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Abstract

A large scale cable-stayed bridge in the state of New South Wales, Australia has been extensively instrumented with

an array of accelerometer, strain gauge and environmental sensors. The real-time continuous response of the bridge

has been collected since July 2016. This study aims at investigating three aspects of structural health monitoring in

this bridge including, damage detection, damage localization and damage severity assessment. A novel data analysis

algorithm based on multi-way data analysis is proposed to analyse the dynamic response of the bridge. This method

applies incremental tensor analysis for data fusion and feature extraction, and further uses one-class support vector

machine on this feature to detect anomalies. Fifteen different damage scenarios were investigated; damage was

physically simulated by locating stationary vehicles with different mass at various locations along the span of the bridge.

The effect of damage on the fundamental frequency of the bridge was investigated and a maximum change of 4.4%

between the intact and damage states was observed which corresponds to a small severity damage. Our extensive

investigations illustrate that the proposed technique can provide reliable characterisation of damage in this cable-stayed

bridge in terms of detection, localization and assessment. The contribution of the work is three-fold; first, an extensive

structural health monitoring system was deployed on a cable-stayed bridge in operation; second, an incremental tensor

analysis was proposed to analyse time series responses from multiple sensors for online damage identification; and

finally, the robustness of the proposed method was validated using extensive field-test data by considering various

damage scenarios in presence of environmental and operational variabilities.

Keywords

Cable-Stayed Bridge, Tensor Analysis, Damage Detection, Damage Localization, Damage Severity Assessment,

Structural Health Monitoring.

1 Introduction

Cable-stayed bridges have gained popularity in design of
long-span bridges since they offer a more economical
option due to their reduced material requirements and
shorter construction time1. In cable-stayed bridges, cables
are the most critical load carrying members and are highly
vulnerable to adverse long term load effects, e.g. fatigue,
and environmental actions, e.g. corrosion and their coupled
effects. In addition, stay cables are prone to various vibration
effects such as vortex-induced or wind and rain-induced
vibrations2. These effects inevitably result in damage
accumulation that may impair the bridge. It is thus critically
important to develop robust and efficient monitoring systems
to pro-actively detect bridge defects.

Various monitoring systems by adopting different types
of sensors have been deployed on the cable-stayed bridges

which can be classified into global or local techniques.
Vibration-based monitoring by measuring the acceleration
response at several locations and identifying the modal
parameters using output-only modal analysis techniques3–5

is one of the widely-used approaches for monitoring the
cable-stayed bridges6,7. In previous studies, the measured
modal parameters, e.g. natural frequencies or mode shapes
were often used with novelty detection techniques8 such
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as neural network or other machine learning methods,
or they are combined with finite element analysis to
get useful information about presence, location and
severity of damage9. Although vibration based monitoring
offers relatively low-cost system, the modal parameters
of a structure are highly influenced by operational and
environmental conditions, e.g. traffic, wind or temperature10;
as a result, it requires a significant effort to identify
damage effect from the changes in the modal parameters11.
Furthermore, vibration-based approaches lack a sufficient
resolution for health monitoring of the cable stays12.

Measuring the changes in the cable-forces or cable-
stresses is another alternative for damage assessment in the
cable-stayed bridges, as damage causes a redistribution of
forces and stresses in the stay cables13,14. For example, a
significant drop in a tension force of a cable as a result of loss
of cross section or slippage at the anchorage, increases forces
in the adjacent cables15. Application of load cells or elasto-
magnetic sensors have been proposed for this purpose16,
however, they are only suitable for static measurement and
not capable for real-time monitoring. Fiber optical sensors
have been proposed to overcome this limitation but they
are quite expensive and hard to install or replace17. In12,
a distributed strain monitoring based on the Fiber Bragg
Grating sensors was used to identify any tension loss in the
cables. Application of magnetic flux leakage has also been
employed for stress monitoring in the cables. However, the
technique suffers from temperature effects; furthermore, it
requires extensive field calibrations using identical cables to
determine the relationship between magnetic permeability
and strain in the cables18. Techniques based on the non-
contact measurement using image processing or computer
vision algorithms have also gained attraction for cable
force monitoring19. Furthermore, application of various
localized non-destructive testing (NDT) techniques, e.g.
acoustic emission20, thermography21, X-ray radiography22

and guided waves23 has shown to be effective for monitoring
the cable-stayed bridges. From the literature, methods
involving cable-force measurement and NDT seem to
be quite effective in identification of damage in cable-
stayed bridges. Application of new sensing technologies
such as smart wireless sensing has also been deployed
on several large scale cable-stayed bridges to monitor the
dynamic response of the bridge24 or the cable forces25.
However, these systems suffer from several problems
including, the energy cost, e.g. battery-powered nodes, time
synchronisation and wireless channel stability26.

