical work costs for a sub-space i in the physical trial, while
Ji is the vector of accumulated mechanical work costs for sub-space i in the planned path. The RMSE and
NRMSE results for each trial are presented in Fig. 18. Given that the traverse duration may be different



(a) t = 45 s, τ = 0.14 (b) t = 89 s, τ = 0.29 (c) t = 134 s, τ = 0.43

(d) t = 179 s, τ = 0.57 (e) t = 224 s, τ = 0.71 (f) t = 268 s, τ = 0.86

Figure 14: Timelapse of trial 56 with a time duration of 313 s. Images (a-c) show the traverse from a point
of view close to the initial state, while images (d-f) show the traverse from a point of view close to the goal
state. A video of the full trial is available at https://youtu.be/fZ7X2Nz8lhA.

between the plan, simulation and physical traverse, a normalized traverse duration measure τ ∈ [0, 1] is used
to compare the three. The τ parameter is the proportion of traverse executed so far.

8.2.1 Trial 56

This trial uses HBFMT* to plan a path through the Mars Lab Boxes environment. Initial settings for the
planner include a sub-space batch size n# = 5000, a full space batch size n = 10, 000, a minimum stability
margin β = 23◦ and no motion constraints. Additionally, the tunable HBFMT* parameter values are set to
rsinge = 2 m, rtunnel = 0.2 kJ and ` =0.2. Upon completion, the planner found a path with a mechanical
work cost of 4.65 kJ with a computation time of 206 s. In its sub-space search two separate solutions are
found. The simulated MAMMOTH plan results in a mechanical work cost of 4.71 kJ, while the physical
experiment resulted in a mechanical work cost of 5.07 kJ.

The trial 56 traverse is now described; a video of the trial can be found at https://youtu.be/fZ7X2Nz8lhA,
while a time-lapse is shown in Fig. 14. The rover begins begins its traverse by driving directly forward. At
0:12 it begins to transition into a stable tripod state with legs 1, 2 and 4 as the contact points of the tripod
in preparation for an impending leg 3 lift. At the same time the rover re-orients its yaw to prevent leg 1
from hitting box 3. At 0:40 leg 3 begins to raise off the ground, initially to clear box 3. Excessive steering
motion is observed at 1:24 due to noisy localization in this region of the yard. From 1:52 to 2:32 the rover
yaws by over 90◦ to get leg 2 out of the path of box 5 and prepare leg 4 to avoid box 6. From 2:32 to 3:27
the rover continues to yaw by 180◦ so that it is almost facing backwards allowing leg 4 to drive past box 7
on the box’s wall side. From 3:27 onwards the rover drives directly towards the xy position of xgoal as it
is already in a satisfactory configuration to traverse over the last rock obstacle. As the rover traverses over
‘Home Plate’ it lowers leg 3. Lastly, it performs a yaw manoeuvre of −90◦ to reach the final state. It is
observed that leg 1’s steering joint slightly scuffs the wall during this manoeuvre. This minor collision may
be attributed to an incorrect wall location within the map.

A notable aspect of this path is how the robot raises a single leg for the majority of the traverse. It is
observed in Fig. 19 that there is a smaller mechanical work cost accumulated by the hip joints than in
trials 10, 29 and 47, the other unconstrained Mars Lab Boxes trials. The trial 56 plan trades hip motion
for increased yaw motion compared to trials 10, 29 and 47. It is also observed from this plot that the qU3

https://youtu.be/fZ7X2Nz8lhA
https://youtu.be/fZ7X2Nz8lhA


(a) Body position. (b) Actuator position.

Figure 15: Trial 56 plots comparing workspace position and actuator positions between the physical trials
(blue), simulated trials (red) and planned paths (green).

contribution to the total mechanical work cost is almost four times the cost of any of the other thigh joints
in trial 56. This is due to the leg raise and lower manoeuvres performed by leg 3 and the relatively small
displacements performed by the other legs’ thighs.

