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Abstract 

Time-varying primary and secondary paths in active control systems degrade the noise control 

performance. In this paper, a practical method is proposed for active control systems with 

online secondary path modelling using the decorrelated control signal. The proposed method 

consists of 5 stages, i.e., primary path estimation, controller initialization, secondary path 

estimation, primary and secondary path changing detection, and active control operation, where 

the speed of the secondary path modelling is improved by incorporating decorrelation filters. 

The simulation results demonstrate the proposed method is capable of tracking the changes in 

both primary and secondary paths, remodelling the secondary path, and maintaining the noise 

reduction performance and stability of the system when both primary and secondary paths 

change.  
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1. Introduction  

The filtered-x least mean square (FxLMS) algorithm commonly used in active noise control 

(ANC) requires a model of the secondary path of the system. Offline modelling can be used to 

estimate the secondary path for ANC applications [1]. However, in certain applications, the 

secondary path is time varying due to the acoustic surrounding, so online secondary path 

estimation is needed [2, 3].  



      White noise can be used to estimate the secondary path online [4]. In this method, the 

injected white noise is mixed with the residual error signal, thereby affecting the noise 

reduction performance. A two adaptive filter-based method has been proposed in which the 

modified FxLMS algorithm is used in adapting the control filter and a new variable step size 

LMS algorithm is used for adapting the secondary path estimation filter [5]. An optimal 

variable step size algorithm is proposed for updating both the control and secondary path 

estimation filters along with a self-tuning power scheduling strategy for the auxiliary noise [6]. 

A power scheduling algorithm is proposed to increase the convergence speed when sudden 

changes happen in the secondary path [7]. To make it easy for implementation, a three adaptive 

filter-based ANC system is reported with a simple power scheduling method and regularized 

step size for secondary path estimation [8].    

     The control signal can be used for online secondary path modelling as well but often with a 

biased estimation [9]. An overall online secondary path modelling is capable of reducing the 

bias by introducing an extra adaptive filter to model the primary path. The LMS algorithm is 

used to estimate both the primary and the secondary paths simultaneously, while the control 

filter is updated with the FxLMS algorithm. The convergence of this algorithm is highly reliant 

on the control signal characteristics. Unlike the white noise injection method, the estimated 

secondary path must be copied more frequently to the FxLMS algorithm for smooth operation 

of active control system, which in turn requires faster and reasonable accurate modelling of the 

secondary path.  

     A modified FxLMS algorithm based on offline and online secondary path modelling is 

proposed to control transformer noise [10]. The secondary path estimated offline is used as the 

initial value for online modelling, which uses control signal for secondary path estimation. An 

estimate of the primary path obtained offline is also used to remove the disturbance in 

modelling the secondary path. However, the system fails if the primary path changes. The 

change in primary path hinders the convergence of the secondary path estimation and ANC 

operation.  

      Several active control algorithms that do not require secondary path estimation have been 

proposed. A direction selection update algorithm can choose either a positive or a negative 

direction for adaptive control [11]. To increase the converge speed of the algorithm when the 

phase angle of the secondary path is close to ±90, a frequency domain delayless subband 

architecture has been proposed, where four update directions are used to minimize the error 

signal [12]. Nevertheless, the architecture possesses high computational complexity as the 



weight update is performed in frequency domain. To reduce the implementation complexity, a 

simplified subband structure is proposed, which is more flexible [13]. However, the 

convergence of these algorithms is much slower than the conventional FxLMS algorithm.   

     Though the extended adaptive filtering method is capable of estimating the secondary path 

using the control signal, the performance is deteriorated as the primary noise characteristics 

changes. An intelligent ANC system should be able to detect the changes in both primary and 

secondary paths, and remodel those paths for effective operation. This paper proposes a 5-stage 

active control method with online secondary path modelling using the decorrelated control 

signal. The contributions made in this paper are: (1) a new systematic method for active control 

with online secondary path modelling using the control signal, which includes primary path 

estimation, controller initialization, secondary path estimation, primary and secondary path 

changing detection, and active control operation; and (2) increasing the modelling speed of the 

secondary path with the control signal by using decorrelation filters.  