In this study, the vibration response of the cables in terms
of the tension force under the ambient excitation is adopted

to detect, localize and assess various emulated damages on
the bridge. The rationale behind the technique lies in the
fact that any potential damage on the structure will change
the distribution of cable forces compared to a benchmark
state. The measured time series data from the cable forces
are integrated with a novel data analysis technique based
on incremental tensor learning to identify damage. These
sensors’ measurements usually have a high redundancy
and correlation, thus, approaches based on two-way matrix
analysis may fail to capture all of these correlations and
relationships together27,28. These approaches usually involve
a matricisation of a multi-way tensor followed by the use
of techniques such as principal component analysis (PCA)
or singular value decomposition (SVD) to further analyse
the data. For example, we can concatenate the frequency
data from multiple sensors at a certain time to form a
single data instance at that time for anomaly detection in
time dimension. However, unfolding the multi-way data
and analysing them using two-way methods may result
in information loss and misinterpretation since it breaks
the modular structure inherent in the tensor data27. In
contrast, tensor analysis allows the learning from these
highly correlated data in multiple modes at the same time29.
It has contributed to successes in many domain applications
such as social network and brain data analysis, web mining
and information retrieval, or health care analytics30. In this
work, tensor analysis is used to fuse and extract information
collected from multiple sensors instrumented on the bridge
cables. Our approach detects the change in the structure
compared to its baseline state. Localization is carried out by
comparing the changes of sensor in the tensor space and,
finally assessment is performed by comparing the anomaly
scores obtained from different structural states.
The remainder of the paper is organized as follows. Section
2 explains our novel multi-way data analysis approach using
incremental tensor learning. Section 3 presents the details of
the cable-stayed bridge and an implemented structural health
monitoring (SHM) system on this bridge. Section 4 focuses
on the details of the 15 emulated damages on this bridge and
the corresponding impact on the characteristic features of
the bridge. Section 5 provides damage identification results
and discussions. We concludes the paper in Section 6 with
a summary of our contributions and suggestions for future
work.
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Figure 1. Tensor data with three modes in SHM.

2 Methodology: Incremental Tensor
Analysis for Online Damage
Identification

2.1 Tensor Analysis for SHM Data

In SHM, data are usually collected from a large number
of sensors, especially for large civil structures like a long
span bridge or a high-rise building. For instance, several
accelerometers may be put along a bridge’s spans to measure
vibration signals excited by traffic or ambient loadings over
long periods of time. One excitation event at a specific time
produces multiple signals measured by different sensors.
These SHM data can be considered as a three-way tensor,
i.e. a three dimensional array of (feature× location×
time) as described in Figure 1. Feature is the information
extracted from the raw signals in time domain (e.g. strain
in strain gauges). Location represents sensors, and time is
data snapshots at different timestamps. Each slice along the
time axis shown in Figure 1 is a frontal slice representing all
feature signals across all locations at a particular time. For
simplicity, in this paper we represent a tensor as a three-way
array, which is often the case in SHM. However, it is also
possible to generalize all the theories for a n-way array.

Two typical approaches for tensor decomposition are
CP decomposition and Tucker decomposition29. After a
decomposition from a three-way tensor, three component
matrices can be obtained representing latent information
in each mode. In the case of SHM data as in Figure
1, they are associated with feature (denoted matrix A),
location (matrix B) and time modes (matrix C). In CP
method, it is easy to interpret the artifact in each mode
separately using its associated component matrix. In Tucker
method, any component can interact with other components
in other modes quantified by a core tensor31. This makes
the interpretation of a Tucker model more difficult than CP.
Therefore, we only use CP method in this paper for our SHM
applications.

