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Accurate DOA Estimation for Large-scale Uniform
Circular Array Using a Single Snapshot

Qiang Li, Tao Su and Kai Wu

Abstract—A large-scale antenna array is an enabling technique
for millimeter wave communications. Uniform circular arrays
(UCAs) have the spatial invariance property, ensuring the same
beamforming performance in the whole angular region. However,
the direction-of-arrival (DOA) estimation in UCAs is challenging,
since the array response of a UCA does not conform to a
Vandermonde structure as that of a uniform linear array (ULA).
This paper proposes an accurate and low-complexity DOA
estimation approach by exploiting the good correlation property
of the array response of a UCA. The DOA estimates are first
obtained from a circular convolution between a single snapshot
and the designed coefficient vector. Then, by searching for the
best initial phase of the coefficient vector, the DOA estimates
can be refined to a configurable accuracy. Simulation results
demonstrate that the proposed approach outperforms the state
of the art by orders of magnitude in estimation accuracy.

Index Terms—Direction-of-arrival (DOA) estimation, array
response vector, circular convolution

I. INTRODUCTION

LARGE-SCALE uniform circular array (UCA) has been
regarded as one of the most promising transceiver front-

ends in millimeter wave (mmWave) communications [1]. This
is because the large number of antennas ensure the great
beamforming gain, which can compensate for the severe path
loss in mmWave bands [2]. On the other hand, a UCA has
the spatial invariance property, i.e., the spatial resolution and
pointing precision are invariant in the whole angular region
[0, 2π), making a UCA more desirable than a uniform linear
array (ULA) to cover a wide angular region [3].1

A critical issue to be addressed in UCAs is the accurate and
efficient direction-of-arrival (DOA) estimation, which is the
basis of beamforming, interference cancellation or localization
[2], [4]. However, since the array response of a UCA does
not conform to the Vandermonde form as a ULA, the DOA
estimation in UCAs can therefore be more challenging than
that in ULAs [3]. There has been up to date fewer studies on
the efficient DOA estimatios in UCAs, as compared to ULAs.

The existing works on DOA estimation in UCAs were
focused on using the conventional subspace-based DOA esti-
mation techniques, e.g., UCA-MUSIC and UCA-ESPRIT [5]–
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1This is because a ULA has the wider beam width and increasingly reduced
maximum beamforming gain as the beam is steered away from the array
boresight.

[8]. In these methods, the array received signals were first
transformed into phase mode and then the subspace-based
techniques were applied based on the phase-mode represen-
tations of the received signals. However, the computational
complexity of these methods can be prohibitive considering the
huge amount of antennas in large-scale UCAs. This is because
these methods require the eigenvalue decomposition, whose
complexity grows cubically with the number of antennas [2].

In a different yet relevant context of DOA estimations in
ULAs [9], an efficient estimation approach was developed by
exploiting the Vandermonde structure of a ULA array response
vector. Through the discrete Fourier transform (DFT) of a
snapshot, coarse-resolution DOA estimates were obtained by
enumerating the peaks of the DFT result. Then a phase rotation
technique was developed to refine the above DOA estimates.
As mentioned above, due to the dramatically different array
structure, the approach is inapplicable for UCAs.

In this paper, we prove that the UCA array response vector
has a good correlation property. Based on the finding, we
propose to efficiently estimate the DOA through a circular
convolution between the boresight UCA array response vec-
tor and a single snapshot. We also prove that in a certain
angular region around an initial DOA estimate, the above-
mentioned circular convolution output has a single peak, which
can be obtained through adjusting the initial phase of the
match coefficient. Accordingly, we propose to refine the DOA
estimates by searching for the optimal initial phase of the
match coefficient around each estimate.

Other contributions also include the analysis on the com-
putational complexity in comparison with the conventional
subspace-based techniques [5], [6]. The Cramer-Rao lower
bound of the obtained estimate is also derived with a closed-
form expression. Corroborated by numerical simulations, the
proposed approach is able to outperform the state of the art
[5], [6], [9] using only a single snapshot. It is also shown that
UCAs are able to achieve much lower estimation errors than
ULAs, which illustrates the superiority of UCAs.

