
Exploring Latent Structure Similarity
for Bayesian Nonparameteric Model
with Mixture of NHPP Sequence

Yongzhe Chang1,2(B), Zhidong Li1,3, Ling Luo4, Simon Luo1, Arcot Sowmya2,
Yang Wang1,3, and Fang Chen1,3

1 Data 61 CSIRO, Sydney, Australia
{yongzhe.chang,zhidong.li,simon.luo,yang.wang,fang.chen}@data61.csiro.au

2 University of New South Wales, Kensington, Australia
{yongzhe.chang,arcot.sowmya}@unsw.edu.au

3 University of Technology Sydney, Ultimo, Australia
{zhidong.li,yang.wang,fang.chen}@uts.edu.au

4 The University of Melbourne, Melbourne, Australia
ling.luo@unimelb.edu.au

Abstract. Temporal point process data has been widely observed in
many applications including finance, health, and infrastructures, so that
it has become an important topic in data analytics domain. Generally,
a point process only records occurrence of a type of event as 1 or 0.
To interpret the temporal point process, it is important to estimate the
intensity of the occurrence of events, which is challenging especially when
the intensity is dynamic over time, for example non-homogeneous Poisson
process (NHPP) which is exactly what we will analyse in this paper. We
performed a joint task to determine which two NHPP sequences are
in the same group and to estimate the intensity resides in that group.
Distance dependent Chinese Restaurant Process (ddCRP) provides a
prior to cluster data points within a Bayesian nonparametric framework,
alleviating the required knowledge to set the number of clusters which
is sensitive in clustering problems. However, the distance in previous
studies of ddCRP is designed for data points, in this paper such distance
is measured by dynamic time warping (DTW) due to its wide application
in ordinary time series (e.g. observed values are in R). The empirical
study using synthetic and real-world datasets shows promising outcome
compared with the alternative techniques.
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1 Introduction

A temporal point process is basically a random list process whose observations
are times of events. A simple temporal point process can be typically modeled by
its intensity λ which related to time t, familiarity with Poisson process [18] and
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Hawkes process [9]. In the real world, many phenomena can be represented as
temporal point process, for example the happening of earthquakes, customers’
shopping records and patients’ hospitalization records etc. For these examples,
one common issue is that we do not know how many time of events may occur and
at what time. However, latent pattern may behind superficial phenomenon, for
instance an earthquake can cause aftershocks. An essential target is to estimate
intensity function of temporal point process in order to predict the future events.

A non-homogeneous Poisson process (NHPP) is a counting process with its
average rate of arrivals varying with time. In general, intensity function of NHPP
can be any arbitrary function over temporal variables, due to this fact, it is
difficult to recover the true underlying intensity function form in many cases.
Therefore it is challenging in estimating intensity function for temporal point
process directly. Moreover, estimation for intensity function may suffer from
the model selection problem and the insufficient power of intensity functions to
represent complex real-world problems.

For a given NHPP, we can first estimate intensity function then cluster them
according to each intensity function, assign those NHPP with same or similar
intensity functions, for example [14] discussed Bayesian nonparametric methods
in clustering and in [19], Chinese restaurant process (CRP) Dirichlet mixture
model and Hierarchical Dirichlet mixture model were used in achieving the goal.
When using Bayesian nonparametric methods in clustering, the framework of
Bayesian nonparametric prior and a mixture component is usually being used,
such as in [7] they combined a nonparamatric prior with Dirichlet allocation in
learning topic hierarchies from data.

However, Bayesian nonparametric clustering methods are complicated and
slow, especially for clustering NHPP. First, in order to be more efficient, the
likelihood is preferable to be conjugate to the prior, otherwise Monte Carlo
Markov chain (MCMC) should be utilzied for inference, which is tractable but
less efficient. Second, each object being clustered itself is a Bayesian nonpara-
metric process, e.g. the intensity is formulated as a transformed Gaussian process
(GP) which guarantees the intensity being positive. However, as a well known
result, the complexity of GP inference is cubic so the inference algorithm becomes
extremely inefficient. Thirdly, in Bayesian nonparametric clustering, the highly
similar components can still be assigned to different clusters due to sampling
randomness, which leads to a undesirable result.