2.1.1 CP Decomposition The CP decomposition factor-
izes a tensor as a sum of a finite number of rank-one tensors.
In case of a three-way tensor X ∈ RI×J×K , it is expressed

as

X =

R∑
r=1

A:r ◦B:r ◦ C:r + E , (1)

where R is the latent factor, A:r, B:r and C:r are r-th
columns of component matrices A ∈ RI×R, B ∈ RJ×R and
C ∈ RK×R. Noted that A, B and C have the same R

columns. The symbol ‘◦’ represents a vector outer product.
E is a three-way tensor containing the residuals.

CP decomposition is typically solved using ALS
technique. The technique iteratively solves each component
matrix using a least square method by fixing all the
other components and the procedure is repeated until it
converges29. The results by CP are unique provided that we
permute the rank-one components32. The algorithm for CP
decomposition using ALS is described in Algorithm 1.

Algorithm 1 Tensor decomposition CP-ALS
Input: Tensor X , number of components R
Output: Component matrices A, B and C

1: Initialize A, B and C
2: repeat
3: A = argminA

1
2

∥∥X(1) −A(C �B)>
∥∥2 (fixing B and C)

4: B = argminnB
1
2

∥∥X(2) −B(C �A)>
∥∥2 (fixing A and C)

5: C = argminC
1
2

∥∥X(3) − C(B �A)>
∥∥2 (fixing A and B)

(X(i) is an unfolding matrix of X in mode i and � is the
Khatri-Rao product)

6: until convergence

2.2 Incremental Tensor Update

In many SHM applications, an ongoing monitoring and a
real-time response of the SHM system are required. It is
time consuming to do the tensor decomposition in a batch
manner when new data come in. Therefore, incremental
tensor learning is investigated to update the decomposed
component matrices (i.e. matrices A, B and C) of a new
tensor when new data arrive without decomposing the
whole tensor as in Section 2.1.1. In this work, we will
use a technique called onlineCP-ALS33 to incrementally
track component matrices decomposed by CP over time.
Assuming that we only have a three-way tensor as in a typical
SHM problem with component matrices A, B and C. The
authors proposed a technique to incrementally update these
matrices as the followings.

2.2.1 Update temporal mode C Due to an arrival of new
information (new frontal slices in time mode), additional
rows will be added to component matrix C. By fixing A and
B, we can solve C as34,

Prepared using sagej.cls
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C = argminC

1

2

∥∥∥X(3) − C(B �A)>
∥∥∥

= argminC
1

2

∥∥∥∥∥
[
Xold(3) − Cold(B �A)>

Xnew(3) − Cnew(B �A)>

]∥∥∥∥∥ .
Thus,

C =

[
Cold

Cnew

]
=

[
Cold

Xnew(3)((B �A)>)†

]
, (2)

where † is a matrix pseudo-inverse. Therefore, new rows
added to C can be estimated using only new information in
time mode,

Cnew = Xnew(3)((B �A)>)† (3)

2.2.2 Update non-temporal mode A and B By fixing
B and C, the optimization function can be written as
1
2

∥∥∥X(1) −A(C �B)>
∥∥∥2. Taking the derivative of this

function with regard to A and setting it to zero, we have

A =
X(1)(C �B)

(C �B)>(C �B)
= PQ−1

where P = X(1)(C �B) and Q = (C �B)>(C �B).

Directly calculating P and Q is costly since (C �B) is
a big matrix. By representing X(1) and C with old and new

information, we can have34:

P = Pold +Xnew(1)(Cnew �B)

Likewise, Q can be estimated as

Q = Qold + C>newCnew ◦B>B

Therefore, A can be computed as,

A =
Pold +Xnew(1)(Cnew �B)

Qold + C>newCnew ◦B>B
(4)

Similarly,

B = UV −1 =
Uold +Xnew(2)(Cnew �A)
Vold + C>newCnew ◦A>A

(5)

We can see that by storing information from previous
decomposition (i.e. P , Q, U and V ), components matrices
A and B are updated using only new information arriving in
time mode.