 

2. Proposed Method 

Fig. 1 shows the block diagram of the proposed method, which consists of 5 stages, i.e., primary 

path estimation, controller initialization, secondary path estimation, primary and secondary 

path changing detection, and active control operation. In the block diagram, three switches, K1, 

K2 and K3, are used for choosing the active control operation, the primary path modelling and 

the secondary path modelling, respectively. Fig. 2 presents the flowchart of the proposed 

method, where the normal noise reduction, primary path modelling accuracy, and secondary 

path modelling accuracy are assumed to be Tr0, Tp0, and Ts0, respectively. The toggling of three 

switches associated with different stages and the corresponding operations of the active control 

system are briefed sequentially. 

    The first stage is for the primary path estimation. When the system starts, K1 and K3 are 

turned off, and K2 is turned on. The cancelling signal s(n) and estimated cancelling signal 𝑠̂(𝑛) 

are absent, p(n) and 𝑝̂(𝑛) represent the undesired noise and its estimate. The primary path P(z) 

between the reference microphone and error microphone is estimated using the NLMS 

algorithm. The adaptive filter estimating the primary path is updated by  
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where xp(n) = [x(n), x(n1), …,   x(nLp+1)]T is the Lp sample reference signal vector, p is the 

step size, and εp(n) = ε(n) is the error signal when K1 and K3 are turned off.   



 

 

 

Fig. 1: Block diagram of the proposed method for active control operation. 

 

     In the second stage, K1 is turned on and K2 and K3 are turned off for controller initialization. 

An initial controller with a single gain G is set for ANC operation, i.e., W(z) = G. The gain is 

tuned in such a way that the amplitude of the error signal e(n) is higher than that of 𝑝(𝑛). In 

the process, the initial controller G is increased from a small pre-defined value (for example, 

G = 1% of the maximal gain can be applied on the system)  by 2 times each step until 𝜎e
2 > 𝜎p

2, 

where 𝜎e
2 is the power of the error signal e(n), which can be estimated by  

 𝜎e
2(𝑛) = 𝜆𝜎e

2(𝑛 − 1) + (1 − 𝜆)𝑒2(𝑛)                                   (2) 

where λ is the forgetting factor (0.9 < λ < 1), 𝜎p
2 is the power of the primary disturbance, which 

can be estimated before controller initialization similarly with Eq. (2) by turning off the 

controller with K1. 



 

Fig. 2 Flowchart of the proposed method 

   

    The third stage involves the estimation of the secondary path S(z) using the control signal, 

for which K1 and K3 are turned on, and K2 is turned off. The control signal y(n) = Gx(n) is used 

as the excitation signal for estimating the secondary path. In this case, the primary signal p(n) 

acts as an interference signal in the estimation process, so the filter 𝑃̂(𝑧) (estimated in the first 

stage) is used to remove this interference. The final error signal 𝜀(𝑛) = 𝑝(𝑛) + 𝑠(𝑛) − 𝑠̂(𝑛) −

𝑝̂(𝑛) is used in the update rule given by 

s( 1) ( ) ( ) ( ) n n n n  s s y                                                     (3) 



where y(n) = [y(n), y(n1), …,   y(nLs+1)]T is the  Ls sample control signal vector, s is the 

step size. Hence, a bias free estimation of S(z) is possible. If y(n) is a coloured signal, the 

modelling may be improved by incorporating pre-whitening filters. 

     The fourth stage is for the complete active control operation. After obtaining the initial 𝑃̂(𝑧) 

and 𝑆̂(𝑧), the switches K2 and K3 are turned off, and K1 is turned on. This means there is no 

update for 𝑃̂(𝑧) and 𝑆̂(𝑧), and the FxLMS algorithm is used for ANC operation. The control 

weights are updated as 

w s( 1) ( ) ( ) ( )n n e n n  w w x                                              (4) 

where xs(n) = [xs(n), xs(n1), …,   xs (nLw+1)]T, xs(n) is the reference signal ( )x n filtered 

through the secondary path estimate ˆ( )ns and w is the step size.  