Considering the problems above, in this paper, we proposed a Bayesian non-
parametric model which is a DTW based ddCRP model and we shortly named it
DTW-ddCRP model, to discover latent pattern of intensity function and cluster
NHPP, which is much faster and easier for inference than CRP based clustering
model mentioned above. In our model, we used DTW distance measurement for
similarity learning and reflecting structure information within processes, then we
proposed ddCRP-based model to study the partition of failure event processes.
DTW distance measurement is an accurate measure in looking for the nearest
neighbor and ddCRP gives partition result without knowing the number of par-
titions at first. However, DTW can only find out the nearest one, ddCRP has
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the ability of deciding whether the two customer should be put into one cluster
because of the setting of scalar α and decay function parameter. We combined
ddCRP with DTW distance measure, and used Gibbs sampler in the inference
part of our model. It makes contribution via tackling the challenges in the tem-
poral point process pattern learning: clustering temporal point processes without
knowing latent pattern, which is especially latent dynamic intensity here; esti-
mating latent dynamic intensity of water mains failure bursts by inferring the
probability of which cluster one failure event process would in; then according
to the ddCRP inference, the label of each table (cluster) can be obtained, which
is an approximation of water mains failure intensity.

2 Related Work

In this section, we give a brief introduction about related work. Section 2.1 intro-
duces sequence similarity learning method especially what we use in our model,
the DTW distance measurement. In Sect. 2.2 we will describe Bayesian nonpara-
metric methods in clustering and parameter estimation work, distance dependent
Chinese restaurant process.

2.1 Clustering for Time-Series and DTW Distance

Clustering for time-series has been shown effective in providing useful informa-
tion in various domain and attracted increasing interest as a part of the effort in
the temporal data mining research [12]. In [8], Han and Kamber classified clus-
tering methods into five main categories: hierarchical methods, density-based
methods, partitioning methods, grid-based methods, and model-based methods.

In clustering model for time-series, the distance measurement approach is an
important part. The most popular distance measurements for time-series data
include Euclidean distance, Hausdorff distance, HMM-based distance and DTW
distance, etc [2]. Each of these distance measurements has its advantages and
disadvantages, for example the Euclidean distance in simple but can only be used
when different sequences have same length; the DTW distance is computational
expensive but can treat with different length of sequences. In our model, we chose
DTW distance measurement mainly because its good performance on measuring
sequences with different length.

DTW algorithm is a distance learning measurement by obtaining the optimal
alignment between two time series, especially when the two sequences vary in
speed, and has been widely used in time series clustering not only in academic
domain, but also in many industrial projects [13] in the past decades. These
applications include image processing, data mining, computer graphics and so on.
It is one of the best measurement in searching for the nearest neighbor [6], defined
for time series by measuring the distance between temporal sequences that vary
in frequency and length. As all known, the expensive calculation problem is
always the key problem for distance measurements, researchers have done plenty
of contribution to speed it up and have a better performance, for example [16]
and [15].
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2.2 Joint Model for Clustering and Parameter Estimation

The Chinese restaurant process (CRP) [4] is a probability distribution over par-
titions. It is a popular representation of Dirichlet process (DP) and emphasis
the clustering nature of DP. CRP assumes a prior distribution over the clusters
of customers and is widely used in Bayesian nonparametric mixture models. It
gives the probability of which table a coming customer may sit at by assum-
ing that there are infinite tables in the Chinese restaurant. The CRP model
is exchangeable because the change of the coming order of customers does not
change the distribution of partition and each customer’s probability assigned to
any particular table only depends on how many customers already sit at that
table. A concentration parameter α determines the probability that the customer
sits at a new table or not. So it is obvious that a table with more customers has
higher probability on attracting a new coming customer. The CRP is a widely
used clustering method especially on mixture models and open-ended problems.

However, in CRP model, there is no relation among customers, which may
assign those customers that have similar pattern into different tables. Then
ddCRP [3] was introduced to solve this problem that can model random parti-
tions on non-exchangeable data. Unlike CRP, in ddCRP one customer does not
choose which table to sit at directly, but choose the customer who has the near-
est distance between him to sit with, which can be comprehended as the ddCRP
modifies the CRP by determining the table assignment via customer relations.
It is a widely used method that provide a Bayesian nonparametric prior for clus-
tering models and mixture models. Different from k-means and other clustering
methods, with ddCRP prior we can learn the number of clusters automatically
from data without knowing it beforehand. Also in the preliminary work section
we will expound this distribution elaborately.