2.2.3 onlineCP-ALS For a three-way tensor that grows
with time (C mode), based on the above formulation, a
two-staged procedure is proposed to incrementally update

tensor component matrices. First, P , Q, U and V are
initialized using a training tensor. Then when new data arrive,
component matricesC,A andB are updated using Equations
2, 4 and 5, respectively. A, B and C are iteratively updated
until convergence. Since the computational complexity for
each iteration is only dependent on new data, this ALS style
update is much faster than the batch version of ALS tensor
decomposition. The technique, which is called onlineCP-
ALS, is described in Algorithm 233.

Algorithm 2 Incremental Tensor Update: onlineCP-ALS
Input: Train tensor data Xtrain

Output: Component matrices A,B,C when new data arrive

1: Initialization/training stage:
P = Xtrain(1)(C �B)

Q = C>C ◦B>B
U = Xtrain(2)(C �A)

V = C>C ◦A>A
2: Update/testing stage: when new data come in as new slices

appended to time mode
Repeat

C is updated using Equation 2 (fixing A and B)
A is updated using Equation 4 (fixing B and C)
B is updated using Equation 5 (fixing A and C)

Until convergence

2.3 Online Damage Identification

Damage identification was classified by Rytter into four
different levels of complexity35: damage detection (level
1), localization (level 2), severity assessment (level 3) and
failure prediction (level 4). Among the four, level 4 requires
an understanding of the physical characteristics of the
damage progression in the structure. Level 1 can be solved
using a one-class learning while levels 2 and 3 usually
require a supervised learning approach36.

Since we usually only have data associated with healthy
states of structures, a one-class approach is more practical.
In this work, using incremental tensor analysis and one-
class support vector machine (SVM)37, we are able to
detect, localize and assess damage progress online in a one-
class manner. One-class SVM finds a small region to cover
most data from one-class (i.e. healthy data) and anomalies
elsewhere. It is done by mapping the data into a feature space
using a kernel and then separating them from the origin with
maximum margin37. It has been used as a robust anomaly
detection method in many application domains, including in
SHM38.

This section describes an approach to identify damage
in real-time using incremental tensor analysis as shown in
Figure 2. Vibration responses of the structure are measured
over time by strain gauges or other kinds of sensors. Next,
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Figure 2. Incremental tensor analysis for online damage
identification.

features are extracted from the raw data of all sensors, which
form a three-way tensor data. Then the tensor is decomposed
into matrices of different modes as described in Section
2.1. A benchmark model is built and when new data arrive,
the tensor component matrices will be updated for damage
identification.

2.3.1 Building a Benchmark Model Given a three-
way tensor Xtrain (feature× location× time) which
represents data in a healthy condition of a structure. Xtrain

is decomposed into three component matrices A, B and C
using CP decomposition (Section 2.1.1). Each row of C
represents an event in time mode. Using a one-class SVM37,
we build a model using healthy training events which are
represented by rows of the component matrix C.

In this stage, matrices P , Q, U and V are initialized as
described in Algorithm 2.

2.3.2 Damage identification Due to an arrival of a new
event (a new frontal slice Xnew in time mode), an additional
row Cnew is added to the component matrix C, and matrices
A and B are also incrementally updated as described in
Algorithm 2.

After having Cnew, this new row will be checked if it
agrees with the benchmark model built in the training stage,
indicating the condition of the structure. In case of one-class

Figure 3. Illustration of the cable-stayed bridge.

SVM, a negative decision value indicates that the new event
is likely a damaged event.

In order to localize the positions of damage, location
matrix B, where each row captures meaningful information
for each sensor location, is analyzed. By analyzing Bnew

when each new data instance arrives, it is able to find
anomalies, which correspond to damaged locations. In this
work, a distance from a sensor obtained from a new tensor (a
row in Bnew) to the same sensor obtained from the training
data (the same row in B) is used as an anomaly score to
localize damage.

To estimate the extent of the damage, we analyze
decision values returned from the one-class SVM model. The
rationality is that a structure with a more severe damage
(e.g. a longer crack) will behave more differently from a
normal behaviour. Different ranges of the decision values
may present different severity levels of damage.