    The active control operation is prone to acoustic path change. To detect which path changes, 

three thresholds are defined.  
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Tr is the threshold to detect sudden rise in the residual error signal e(n), Tp and Ts are the 

thresholds to detect if the estimated acoustic paths are accurate, 𝜎𝑒′
2  is the power of the error 

signal 𝑒′(𝑛) = 𝑒(𝑛) − 𝑝̂(𝑛) during secondary path modelling. 

     Assume that the normal noise reduction is 10 dB for the system, i.e., Tr0 =10, and if suddenly 

it becomes less than 10 dB, i.e., Tr < 10 dB, there should be an acoustic path change, which 

may come from the primary path or the secondary path or x(n), the update for W(z) is ceased. 

To check whether the change is due to the primary path, K1 and K3 are turned off, K2 is turned 

on, and the threshold Tp is checked. Assume that normal acoustic path modelling accuracy is 

20 dB for the system, i.e., Tp0 = 20, and if it becomes less than 20 dB, i.e., Tp < 20 dB, it is 

confirmed that the preciously estimated acoustic path is no more matching with the changed 

acoustic path. 

     For Tp < 20, it is confirmed that there is a change in the primary path. Hence, 𝑃̂(𝑧) is updated 

until the condition Tp > 20 is met, and then the FxLMS algorithm is used for ANC operation.        

If the condition Tp > 20 is valid, the change in e(n) might be due to the change in secondary 



path. To update 𝑆̂(𝑧), K2 is turned off and K1 and K3 are turned  on. The secondary path 

modelling is carried out until the condition Ts > Ts0 is met with the previously obtained W(z).  

The normal secondary path modelling accuracy can be assumed to be 20 dB, i.e., Ts0 = 20.  

      Decorrelation filters are widely employed for adaptive filtering application such as 

feedback cancellation in hearing aids [14]. However, they have little application in active 

control operation. Two identical adaptive decorrelation filters D(z)=1z1Q(z) are introduced 

to accelerate the convergence behaviour of the secondary path modelling process, where Q(z) 

is the z-transform of 𝐪(𝑛) = [𝑞0(𝑛), 𝑞1(𝑛), … , 𝑞𝑀−1(𝑛)]T with M representing the tap-weight 

length of  Q(z)  [15, 16]. The signal y(n) passes through the adaptive decorrelation filter to 

provide the signal 𝑦′(𝑛) = 𝑦(𝑛) − 𝐪T(𝑛)𝐲1(𝑛), where 𝐲1(𝑛) = [y(n-1), y(n2), …,   y(nM)]T. 

Similarly, the error signal ( ) n  passes through the decorrelation filter to provide 𝜀′(𝑛) =

𝜀(𝑛) − 𝐪T(𝑛)𝜺1(𝑛), where 𝜺1(𝑛)= [ε(n-1), ε(n2), …,   ε(nM)]T. The signals ( )y n  and 

( ) n  are used to update the filter ( )S z . The decorrelation filter can pre-whiten the updating 

signals y(n) and the error signal ε(n), which in turn accelerates the convergence of ( )S z . The 

adaptive decorrelation filters is updated using the NLMS algorithm as 
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The tap-weights of the of ( )S z are updates as 

s
ˆ ˆ( 1) ( ) ( ) ( )n n n n    s s y                                                (9) 

where y´(n)=[ y´(n), y´(n-1),…, y´(n-Ls+1)]T. 

      After obtaining ( )S z , K2 and K3 are turned off, K1 is turned on, the new secondary path 

estimate is used in the FxLMS algorithm for active control operation by updating the control 

coefficients as in (4). The stages involved in the proposed method are summarized in Table I.   

 

Table I: The 5 stages of the proposed method. 

Stage 1: Primary path estimation 

            Turn off K1 and K3, turn on K2  

             Estimate of the primary path 𝑃̂(𝑧) 
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Stage 2: Controller initialization 



             Turn on K1, turn off  K2 and K3 

                    Set the initial controller 

Stage 3: Secondary path estimation 

              Turn on K1 and K3, turn off K2  

               Estimate of the secondary path 𝑆̂(𝑧) using control signal 

             s
ˆ ˆ( 1) ( ) ( ) ( )n n n n   s s y  

Stage 4:  Primary and secondary path changing detection in active control operation  

             Operate the active control system 

             w s( 1) ( ) ( ) ( )n n e n n  w w x  

             if Tr  < Tr0 , A path change is detected. 