The rest of the paper is organized as follows. In Section II,
the system model is presented. The proposed DOA estimation
approach is elaborated on in Section III. In Section IV, the
computation complexity is analyzed and the CRLB of the
DOA estimate is derived. Simulation results are provided in
Section V, followed by conclusions in Section VI.

II. SYSTEM MODEL

Fig.1 illustrates the large-scale UCA with M(� 1) array
elements, where the inter-element spacing is d, typically d ≤ λ

2
[3]. λ is the wavelength. Consider K far-field sources with
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Fig. 1. Schematic illustration of a massive UCA.

DOAs collected by Θ = [θ0, . . . , θK−1]
T.2 A single snapshot

of the UCA, denoted by x ∈ CM×1, can be written as

x = As + n, (1)

where A = [a (θ0) , . . . ,a (θK−1)] is the M × K array
manifold matrix, s = [s0, . . . , sK−1]

T collects the K × 1
information-bearing signals from the K sources and n ∈
CM×1 is the additive white Gaussian noise (AWGN). C
denotes the set of complex numbers.
a(θk) ∈ CM×1 is the array response at θk, as given by

a(θk) =
[
ej2π

R
λ cos(θk−φm)

]
m∈[0,M−1]

, where R is the radius

of UCA, and φm = 2πm
M is the angle of the m-th array element

with reference to the x-axis; refer to Fig.1. Based on the
triangle relation in Fig.1, we have 2R sin π

M = d. Therefore,
a(θk) can be simplified to

a(θk) =
[
ejε cos(θk−φm)

]
m∈[0,M−1]

, (2)

where ε = πd
λ sin π

M
. The target of this letter is to estimate the

DOA set Θ from the single-snapshot x.
III. ACCURATE AND FAST DOA ESTIMATION IN UCAS

In this section, a two-step DOA estimation approach is
designed. In the first step, we propose an efficient coarse-
resolution DOA estimation by exploiting the good correlation
property of the UCA array response vectors. In the second
step, the DOA estimates are refined by searching for the opti-
mal initial phase that leads to the maximum array responses.
A. Efficient DOA Search

The key idea of the proposed efficient DOA search is
to exploit the good correlation property of a(θk), which is
presented through the cross-correlation between a(θk) and
a∗(φl). (·)∗ takes conjugate and we have φl = 2πl

M (l =
0, 1, . . . ,M − 1). For illustration convenience, we introduce
hl = a∗(φl). The cross-correlation between hl and a(θk) is
defined as r(l) = hT

l a(θk), which has the following property.
Lemma 1: Provided a large M(� 1), |r(l)| � |r(l′)| for

l ∈ [0,M − 1] and l 6= l′, where l′ =
⌊
Mθk
2π

⌉
, i.e., the closest

integer to Mθk
2π .

Proof: See Appendix.
Fig. 2 plots |r(l)|M with l

M as the abscissa, where θk = π
2 ,

and M = 64, 128 and 256 are taken to show the effect of M
on |r(l)|

M . By substituting the parameters into Lemma 1, we

2For illustration convenience, we only consider the azimuth DOAs in this
letter. The methods developed can be readily applied for elevation DOAs.
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Fig. 2. Normalized |r(l)| with different M .

can obtain that l′ = 16, 32 and 64 for M = 64, 128 and 256,
respectively. We see from Fig. 2 that, when l

M = 1
4 , |r(l)|

achieves the maximum, which verifies the above calculation
of l′. We also see that |r(l)| � |r(l′)| and, the larger |l′ − l|,
the smaller |r(l)| becomes, which validates Lemma 1.

In light of Lemma 1, we propose an efficient approach for
DOA search as follows.