3 Model and Inference

3.1 Preliminary Work

To solve NHPP clustering problem, a DP and Gaussian process (GP) mix-
ture model can be used. Assume we have n observations that are NHPP
X = (x1,x2, ...,xn), here we don’t know intensity function for each process,
assume intensity functions are Λ = (λt1, λt2, ..., λtK), then equation below can
achieve estimation of each intensity and clustering these NHPP:

P (Λ,Z|X) ∝ P (X|Λ,Z)P (Z|α)P (Λ) (1)

In Eq. (1), Z is vector of sitting configuration, where each element is the
table zi = k for xi; P (X|Λ,Z) is likelihood; P (Z|α) is a DP prior to figure
out Z, which means DP prior determines the number of clusters; P (Λ) =
GP (λ1)GP (λ2)...GP (λn) that samples intensity for each NHPP. By doing this,
we can not only get intensity function for each process, but also handle the clus-
tering problem. However, the question is, for NHPP its intensity λ is a function
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on time which is a smooth function, not discrete vector that means sampling
intensity for each NHPP may be a infinity work. So it is extremely hard to do
inference, even it can be done theoretically, this would be incredibly slow.

Since the GP-DP mixture model is very complicated in the inference part
and to my knowledge, no one had used this kind of model before, we can use
DP mixture of Beta distribution plus CRP to approximate the GP-DP model.
In [11], the author used DP mixture of Beta distribution model to estimate
intensity, which can be used in estimating the intensity function of NHPP. With
the estimated intensity result, a CRP model can be used for final clustering.
However, when the dataset is large, this method became very slow. Considering
calculation efficiency, we need to propose another model that can solve this
NHPP clustering problem more efficiently, which is exactly our DTW-ddCRP
model.

In DTW distance measurement, suppose we have two time series x = {xi}m
i=1

and y = {yj}n
j=1. To find the alignment of two sequences using DTW, we should

first construct an n ∗ m matrix where the (i, j) element of this matrix is the
distance d(xi, yj) between point xi and yj , and this distance can be Manhat-
tan distance or Euclidean distance or other kind of distance.Then we define a
cumulative distance D(i, j) as bellow:

D(i, j) = d(xi, yj) + min{D(i − 1, j − 1), D(i − 1, j), D(i, j − 1)}. (2)

DTW algorithm begins at element d(x1, y1) and ends at element d(xm, yn) so the
final D(m,n) is the DTW distance between time series x, y. The time complexity
of DTW algorithm is O(mn).

The ddCRP model determines table assignment via customer’s link, which
leads to a result that each customer is more likely to be clustered with other
customers that are near it in an external sense. These customer assignments are
generated according to the distribution below:

p(ci = j|MD, α) ∝
{

f(dij) if i �= j
3.α if i = j

(3)

Here we set up ci that denotes the ith sequence’s assignment, which is the
index of sequence i with which sequence being put into the same cluster. Let dij

denote the DTW distance between sequence i and sequence j. Let MD denote
the distance matrix of all the time series sequences, and f is the decay function.
The decay function mediates how the distance of two data points affects the
probability that they connect to each other, for example their probability of
belonging to the same cluster. According to [3], there are three kind of decay
functions, the window decay f(d) = 1[d < a] which only considers customers at
most distance a from the current customer; the exponential decay f(d) = e−d/a

which decays the probability of exponentially link to an earlier customer with the
current customer; and the logistic decay f(d) = exp(−d + a)/(1 + exp(−d + a))
which is a smooth version of the window decay. In general, ddCRP shows the
probability of sequence i and j being in the same cluster, which conditioned on
the distance measurement.
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From Eq. (3) we note that the probability of which table would one cus-
tomer sit at has relation with the distance, decay function and scalar α, which
means that, if one customer have a connection with another one according to
the customer links, they may have high probability sitting together at one table.
However, Eq. (3) is only a prior, likelihood and setting of hyperparameters also
contribute much to final assignments.

3.2 Model

In this section, we will give a formal and detailed description of the proposed
DTW-ddCRP model on NHPP.

In the DTW-ddCRP model, our target is to estimate intensity λi(t) for each
NHPP i via time t by clustering different processes, so both intensity and clus-
tering are latent. Each NHPP is described by xi = {xti} where each xti is the
event time for tth event in xi, where ti = 1...ni. DTW algorithm is used in the
first stage to obtain distances dij for any pair of pipes i and j. This distance
is later input into decay function f in ddCRP and the purpose is to estimate
λi(t). However, if we assume that the structure information has been compared
in DTW, we can use the statistic information as simpler distributions instead
of the stochastic process assumption. Here we assume that each component k
follows a Poisson distribution with latent parameter θ = (θ1, θ2, ..., θk), and cor-
responding prior is a gamma distribution with hyper-parameters α∗, β. Given
two point process xi and xj 0 ≤ i, j ≥ N , we assume that cij = 1 indicates
there is a link between them and cij = 0 indicates the opposite. Our target is
to estimate E(C) where C ∈ 0, 1N×N , and each element is ci,j . To obtain E(C),
the posterior distribution P (C|X, f,Θ) will be estimted via our model. Here
X = (x1,x2, ...,xn) is the dataset of all point processes, f is the decay function,
and Θ includes all hyper-parameters.The connection matrix C represents which
processes are linked together. Here both c and θ are latent. Here is the generative
process:

1. For all xi, calculate MD = d(xi,xj) as DTW distance matrix for each pair
of processes in dataset X;

2. For each i, a connect cij = 1/0 can be generated using the probability rep-
resented in (3). For all the pipes can be linked to the same pipe, we denote
the set of them to be a cluster. Then we use k to index all the clusters, and
z(xi) = k to represent the transfer from clusters to the index.

3. For each cluster k, draw a cluster parameter θk ∼ Gamma(α∗, β). Note that
θk does not change with t so it is much simplified version to λi(t). θk is
inferred as the model variable.

4. For each water main failure burst process, generate the number of failures by
ni ∼ Poisson(θk).

Here we can write the posterior as: P (C|X,MD) =
∫

λ
P (C, λ|X,MD)

P (λ|α∗, β)dλ. The P (C, λ|X,MD) ∼ P (X|C, λ)P (C|d(xi, ·)). Here P (X|C, λ)
is the likelihood, we use Poisson distribution. P (C|d(xi, ·)) is the ddCRP prior
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distribution in Eq. (3). Our model can save effort as we avoided the estimation
of the likelihood using Poisson process and Gaussian process as prior. We will
see the details in the inference part.

3.3 Model Inference

In this section, we will give the detailed inference method for inferring model
parameters from water main failure burst process.

The inference itself analytically complicate for ddCRP-based models due to
the combinatorial nature in partitions and intractable structure of the model.
So, for our model we used approximated inference, the Gibbs sampler [10] par-
ticularly, due to the fact that the hyperparameters on our model are conjugate
priors of our model parameters.

The key part of the inference is the inference of index for each cluster and
the assignment of each customer, which in our model is the assignment of non-
homogeneous Poisson processes.

As introduced in Sect. 3.2, the prior is p(ci|D, f, α), the likelihood of the
observation is p(xi|z(c−i ∪ ci), G0), z(c−i ∪ ci) is the current partition, G0 is
denote the base measure. So the posterior is then:

p(ci|c−i,X, Θ) ∝ p(ci|MD, α)p(X|z(c−i ∪ ci), Θ,G0) (4)

where Θ is the hyperparameters of our model and Θ = MD, f,G0. As our cluster
parameter θ is draw by Gamma distribution and our observations are Possion
processes, so posterior became into:

p(ci|c−i,X,MD, α∗, β) ∝ p(ci|MD, α)p(X|z(c−i ∪ ci), α∗, β) (5)

Then we can decompose the likelihood term as below:

p(X|z(c−i ∪ ci), Θ, α∗, β, λ) =
|z(C)|∏
k=1

p(Xz(c1:n)=k|Θ,α∗, β, λ) (6)

In Eq. 6, we define |z(C)| as the number of unique clusters and Xz(c1:n)=k as the
set of xi that are generated from cluster k. For each particular cluster, we then
marginalized out the mixture component λ because the dataset of observations
from each cluster are drawn independently from the same intensity, which itself
is drawn from Gamma distribution, so the marginal probability is:

p(X|z(c−i ∪ ci), Θ, α∗, β) =
∫ |z(C)|∏

k=1

p(Xz(c1:n)=k|Θ,α∗, β, λ)dλ (7)

Then comes to the sampling part, where we use Gibbs sampling [6] that is a
simple form of MCMC inference [17]. The first stage is to remove or reassign the
customer link ci, where we either leave the old cluster structure inact or split the
cluster that was assigned to the coming ith customer. Then the second stage is to
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consider the prior probability of such new customer and corresponding changes
it takes to the likelihood term. Suppose we have l and m that represent the
indices that joined with index k, then resampling customer assignments from

p(ci|c−i,X, Θ) ∝
{

p(ci|MD, α)Φ(X , z, α∗, β) if ci joins l and m,

p(ci|MD, α) otherwise,
(8)

where Φ is defined as:

Φ(X, z, α∗, β) =
p(Xz(C)=k|α∗, β)

p(Xz(C)=l|α∗, β)p(Xz(C)=m|α∗, β)
(9)

4 Empirical Study

In this section, we conduct the comparison experiments on different datasets on
both synthetic data and real-world data.