3 Case Study: Cable-Stayed Bridge

A cable-stayed bridge over the Great Western Highway in
the state of New South Wales, Australia (33◦45′ 50.49′′S,
150◦44′31.14′′E) has been considered as a case study in this
research26. Figure 3 shows an illustration of the bridge. The
cable-stayed bridge has a single A-shaped steel tower with
a composite steel-concrete deck. The bridge is composed
of 16 stay cables with semi-fan arrangement. The span and
the tower height are 46m and 33m, respectively. This bridge
carries one traffic lane and one side-walk with maximum
loading capacity of 30t. The deck has a thickness of 0.16m
and a width of 6.3m and it is supported by four I-beam
steel girders. The girders are internally attached by a set of
equally-spaced cross girders (CG) as depicted in Figure 4.
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Figure 4. Illustration of the longitudinal and lateral girders
under the deck.

3.1 Instrumentation

A dense array of sensing system, including strain gauge
and accelerometer sensors has been deployed on this bridge
since July 20165,39. All the sensors are timely synchronised
and are continuously measuring the dynamic response of the
bridge under normal operation at 600 Hz. The measured data
are recorded in a file every 10 minutes. An HBM Quantum-
X data acquisition system is used for signal conditioning and
data logging. The Quantum system provides an integrated
and reliable device to log high quality data with 24 bit
resolution with bandwidth capability of 0 to 3kHz.

3.1.1 Strain Gauge Sensors: Each cable has been
instrumented with a full axial Wheatstone bridge to measure
the dynamic strain response of the cables. The sensors have
been mounted 1m above the cable end. Figures 5a and 5b
schematically show the location of strain gauges SA1 to SA8
which are, respectively, installed on cables 1 to 8. After the
test, it was realised that sensor SA4 was not operational,
thus, this sensor was eliminated from the analysis. The
strain gauges were configured to be positive in tension with
a suitable coefficient of thermal expansion for steel to be
immune to thermal creep. In this study, the strain response of
the cables under ambient excitation is employed for damage
identification.

3.1.2 Accelerometer Sensors: A grid of 24 uniaxial
accelerometers has been installed under the bridge deck at
the intersection of the longitudinal girders and the floor
beams (corss girders). Figure 5c schematically illustrates the
location of the mounted accelerometers. They are low-noise
Silicon Designs accelerometers and can detect accelerations

within the range of 62g with an output noise of 10mg/Hz and
sensitivity of 2,000mV/g.
In this research the acceleration response of the bridge
under ambient excitation is employed to identify the dynamic
characteristics of the bridge at each damage case. To this aim,
operational modal analysis (OMA) using the covariance-
driven stochastic subspace (SSI-Cov) technique is adopted
to process the output-only acceleration responses5.

4 Description of Damage Scenarios

In total 16 different states of the structure including,
intact condition and 15 damage conditions are considered
to investigate the robustness of the proposed framework
for damage identification. The acceleration responses of
the bridge at each 16 state are obtained from all 24
accelerometers and processed using SSI-Cov to extract the
fundamental frequency of the bridge.

4.1 Emulated Damage

In this study, we emulated damage by locating stationary
mass on the bridge at different locations as real damage was
not available. In the context of SHM of bridge structures, it
is quite a common practice to emulate damage by locating
stationary lumped mass on the bridge40,41. Two extensive
field experiments were conducted on this bridge which are
refereed to ”Bus Damage Test” and ”Car Damage Test” .

The Bus Damage Test was conducted on 28th of October
2016 in which a 13t three-axle bus was placed at stationary
location at mid-span of the bridge for duration of five
minutes. This damage scenario is referred to Damage Case 1
(DC1). During this test a temperature variation of 16◦ to 19◦

was observed. Figure 6 shows an illustration of test vehicle
in DC1. Due to the distributed effect of mass in DC1, this
dataset is not suitable for damage localization and it will be
solely adopted for detection and assessment of damage.

In order to ensure the proposed method is capable of
locating damage, a separate experiment was considered
which is referred to Car Damage Test. It was conducted
on 23rd of February 2018. A test vehicle e.g. Holden
Colorado Ute was utilised as lumped mass to physically
simulate damage. The gross vehicle weight is 2.4t and the
distance between the axles is 3.1m. The bridge span was
hypothetically divided into 14 equal sections where the
length of each section is equal to the length of the vehicle.
In each damage case, e.g. Damage Case 2 (DC2) to damage
case 15 (DC15), the vehicle was placed in one section
for duration of five minutes and the dynamic response of
the bridge was recorded under ambient excitation sources.
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(a) Strain gauges on the cables, top view. (b) Strain gauges on the cables, side view.