Proposition 1: The K DOA estimates can be searched effi-
ciently through identifying the amplitude peaks of y = h0⊗x,
as given by

θ̂ck =
2πl′k
M

, k = 0, 1, · · · ,K − 1. (3)

|y| achieves the peak at l′k and ⊗ denotes circular convolution.
Proof: By suppressing the noise in (1), we obtain that

y = h0 ⊗As = h0 ⊗
K−1∑
k=0

a(θk)sk =

K−1∑
k=0

h0 ⊗ a(θk)sk,

(4)

where the last equation is achieved due to the linear property of
circular convolution [10]. (4) indicates that y is a linear com-
bination of the convolutions h0⊗a(θ0),h0⊗a(θ1), · · · ,h0⊗
a(θK−1). The l-th element of h0 ⊗ a(θk), denoted by yk(l)
(l = 0, 1, · · · ,M − 1), can be calculated as

yk(l) = hT
l a(θk) = r(l), (5)

where hl is the l-shifted version of the flipped version of h0.
By exploiting Lemma 1, yk(l) achieves the peak at l′k =⌊
Mθk
2π

⌉
for k = 0, 1, · · · ,K − 1, and therefore (3) can be

obtained. This concludes the proof.
Combining Lemma 1 and Proposition 1, we see that the K

DOA estimates in (3) have the maximum estimation error of
π
M . This is because the search resolution in Proposition 1 is
2π
M , i.e., the sampling interval of h0 w.r.t. m ∈ [0,M − 1]. In
the following, we refine the DOA estimate by searching for
the initial phase in a small angular region around θ̂ck with a
much finer resolution, and, in turn, a much higher estimation
accuracy of the DOA estimate can be achieved.

B. Refinement of DOA Estimates

Although the sampling interval of h0 w.r.t. m ∈ [0,M −
1] is fixed given M , the phase of h0 can have an effect on
the peak location of yk(l). By adding an initial phase η to
h0, denoted by hη0 = a∗(η), yk(l) can be recalculated based
on (5) and (10), as given in (6), where the same derivation
techniques for (10) are used to obtain (6). We see from (6)
that |yηk(l)| takes the maximum at θk = ( 2πl

M + η). According
to Proposition 1,

∣∣∣θk − 2πl′k
M

∣∣∣ ≤ π
M , we can therefore refine θ̂ck
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yηk(l) =

M−1∑
m=0

e−jε cos(φl−m+η)ejε cos(θk−φm)

=

M−1∑
m=0

e
−2jε sin

[
θk
2 +

π(l−2m)
M + η

2

]
sin
(
θk
2 −

πl
M−

η
2

)

=M
∑
n=qM

jnJn

(
2ε sin

(
θk
2
− πl

M
− η

2

))
e
jn
(
π
2 +

θk
2 + πl

M+ η
2

)

≈MJ0

(
2ε sin

(
θk − ( 2πl

M + η)
)

2

)
. (6)

through searching for the η leading to the maximum |yηk(l)|,
i.e.,

η̂k = arg max
η∈[−π/M,π/M ]

|yηk(l′k)|, (7)

where yηk(l′k) is obtained by substituting l′k into (6). Therefore,
the K DOA estimates from Proposition 1 can be refined
through the following proposition.

Proposition 2: Provided a large M(� 1), the k-th (k =
0, 1, · · · ,K−1) DOA estimate, i.e., θ̂ck in (3), can be refined by
substituting l′k into (7) and searching for η̂k. The DOA estimate
can be refined as θ̂k = θ̂ck+η̂k. The maximum estimation error
is no greater than π

MG , where G is the number of discrete
angles in [− π

M , πM ].
Proof: The proof of the proposition can be readily estab-

lished based on (6) and (7), and therefore is suppressed for
brevity.

Remark 1: Note that approximations are adopted in the
proofs of Lemma 1 and Proposition 2. The approximations can
be readily obtained based on a large M(� 1). Take M = 128
for an instance. By substituting M = 128 into Appendix, we
have 2ε = π

sin π
128

= 128.013, and hence only an error of
0.013 is incurred by using the approximation of π

sin π
128
≈ 128.

As such, we can check that J2M (2ε) = J256 (128.013) =
2.0096 × 10−52 and J3M (2ε) = 5.6193 × 10−246, which
validate the effectiveness of suppressing the high-order Bessel
functions in (6) and (10).