4.1 Synthetic Data

In this section we are going to test model performance on synthetic data which
include three steps: the first step is data generation; the second step is to cluster
generated data using our DTW-ddCRP model and hyper-parameter discussion;
the third step is comparing model performance with other three baseline mea-
sures and hyperparameter discussion.

Generating NHPP. The first step is to generate NHPP as our synthetic data.
We generate NHPP on temporal domain T , where T ∈ RD, and λ(t) denotes
the intensity function, N(τ) denotes the number of events in the subregion τ ⊂
T of NHPP. The number of random events follows Poisson distribution where
λτ =

∫
τ
λ(t)dt. According to [1], at first we need to transform the GP prior

on Poisson intensities, which indeed is to use transformation of GP to form a
prior distribution and then generate random events from the intensity function
drawn from the GP prior. We first randomly drawing events {t̂j}J

j=1 from a
HPP, then define an upper bound intensity λ∗ of a HPP and randomly draw
the number of events J in region τ from Poisson distribution with parameters
τ , then randomly and uniformly distribute the events {t̂j}J

j=1 in region τ . Given
the events {t̂j}J

j=1, we could sample the intensity function value {g(t̂j)}J
j=1 of

{t̂j}J
j=1 from the GP prior. Since we have already obtained value of intensity

function, then we used thinning method to sample observations, initialize t = 0,
find a constant rate function λu(t) = λu, let λ(t) be the intensity function of the
entire process; Ti refers to the i − th event time point and it is independently
deleted with a probability 1−λ(t)/λu(t); then the remained points form a NHPP
with intensity function λ(t).
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Clustering NHPP. We generated two kinds of process for synthetic data
experiment, one is homogeneous Poisson process (HPP) and another one is
NHPP with dynamic intensities. For homogeneous Poisson process, we gener-
ated 500 sequences with 20 different intensities. Since each process has an exact
intensity, so processes with the same intensity should be in the same cluster,
then we got different accurate rate for different hyperparameters showing in
Table 1(a). We chose the window decay function that we mentioned in Sect. 3.1
as our f and we initialized α = 0.005, which we found worked well. Then we
generated NHPP with dynamic intensities, which is also 500 sequences with
20 different intensities. Since for each sequence, the intensity is dynamical, the
DTW distance measure can have a good performance in looking for the nearest
neighbour that can let our model well performed for NHPP clustering. Accurate
result shows in Table 1(b).

Table 1. Accurate clustering rate for HPP and NHPP

a = 1 a = 5 a = 10 a = 15

Accurate rate 86% 77% 49% 15%

(a) HPP

a = 1 a = 5 a = 10 a = 15

Accurate rate 87% 72% 51% 8%

(b) NHPP

As we have discussed before, the window decay function only considers cus-
tomers that are at most distance a from the current customer. When a is too
large, the result of window decay function f(d) will be 1 for most customers
which leads to a result that most of customers will be clustered into a same
cluster. So normally the setting of parameter a could influence final result sig-
nificantly. However, for sparse observation processes, a can be set a little larger
in order to achieve a more accurate clustering outcome.

We used three methods as baseline: the first one is the DP mixture of Beta
distribution on CRP; the other two methods are traditional clustering methods
which are divisive hierarchical clustering and k-means respectively. For DP mix-
ture of Beta distribution based CRP model, we use Beta DP mixture model to
estimate the intensity of each failure process, then clustering with CRP. For k-
means and hierarchical we selected median performance among the whole possi-
ble condition settings. We discussed model performance by comparing in-cluter-
distance and between-cluster-distance between our DTW-ddCRP model with
baseline measure showing in Fig. 1.
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Fig. 1. Model performance comparing with other measures

Fig. 2. Clustering accuracy with different hyper-parameters

Hyper-parameter Discussion. We tested all the influence from hyper-
parameters in our model, after hundreds of experiments, we found out that
several hyper-parameters have great influence on our model performance and
others do not, so here we mainly discuss those have great impacts.