(c) Accelerometers under the deck.

Figure 5. Schematic illustration of the sensors installed on the bridge including deck and cables.

Figure 6. Illustration of the test vehicle in DC1.

During each damage test, the bridge was open for people to
walk on the bridge, however, due to the narrow width of the
bridge, it was impossible to have two passing vehicles on
the bridge. Figure 7 illustrates a typical damage test when
the vehicle is sat at stationary position on the bridge. The
location of the test vehicle at each damage case is specified
by the distance of the front axle from the expansion joint at
the south end of the bridge when the traffic direction is from
the south to the north, see Figures 5a and 5b. For example,
in DC2, this distance is equal to 6.2m, in DC3 it is 9.3m
(6.2m+3.1m) and in DC15, it is 46.5m (6.2m+13 ×3.1m).
During the entire test, temperature varied between 27◦ and
32◦. The dataset obtained from this experiment is adopted
to validate the performance and robustness of the proposed
technique in damage detection and damage localization.

4.2 Damage Effect on Dynamic Response

For each damage case, the five-minute vibration response
under the ambient excitation was processed to identify the

Figure 7. Illustration of the test vehicle in DC2 to DC15.

fundamental frequency of the bridge. The bridge is located
on top of a hill, thus, it is subjected to wind-induced
excitation. Further, it is located over a busy highway, e.g.
Great Western HWY which provides adequate source of
excitation for the bridge. Figures 8a and 8b respectively,
show the 5-minute dynamic response of the bridge in DC7
obtained from accelerometer A14 and strain gauge SA6,
(see Figures 5a and 5c). As seen, the bridge is vibrating
with its natural frequencies under the ambient excitation.
To further investigate this, the first singular value of the
power spectral density (PSD) matrix42 obtained from all
the accelerometer sensors was plotted in Figure 8c. From
Figure 8c, the presence of the first several dominant modes
of the bridge in the frequency range of [0-20 Hz] is clear;
in higher frequencies up to 50 Hz, still the vibration modes
can be tracked, however as expected, they are less-excited.
This investigation demonstrates that the ambient excitation
provides adequate source of energy to excite the vibration
modes.
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Fully automated OMA5 is adopted to analyze the
acceleration response of the bridge at each damage case.
The fundamental frequency of the bridge was extracted and
compared with the healthy state where no additional mass
is located on the bridge. Table 1 presents the fundamental
frequency at each damage case and the corresponding change
in (%) compared to the healthy state . The natural frequency
of the bridge in its intact condition is 2.07 Hz and by locating
the small car at different locations on the bridge (DC2 to
DC15), a variation between 0.9% and 4.4% in the natural
frequency is obtained. As expected, when the car is sitting
close to the either end of the bridge, minimum change is
observed whereas when the car is sitting close to the cross
girder 5, where maximum of the first bending mode occurs,
maximum change of 4.4% happens. In DC1, a considerable
change of 13% in the first frequency compared to the intact
state happens.

5 Damage Identification Results

5.1 Feature Extraction for Tensor Analysis

In this research, the change in the cable-forces is adopted
for damage identification as any damage in the structure
changes the distribution of the cable-forces. Ambient strain
responses from each cable sensor in both healthy and damage
cases were split into events of 5 seconds for analysis. Then
the following steps were applied to extract feature for our
damage identification.

First, the dynamic strain responses due to the live load
effects from each cable (except SA4 which has been
eliminated due to the sensor issue, see Section 3) were
normalized by subtracting the average strain from the same
cable in the healthy training data. Then the normalized
strain was transformed into a unique direction by taking
into account the orientation of each cable and then the
contribution from the cables at east side of the bridge and
at west side of the bridge was averaged. This resulted in four
time series responses e.g. SA1&2, SA3, SA5&6 and SA7&8.
Since each strain response had 3000 samples (5 seconds
at 600 Hz) and there were 4 locations of strain feature,
the data formed a tensor of (3000 feature× 4 locations×
928 events) where 928 were the number of healthy events
and damage events (including 14 car damage cases and 1 bus
damage case).