             To check primary path change,  turn off K1 and K3, turn on K2, run the system 

             if  Tp < Tp0 , update 𝑃̂(𝑧). 

             else, turn on K1 and K3, turn off  K2, update 𝑆̂(𝑧) using  
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            s
ˆ ˆ( 1) ( ) ( ) ( )n n n n    s s y  

Stage 5: Active control operation 

              Turn off K2 and K3, turn on K1 

              Operate the active control system with updated 𝑆̂(𝑧) 

              If rise in e(n) is detected, follow the procedures of Stage 4 

 

 

 

3. Computational Complexity 

A detailed computational complexity of the proposed method is computed in this section. The 

proposed method requires 𝐿w  multiplications and 𝐿w − 1 additions to obtain the controller 

output; 𝐿s  multiplications and 𝐿s − 1  additions to obtain the filtered reference signal; 𝐿s 

multiplications and 𝐿s − 1  additions to obtain the estimated cancelling signal; 𝐿p 

multiplications and 𝐿p − 1  additions to obtain the output of extended adaptive filter; 2𝑀 

multiplications and 2(𝑀 − 1)  additions to obtain the decorrelation filter outputs; 𝐿w + 1 

multiplications and 𝐿w additions to update the control filter; 2𝐿p + 1 multiplications, 2𝐿p − 1 

additions and 1 division to update the extended adaptive filter 𝑃̂(𝑧); 𝐿s + 1 multiplications and 



𝐿s additions to update the secondary path modelling filter; 2𝑀 + 1 multiplications, 2𝑀 − 1 

additions and 1 division for updating the decorrelation filter. For calculating the thresholds, 6 

multiplications, 6 additions, 3 divisions and 3 logarithmic operations are required. The 

proposed method may requires a total of  2𝐿w + 3𝐿s + 3𝐿p + 4𝑀 + 10  multiplications, 

2𝐿w + 3𝐿s + 3𝐿p + 4𝑀 − 2  additions, 5 divisions and 3 logarithmic operations. Hence, 

4𝐿w + 6𝐿s + 6𝐿p + 8𝑀 + 16 computations are required per sample. However, it is to be noted 

that the secondary path modelling and control operation are not carried out simultaneously, 

which may lead to a reduced computational complexity than the above mentioned values.  

     For the sake of comparison, the computational complexity of some existing approaches is 

summarized in Table II, which includes the extended filtering method in [10], conventional 

extended filtering method [18], Yang’s method [6], Carini’s method [8] and Gao’s method 

[13]. To make a straightforward comparison, one example is provided, where  𝐿w= 48, 𝐿s= 16, 

𝐿p=48, 𝑀= 5, and for Gao’s method, the length of the prototype filter 𝐾L=128, the down 

sampling rate 𝑁D=10, the number of total subband 𝑁t=20, the number of actual used subband 

𝑁a=4, direct path delay ∆=17, length of Hilbert filter 𝐿=34. The details of the computational 

complexity of Gao’s method can be found in [13]. It can be observed from Table II that the 

computational complexity of the proposed method is higher than that of the the extended 

filtering methods and Yang’s method. However, it is lesser compared  to that of Carini’s and 

Gao’s method. 