In Fig. 2, upperbound is a parameter that controls the intensity of each NHPP,
the higher of upperbound the higher of point density in NHPP. We found that
when upperbound is too high it may cause a fact that even two NHPP have
different intensity function may have too many points which leads to a very
low DTW distance, in others words they shows a similar structure information
though they do not have same intensity function. Another important parameter
is θ1, which is a parameter that influence the structure of intensity function of
NHPP. When θ1 increases, structure of intensity function changes from volatile
to smooth, according to which we found both too low and too high of θ1 would
leads to a bad performance when the other parameters remain the same. Another
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Fig. 3. Model performance comparing with baseline measures

important parameter is the size a of window decay function, an appropriate value
can lead us to a perfect clustering result. Generally speaking, when our data set
is sparse we need a high value of window size a.

4.2 Real World Data

We use water main failure data as real world data for empirical study. In order
to expound water main failure problem, we first need to introduce water main
failure data itself. We selected water main failure data that records all the failure
events happened from the beginning of 2001 to the end of 2016, which includes
over 80 thousand failure events. For each water main, failure event had happened
more than once in the sixteen years. We set one month as a time interval, for
one water main if failure event happened, log 1 for the certain cell and 0 for
those cells that no failure event happened, then for each water main there is a
point process which is a NHPP. What we did is to cluster the water mains by
clustering these NHPP, after which we can get a general intensity for each water
main that can be used to predict probable time the next failure event happens.
Then our water main failure problem became NHPP clustering problem, which
we have introduced in the introduction section. The original dataset collected
80315 failure events from 2001 to 2016, transform into point process, there came
out with 2450 point processes. We found that for some water main, failure process
is very sparse, as a result there DTW distance came out to be very small that
can not be used to accurately analyze water mains’ pattern so we removed those
failure processes that the total number of failure events was lower than 10, then
we got 593 failure processes.

Model performance comparing on real data is similar with on synthetic data,
for DP mixture of Beta distribution based CRP model, we use Beta DP mix-
ture model to estimate the intensity of each failure process then clustering with
CRP, and for k-means and hierarchical we use median value. We compared
the mean value of in-cluter-distance and between-cluster-distance between our
DTW-ddCRP model with baseline measure showing in Fig. 3.

From our experiments we found out that our proposed DTW-ddCRP model
has similar performance with the Beta DP mixture model and other two tradi-
tional clustering methods. However, our is much more efficiency, especially when
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the number of dataset is larger and process itself is longer, and we do not need to
give any cluster number or clustering restriction as k-means and hierarchical do.

5 Conclusions

In this paper, we proposed a DTW-ddCRP model that can discover the latent
intensity pattern of water mains’ failure events and realize clustering of the water
mains. The proposed model has a distance dependent Bayesian nonparametric
prior over NHPP, and DTW similarity measure to reflect relationship between
customer to customer, while the assignment is governed by a ddCRP clustering
measure. With such construction, the water mains with similar burst pattern
can be clustered together with a much higher efficiency. Besides, we do not need
to preset the number of clusters for water mains, which is difficult in unsuper-
vised learning, especially for real world data. Instead, our proposed model can
automatically generate the cluster number from the provided data.

The empirical study shows expecting outcome, suggesting that our model can
well discover the latent intensity pattern of water mains’ failure burst process
and the obtained result can be use to make accurate prediction in the certain
domain, indicating those water mains that needs to be checked and reduce the
burst risk.

For the future work, speed improving methods for the distance learning part
[16] can be add to improve on clustering efficiency. Meanwhile we will test how
to using Bayesian clustering method for continuous sequences, maybe the soft-
DTW [5] measure can be added to implement this idea.

References

1. Adams, R.P., Murray, I., MacKay, D.J.: Tractable nonparametric Bayesian infer-
ence in poisson processes with gaussian process intensities. In: Proceedings of the
26th Annual International Conference on Machine Learning, pp. 9–16. ACM (2009)

2. Aghabozorgi, S., Shirkhorshidi, A.S., Wah, T.Y.: Time-series clustering-a decade
review. Inform. Syst. 53, 16–38 (2015)

3. Blei, D.M., Frazier, P.I.: Distance dependent chinese restaurant processes. J. Mach.
Learn. Res. 12(Aug), 2461–2488 (2011)

4. Blei, D.M., Griffiths, T.L., Jordan, M.I.: The nested chinese restaurant process and
bayesian nonparametric inference of topic hierarchies. J. ACM (JACM) 57(2), 7
(2010)

5. Cuturi, M., Blondel, M.: Soft-DTW: a differentiable loss function for time-series.
In: Proceedings of the 34th International Conference on Machine Learning, vol. 70,
pp. 894–903. JMLR.org (2017)

6. Geler, Z., Kurbalija, V., Radovanović, M., Ivanović, M.: Impact of the Sakoe-
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