In Fig. 15a the xIB and yIB position of the rover in the physical traverse is compared with the planned path
and simulated traverse. It is noted that the reported position in the physical experiment is more jagged than
that of the plan and simulation. This may be attributed to noise in the localization solution provided by
the fiducial localization system. It is also observed that in the physical trial the robot starts moving slightly
behind the initial position used in the simulated trial.

In Fig. 15b the physical hip motions are seen to track the simulated trial, however an offset is present in
part due to the physical trial’s initial position offset. The hip tracking performance is reiterated in Fig. 18
where RMSE values for each hip cost were are below 50 J and NRMSE values below 0.2. The thigh joints do
not have as effective tracking performance as shown in Figs. 15b. This is attributed to the limited velocity
control on each of the linear actuators. The NRMSE values for the hip actuators are generally multiple times
higher than the hip NRMSE values for this reason, as shown in Fig. 18a. For the physical trials the linear
actuators are driven at a constant speed of 11 mm/s to make it easier to synchronize all thighs.

8.2.2 Trial 61

Trial 61 uses HBFMT* to plan a path through the Mars Lab Corridors environment. The traverse uses
a batch of n# = 5000 samples for subspace exploration, a batch of n = 10,000 samples for the full space
exploration and a tip-over stability constraint of β = 14.3◦. Two angular constraints are applied, with
qH1 = 0◦ and qH4 = 0◦. HBFMT* is used with the parameter values: ` = 0.2, rtunnel = 0.2 and rsinge = 2.0.
The plan is generated in 136.5 s with a mechanical work cost of 4.4 kJ. Two alternative paths are found
through the sub-space. The simulation result uses 4.2 kJ while the physical trial uses 4.39 kJ in mechanical
work cost.

A video of trial 61 may be viewed at https://youtu.be/2vwEWn_SwGE. Like in trial 56 the rover begins
moving slightly behind the desired initial state. Its first set of motions move the rover to the desired initial
state by driving the whole platform forward and to the right, while also slightly raising the platform. The
rover then begins to drive through open space towards the ‘S’-shaped obstacle while also performing a
slight counter-clockwise yaw. At 0:12 the rover begins to rotate hips 2 and 3 in preparation for a tripod
configuration with leg 1 lifted. At 0:33 leg 1 is lifted so that the rover can move it over the base of the ‘S’-
shaped obstacle. At 0:54 leg 1 is being moved over the obstacle while hip 2 rotates back towards qH2 = 0◦.
At 1:18 leg 1 begins to lower and a static instability is approached as hip 2 continues to be rotated. At 1:34
leg 1 has not lowered fast enough and the robot becomes unstable and falls onto leg 1. While falling, leg 1
continues to lower, however it does not reach the same level as the other thighs leaving the robot with a
slight pitch and roll. At 2:06 the rover begins to yaw in a counter-clockwise direction so that legs 2 and

https://youtu.be/2vwEWn_SwGE


(a) t = 45 s, τ = 0.14 (b) t = 91 s, τ = 0.29 (c) t = 136 s, τ = 0.43

(d) t = 182 s, τ = 0.57 (e) t = 227 s, τ = 0.71 (f) t = 273 s, τ = 0.86

Figure 16: Timelapse of the trial 61 traverse with a time duration of 318 s. Images (a-c) show the traverse
from a point of view close to the initial state, while images (d-f) show the traverse from a point of view
close to the goal state. A video of the full trial is available at https://youtu.be/2vwEWn_SwGE.

3 will pass around the base of the ‘S’-shaped obstacle. While this is happening, hips 2 and 3 rotate in a
positive direction to form a tripod stance with leg 1, preparing for a lift of leg 3. At 2:22 leg 3 is lifted so
that it does not hit the top of the obstacle. At 2:41 leg 4 passes through the narrow passageway, and at 2:46
the platform yaws positively to bring leg 2 through the narrow passageway. At 3:29 the platform begins to
yaw in the clockwise direction to prepare for the traverse over the final rock obstacle. At 4:28 the platform
begins to pass over the final rock obstacle straddling the rock initially with legs 1 and 2. By 4:52 the rock
obstacle has been traversed and there is a yaw motion back to the goal state.