5.2 Damage Detection and Severity
Assessment

Eighty percent of the healthy events were randomly selected
as a training tensor for building a healthy benchmark model
using tensor decomposition and one-class SVM (Section
2.3.1). The remaining healthy events and all damage events
were used as test data. Using the approach in Section 2.3.2,
all test data were evaluated against the training model. For all
experiments, we have used the core consistency diagnostic
technique (CORCONDIA) method described in43 to decide
the number of latent factorsR in the CP method. This method
suggested R = 2 for all experiments. The Gaussian kernel
with γ = 0.01 and ν = 0.05 was used in one-class SVM for
anomaly detection.

Figure 9 shows the decision values returned by the one-
class SVM model for test data, including healthy events, car
damage events and bus damage events. The black ‘X’ is the
average decision value for each type of events. The results
show that the method successfully detect damage with high
accuracy (F1score = 99.86%). It also show that bus damage
events had more negative decision values than car damage
events, which can be used to assess the severity of damage.

5.3 Damage Localization

Using the approach in Section 2.2, component matrix Bnew

was incrementally updated for every new test event. For each
test event, sensor scores at each location were computed as
described in Section 2.3.2. Figure 10 shows the sensor scores
for different damage cases including, DC2 (where the car is
close to CG8 (see Figure 5c for cross girder (CG) locations)),
DC5 (where the car is close to CG7), DC8 (where the car is
close to CG6) and DC11 (where the car is close to CG5).

In test DC2, SA1&2 which are the closest strain gauges
to the car locations were captured as a sensor with the most
change. Test DC5 was also successfully localized as SA1&2
was picked up. However, in test DC8 (close to SA3), SA5&6
were captured while SA3 was the sensor with the second
most change. Note that SA3&4 signals were not averaged as
other pair of cable sensors due to the sensor issue in SA4.
Finally, DC11 was successfully localized by identifying
SA5&6 as damage location. Similar trends were obtained
for the other damage cases. In short, our investigation results
show that tensor analysis has potential to localize damage.

6 Conclusion

This paper presented a novel method to use a multi-way
tensor analysis to identify damage for SHM, including
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(a) The acceleration response obtained from sensor A14.

(b) The strain response obtained from sensor SA6.

(c) The first singular value of the PSD matrix obtained from all the accelerometers.

Figure 8. Dynamic response of the bridge in damage case 7 (DC7).

Table 1. The fundamental frequency and the corresponding change compared to the healthy state in each damage case.

H DC1 DC2 DC3 DC4 DC5 DC6 DC7 DC8 DC9 DC10 DC11 DC12 DC13 DC14 DC15
2.071.80 2.05 2.05 2.05 2.05 2.01 2.01 1.98 1.98 1.98 1.98 2.01 2.01 2.05 2.05
0% 13% 0.9% 0.9% 0.9% 0.9% 2.7% 2.7% 4.4% 4.4% 4.4% 4.4% 2.7% 2.7% 0.9% 0.9%

detection, localization and severity assessment in an
unsupervised manner. The technique forms healthy sensing
data as a tensor and uses tensor analysis to fuse data
from different sensors and build a benchmark model using
one-class SVM. When new data arrive, tensor component
matrices are incrementally updated and used for online
damage identification.

The proposed technique was evaluated using data
collected from our deployed extensive SHM system on a
cable-stayed bridge in operation in Western Sydney. The
technique was able to detect emulated damage on the bridge
with an F1score of 99.86%. It is also able to assess different

damage severity. Moreover, the damage was successfully
located in many damage cases.

The contribution of the work is three-fold; first,
an extensive structural health monitoring system was
deployed on a cable-stayed bridge in operation; second,
an incremental tensor analysis was proposed to analyze
time series responses from multiple sensors for online
damage identification; and finally, the robustness of the
proposed method was validated using extensive field-test
data by considering various damage scenarios in presence
of environmental and operational variabilities. In the future,
we will investigate more robust feature extraction and
abnormality measure to improve damage localization and
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Figure 9. Damage detection and severity assessment.

damage assessment. Also, a tensor fusion approach, which
integrates signals from different type of sensors (e.g.
accelerometers and strain gauges), has a potential to improve
damage identification compared with the use of one type of
sensor.
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