IV. PERFORMANCE ANALYSIS
A. Analysis on Computational Complexity

In this section, the computational complexity (in the num-
ber of complex multiplications) of the proposed approach is
analyzed, in comparison to the conventional subspace-based
approaches, e.g., UCA-MUSIC and UCA-ESPRIT [5].

The computational complexity of the proposed approach
is dominated by the circular convolutions in (4) and (6),
which can be given by O

(
2M logM2 +M

)
and O(KGM),

respectively. By exploiting the convolution theorem of the
circular convolution3, (4) can be efficiently calculated by
two DFT transforms and a pointwise product of two M -
point sequences. For (6), O(KGM) is because M complex
multiplications are required for each DOA and sample of η.

The computational complexity of UCA-MUSIC or UCA-
ESPRIT [5], is dominated by O(M2L+M3), where O(M2L)

3The convolution of two infinite sequences can be obtained as the inverse
transform of the product of the individual transforms [10].

  10   20   30   40   50

30

210

60

240

90270

120

300

150

330

180

0
Coarse-resolution DOA Estimation

Fig. 3. Result of proposed method with M = 128, θ = 72◦, G = 32.

is for the calculation of the cross-correlation matrix based on
L snapshots, and O(M3) is for the eigenvalue decomposition.
We see that, in the case of large-scale UCAs, e.g., M takes up
to tens even hundreds, the computational complexity of UCA-
MUSIC or UCA-ESPRIT can be much larger than that of the
proposed approach.
B. CRLB of θ̂k

Let γk denote the received SNR of the k-th source in (1).
The CRLB of θ̂k can be given by [10]

CRLB(θ̂k) =
1

−E[∂
2 ln p(x|θ)
∂θ2 ]

=
1

Mε2γk
, (8)

where p(x|θ) is a likelihood function with θ as the parameter,
and x is the observation vector. E denotes expectation and ∂
denotes partial derivative.

V. SIMULATION RESULTS

In this section, simulation results are provided to validate the
proposed approaches. Without loss of generality, we consider
a UCA with M = 128. The state-of-the-art UCA-Root-
MUSIC [7] is simulated as a benchmark, and the state-of-the-
art DOA estimation approach for ULA [9] is also simulated
to demonstrate the superiority of UCA over ULA.

Fig. 3 illustrates the DOA estimates from the DOA search
and refinement, respectively, where K = 1, θ = 72◦ and
G = 32. We see that the peak of |y| is achieved at l′0 =
26, and hence θ̂c0 = 73.13◦, which validates Lemma 1 and
Proposition 1. We also see that, by comparing |yηg0 (l′0)| for
ηg = − π

M + 2πg
MG (g = 0, 1, · · · , G − 1), η̂0 can be taken at

g = 3. Therefore, the DOA estimate can be refined as θ̂ =
71.99◦ with the estimation error of |θ̂ − θ| = 0.01◦.

Fig. 4 compares the MSE of the DOA estimates using the
proposed approach and the state-of-the-art approaches, where
the two DOA θ1 and θ2 are independent of each other and
uniformly distributed in the whole angular region, i.e., [0, 2π).
The number of snapshots required by the proposed approach
and UCA-Root-MUSIC is 1 and 100, respectively. We see
that the proposed approach outperforms UCA-Root-MUSIC
dramatically and increasingly as SNR increases, even by using
a much smaller number of snapshots. Particularly, in low
SNR regions, we see that the average SNR improvement is
larger than 5 dB. We also see that the MSE of the proposed
approach asymptotically reaches the CRLB with indistinguish-
able difference in high SNR regions, which further verifies the
superiority of the proposed approach.
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Fig. 4. MSE versus SNR with M = 128, two sources, where “CRE” refers to
“Coarse-Resolution Estimation” and “RE” refers to “Refinement Estimation”.
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Fig. 5. MSE versus M for UCA, two sources, and G = 1000.