This traverse demonstrates the robot’s ability to clamber over an obstacle. Additionally, it demonstrates
the ability to impose actuator constraints within the planner. The clambering manoeuvre is planned for by
using the feedback sampling method described in Sec. 6.1. Given that the two front hips are constrained
the robot must rely on the two back hips for reconfiguration and ensuring that static stability is maintained.
The first leg raise manoeuvre lifts leg 1 over the ‘S’-shaped obstacle. To do this it is critical that the hip 2
swing around to a negative value to ensure static stability. It is noted that thigh 1 does not lower fast enough
when leg 1 is being lowered back into ground contact to prevent an unstable state from being reached and
the rover tipping onto leg 1. This is caused by the path following controller not issuing a thigh actuation
value until it is too late. The lack of controllability of the thigh actuation controller, as discussed in Trial 56,
is the root cause of this problem. Even so, the rover’s traverse is not detrimentally affected by this tip-over
with the robot simply tipping into a leg 1 contact state.

The RMSE values for mechanical work cost in Trial 61 shown in Fig. 18a demonstrate that the planned
paths and physical trials return relatively similar results. The highest NRSME values are seen in the two
constrained sub-spaces qH1

and qH4
as seen in Trial 66. This behaviour is due to the small maximum range

in the denominator when calculating NRMSE for a constrained sub-space.

8.2.3 Planner Validation

This section analyzes how well the planned paths and physical traversals agree with each other. In doing
so the planner’s ability to find a path for a physical reconfigurable system is validated. Furthermore, the
cost function used by the planner is compared with the actual energy consumption of the rover during a
traversal.

https://youtu.be/2vwEWn_SwGE


(a) Body position. (b) Actuator position.

Figure 17: Trial 61 plots comparing workspace position and actuator positions between the physical trials
(blue), simulated trials (red) and planned paths (green).

Mechanical work costs calculated using Eq. (4) are presented in Fig. 19 for each of the physical trials and
planned paths, while Fig. 18 shows the RMSE and NRMSE between the mechanical work costs for each
sub-space for planned paths and physically followed paths in each trial.

In Fig. 19, the percentages of total cost attributed to each sub-space are visualized in each bar division.
Every odd bar with a ‘P’ at the beginning of its trial name is associated with a physical trial, while every
even bar that has a ‘S’ at the beginning of its trial name is associate with a planned path. It is observed in
each of these plots that the mechanical work due to translation of the robot is the motion that dominates
total cost, with over 50 % of the cost in each trial. The next most dominant mobility mode is the body
yaw ψ, except for trial 4, which had its yaw constrained to ψ = 0◦. There is a general tendency across all
trials, except for trial 61, for the translation mechanical work in the physical trials to be greater than the
planned paths. This may be attributed to noise in the physical localization solution, as shown in Fig. 15a.
This is especially noticeable in trial 47, where the discrepancy between physical and simulated trials is about
0.75 kJ.

For the most part, agreement between mechanical work cost in the simulated traversals and the physical
traversals has been demonstrated, however the actual energy expenditure is not given by this cost function.
The rover’s true energy expenditure is calculated as

E =

m∑
i=0

tf∑
tj=1

Ii(tj)Vi(tj)(tj − tj−1) (8)

where E is the total traversal energy expenditure in Joules, Ii(tj) is the current drawn by actuator i at time
tj , Vi(tj) is the operating voltage of actuator i at time tj . Fig. 20 presents the actual energy expenditure by
the MAMMOTH rover during each successful traverse.

There is an obvious discrepancy between the actual energy costs and the mechanical work costs, with the
actual energy costs being an order of magnitude larger. The first discrepancy is seen with the introduction
of the steering actuators q

S
. These actuators are responsible for changing the steering angle of each of the

wheels and are not considered in the mechanical work cost function as their displacement is a function of
the velocity of the platform, which is not considered by the planner. The energy required to move these
actuators is dependent on the loading on a leg as well as the coefficient of friction between the wheel contact
ellipse and the ground. The steering joint angle is a function of the velocity of the body frame as well as
the angular velocities of the associated leg joints. An item of future work would be to make the planner
kinodynamic and incorporate the velocity state of the vehicle. From Fig. 20 it is observed that the total
steering actuator energy cost is similar to that of the total hip joint energy cost and larger than the total
wheel drive energy cost. Energy cost for steering would be reduced by introducing smooth joint velocity
transitions as well as incorporation of the steering cost into the planner.



From Fig. 20 it can be seen that the energy cost accrued by the hip actuators is significant and in the
majority of trials the most costly sub-spaces. The energy required for the hip actuators does not reflect costs
only proportional to displacement, as is obvious in the bar for trial 49 where qH1

and qH4
were constrained

yet still require significant amounts of energy to hold their respective positions over the traverse. The energy
required for holding position is not considered in the planner’s cost function and is an obvious contributor to
total energy cost. It is also noted that the energy cost due to the thigh joints q

U
is marginal compared to the

other actuated joints. This is due to the non back-drivable linear thigh actuators that do not require power
to hold a position. Given this hardware design feature the energy cost of operating the linear actuators is
due to motion of the actuators and not due to holding forces. For future statically stable reconfigurable
systems it may be desirable to use non back-drivable or braked actuators to ensure that energy is not wasted
in holding a configuration.

9 Discussion and Future Work

The aim of this work is to develop an autonomous planner used by a real-world RWMR system to find paths
over unstructured terrain that leverage its many degrees of freedom. This aim has been realized, which is
an important step in making the case for the use of RWMRs in applications such as planetary exploration,
forestry, mining and search and rescue.

A significant result of this work is the generation of planned paths that utilize versatile and fluid RWMR
locomotion, which to a human operator may be unintuitive. By structuring the planning task in a hierarchical
manner, the intuitive sub-dimensional structure of the problem is quickly explored to then allow for a more
focussed search of high-dimensional spaces to uncover these unintuitive behaviours. This work demonstrates
some of the first physical planning trials for a robot that uses its reconfigurability for locomotion as well as
some of the first physical realizations of hierarchical planning for reconfigurable robotic platforms.

The proposed HBFMT* planner is amongst the first hierarchical planners to use continuous domain sampling-
based planning at all hierarchical levels, thereby making the planner both simpler to implement and immune
to the configuration space discretization pitfalls of grid-based planners. The planner takes advantage of
FMT* with biased sampling asymptotic optimality guarantees presented in (Janson et al., 2015) to retain
AO. Bidirectional search is utilized to speed up computation time at the low-level of the hierarchy and to find
multiple candidate paths in the sub-dimensional state space explored at the high level. Numerical results
demonstrate that HBFMT* returns more feasible lower cost paths in a shorter amount of time compared
with other AO planners such as the FMT* planners, BIT*, RRT* and Informed-RRT*.

The demonstration of HBFMT* sampling-based planning working with real robotic hardware is one of the
first demonstrations of the use of AO sampling-based planning for global full body planning of a physical
RWMR. Moreover, the planner validation experiments demonstrate novel capabilities such as clambering via
feedback sampling and accounting for ‘broken’ actuators or sensor pointing constraints by applying motion
constraints to sampling routines.

This work has attempted to tie together state-of-the-art planning theory with a real world system to both
validate the theory and to expose shortcomings in the application of the theory to the physical robot.
Naturally, future work focusses on addressing these shortcomings. Regarding future RWMR designs, it is
observed that the energy cost of the non back-drivable linear actuators in each of the MAMMOTH rover
thigh joints was minimal compared to the other joints that had to expend energy to hold their positions.
For future RWMR designs, it would be highly desirable to use similar non back-drivable actuators at the hip
joints, which were observed to consume the majority of energy during each traverse even when their motion
was constrained.