We also see from Fig. 4 that the proposed approach out-
performs the state-of-the-art DOA estimation in ULAs. This
is because UCA has the spatial invariance property, i.e., the
steered beams have constant mainlobe widths in the whole
angular region, [0, 2π); whereas the beamwidth of the ULA
increases with the pointing direction with reference to the
normal direction of the array.

We also see from Fig. 4 that the proposed approach tends
to converge in high SNR regions. This is because G = 100 is
taken in the simulation and hence the finest DOA refinement
resolution is confined as 2π

GM = 4.9× 10−4. In turn, the max-

imum DOA refinement error can be
(

4.9×10−4

2

)2
= 6.0239×

10−8. Nevertheless, this phenomenon can be suppressed by
taking a larger G. According to the “CRLB UCA” in Fig. 4,
we see that the analytical MSE of the proposed approach can
be as low as 2 × 10−9. By solving π

GM =
√

2× 10−9, we
obtain that G ≥ 549 is required to have the MSE approaching
the CRLB. To validate this this point, we further take G = 103

and provide the simulated MSE versus SNR in Fig. 4. We see
that the simulated MSE can indistinguishably approach the
CRLB in the case of G = 103.

Fig. 5 plots the MSE of the DOA estimate as M increases,
where different SNRs are taken. We see that, overall, the MSEs
decreases gradually, as M becomes larger. Particularly, in low
SNR regions, e.g. 10 dB, by increasing M from 32 to 128, the
MSE reduces from 10−2 to 10−6. In addition, we see that the
simulated MSE can indistinguishably approach the CRLB at
SNR = 20 dB . This validates the effectiveness of the proposed
approach.

VI. CONCLUSION

In this letter, we propose a low-complexity DOA estimation
method using a single snapshot, for massive UCA. With the
good correlation property of array response, coarse-resolution
DOA information can be extracted. Searching in the small
region and changing the correlation coefficient, the refinement
of DOA estimation can be performed. Compared to the tra-
ditional DOA algorithms for UCA, this method offers higher
accuracy and lower complexity.

APPENDIX

Given hl and a(θk), we can calculate r(l) as:

r(l) =

M−1∑
m=0

e
−2jε sin

[
θk
2 +

π(l−2m)
M

]
sin
(
θk
2 −

πl
M

)
, (9)

where the angle difference identity of the cosine trigonometric
function is used. By exploiting the Jacobi-Anger expansion,
ejβ cos γ =

∑+∞
n=−∞ jnJn(β)ejnγ [3], r(l) can be further

calculated as

r(l) =

+∞∑
n=−∞

jnJn

(
2ε sin

(
θk
2
− πl

M

))
e
jn
(
π
2 +

θk
2 + πl

M

)
Ξ

=M
∑
n=qM

jnJn

(
2ε sin

(
θk
2
− πl

M

))
e
jn
(
π
2 +

θk
2 + πl

M

)
, (10)

where Ξ =
∑M−1
m=0 e−j2π

nm
M and Jn(β) is the first-kind Bessel

function of order n, and the last equality can be obtained based
on the fact that

Ξ =

{
M, n = qM
0, otherwise

, where q ∈ Z. (11)

Note in (10) that 2ε sin
(
θk
2 −

πl
M

)
≤ 2ε = π

sin π
M

u M ,
where the last approximation is due to sin π

M u π
M (given

a large M ). Therefore, r(l) is only dominated by the com-
ponents of n = 0,±M , since Jn

(
2ε sin

(
θk
2 −

πl
M

))
≈ 0

for n ≥ 2M . Furthermore, in the considered massive UCA,
we have M � 1 and hence the maximum amplitude of
JM

(
2ε sin

(
θk
2 −

πl
M

))
≈ JM (M) is negligible compared

with the maximum amplitude of J0
(
2ε sin

(
θk
2 −

πl
M

))
≈

J0 (0) = 1. This indicates that, provided M is large,
r(l) can be approximated solely by the sinc-like function
J0
(
2ε sin

(
θk
2 −

πl
M

))
. Therefore, when | θk2 −

πl
M | approaches

0, r(l) achieves the maximum, leading to l =
⌊
Mθk
2π

⌉
.
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