The use of sub-dimensional decomposition to bias sampling has obvious performance effects. It is evident
in (Vernaza and Lee, 2012) and (Rowekamper et al., 2013) that learning sub-dimensional decomposition



results in increased planning efficiency. The HBFMT* algorithm is flexible in that more levels may be added
into the planning hierarchy besides just planning in the workspace and full state space. A future step in
the development of this algorithm would be to integrate a learned intermediate sub-dimensional space. This
would most likely take the form of planning over sets of motion primitives or task space regions.

Multiple implementation improvements could be made to make HBFMT* more efficient in using information
from its sub-space exploration to inform the full space exploration. One such implementation improvement
could be to proportionally scale the rtunnel parameter along Π# as a function of local X# sample density.
Such a modification would help inform the full state space planner about local regions such as narrow
passageways or densely packed obstacles where more focused sampling would assist in finding valid robot
configurations. Another improvement could be to assemble Π# from the best paths returned from multiple
explorations using different cost functions. Such cost functions could be a bottleneck cost that preferences
obstacle clearance (Solovey and Kleinbort, 2018) or a weighted Euclidean metric.

A lesson learned from the plan following experiments is that a high-fidelity energy model of the robot is
required to better capture the predicted energy expenditure of the rover. Usage of a fast high fidelity dynamic
model to evaluate candidate traversals between waypoints may help address this problem. Similarly, the
non-holonomic ankle joints were not accounted for in the HBFMT* planner state space formulation. The
planning examples presented in this work considered the geometric planning problem and it would be an
obvious extension of this work to formulate a kinodynamic version of the planning problem.
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Reid, W., Pérez-Grau, F. J., Göktoğan, A. H., and Sukkarieh, S. (2016b). Actively articulated suspension for
a wheel-on-leg rover operating on a Martian analogue surface. In Proc. of IEEE ICRA, pages 5596–5602.

Rickert, M., Brock, O., and Knoll, A. (2014). Balancing exploration and exploitation in motion planning.
IEEE Trans. Robot., 30(6):2812–2817.

Rowekamper, J., Tipaldi, G. D., and Burgard, W. (2013). Learning to guide random tree planners in high
dimensional spaces. In Proc. of IEEE/RSJ IROS, pages 1752–1757.

Salzman, O. and Halperin, D. (2015). Asymptotically-optimal motion planning using lower bounds on cost.
In Proc. of IEEE ICRA, pages 4167–4172.

Salzman, O., Shaharabani, D., Agarwal, P. K., and Halperin, D. (2013). Sparsification of motion-planning
roadmaps by edge contraction. Int. J. Robot. Res., 33(14):4098–4105.

Sanchez, G. and Latombe, J.-C. (2003). A single-query bi-directional probabilistic roadmap planner with
lazy collision checking. In Proc. of ISRR, pages 403–417.

Satzinger, B. W., Lau, C., Byl, M., and Byl, K. (2015). Tractable locomotion planning for RoboSimian. Int.
J. Robot. Res., 34(13):1541–1558.

Schmerling, E., Janson, L., and Pavone, M. (2015a). Optimal sampling-based motion planning under differ-
ential constraints: the drift case with linear affine dynamics. In IEEE CDC, pages 2574–2581.

Schmerling, E., Janson, L., and Pavone, M. (2015b). Optimal sampling-based motion planning under differ-
ential constraints: The driftless case. In Proc. of IEEE ICRA, pages 2368–2375.

Solovey, K. and Kleinbort, M. (2018). The critical radius in sampling-based motion planning. In RSS.
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(a) The normalized root mean squared er-
ror (NRMSE) for each sub-space in each
trial.

(b) The root mean squared error (RMSE) for
each sub-space in each trial.

Figure 18: Comparison between the physical paths followed and the planned paths.

Figure 19: Successful traversal costs that are proportional to the translational and angular displacements of
the MAMMOTH rover. Physical and simulated trials are compared side by side with ‘P’ denoting a physical
trial and ‘S’ denoting a planned path.



Figure 20: Energy cost calculated from current draw and voltage of each of the MAMMOTH rover’s actuators.
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