 

Table II: Computational complexity of different methods  

Methods Total computations per sample Example 

Proposed Method 4𝐿w + 6𝐿s + 6𝐿p + 8𝑀 + 16 632 

extended filtering [10] 4𝐿w + 6𝐿s + 2𝐿p − 4 380 

extended filtering [18] 4𝐿w + 6𝐿s + 6𝐿p 576 

Yang’s Method [6] 4𝐿w + 6𝐿s + 4𝐿h + 24 344 

Carini’s Method [8] 13𝐿w + 12𝐿s + 8𝐷 + 25 905 

Gao’s Method [13] 
𝐿w + 𝐿 + ∆ +

𝑁a(2𝐿w + 1)

𝑁D
 

+
3(𝐾L + 𝑁tlog2𝑁t)

𝑁D
 

+𝑁a(10 + 8𝐿w) 

1778 

 

 



 

4. Simulations  

In the simulations, the primary path P(z) and secondary path S(z) are FIR filters of length 48 

and 16 respectively which are obtained from the data provided in [17], the frequency response 

of which are depicted in Fig. 3. Part A represents the normal paths, Part B represents the path 

after a sudden change. The estimated secondary path and control filter are FIR filters of length 

Ls = 16 and Lw = 48, respectively. The adaptive decorrelation filter Q(z) is an FIR filter of 

length M = 5. The sampling frequency used in the simulation is 2000 Hz. 

 

      

                                (a)                                                                         (b) 

Fig. 3 Frequency response of (a) the primary path and (b) the secondary path. 

 

The mean square error (MSE) and the relative modelling error S are used as the metrics for 

comparison, which are defined as  
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Simulations have been carried out to compare the performance of the proposed 5-stage method 

with the extended filtering (EF) method reported in [10], which is hereafter referred to as EF-

1, the conventional extended adaptive filter method [18], which is hereafter referred to as EF-

2, Carini’s method [6] and Yang’s method [8]. In EF-1, the extended filter is the estimate of 

the primary path, which is fixed for control operation, whereas the extended filter is adaptive 

one for EF-2. Both Carini’s method and Yang’s method use auxiliary noise with an initialized 

variance of 0.05 and power scheduling strategy for simultaneous update of the control filter 



and secondary path modelling filter. All the results obtained are averaged over ten independent 

trials. 

 

4.1 The 5-stage method 

In this subsection, simulation has been carried out for different situations to test the efficacy 

of the 5-stage method for both the primary and the secondary path change. 

 

4.1.1 Case 1 

In this case, the input signal x(n) is generated from a first order autoregressive process  

𝑥(𝑛) = 0.9𝑥(𝑛 − 1) + 𝑣(𝑛)                                                (12) 

where v(n) is a white noise of zero mean and unit variance. A white Gaussian measurement 

noise with a signal to noise ratio (SNR) of 40 dB is considered. The simulation runs for 50 sec 

and suddenly both the primary and secondary paths are changed (Part B). The simulation 

parameters used for the proposed method are: µp = 0.5, µs = 0.004, µw = 0.0001, and for the EF 

methods are: µp = 0.008, µs = 0.02, µw = 0.0001. The simulation parameters used for the Yang’s 

method are: µw = 0.000005, α=0.02 and µh=0.003, c=1, λ=0.999, and for the Carini’s method 

are: 𝜇smin
= 0.001, delay D=8, 𝜆̂=0.8, R=1. The step sizes and other simulation parameters are 

chosen by trial and error to keep the system stability for normal acoustic paths and yet with the 

best possible control performance.  

     The learning curves are shown in Fig. 4.  The proposed method maintains the control after 

both the primary and the secondary path change, while the EF-1 and EF-2 algorithms diverge. 

The Yang’s method and Carini’s method are also able to maintain the control operation before 

and after the acoustic path change. However, the control performance is limited compared to 

the proposed method. It is due to the fact that the control operation and secondary path 

modelling process interfere with each other, and the injected auxiliary noise in these two 

methods affect the residual noise level. Furthermore, it is to be noted that the initial residual 

error levels (Part A) of Yang’s method and Carini’s method are higher compared to the other 

methods due the injection of auxiliary noise.  For the proposed algorithm, after the detection 

of the path change at 50th second, the controller update is ceased, K1 and K3 are turned off, K2 

is turned on, and the primary path is remodelled. Hence, the residual error becomes exactly 

same as the primary disturbance during that time, which is clear from the learning curve (50th-

60th second). During the secondary path modelling, K1 and K3 are turned on, K2 is turned off, 

the controller preserves the previously updated coefficients (60th-70th second). After the 



modelling of the acoustic paths are completed, K2 and K3 are turned off, K1 is turned on, the 

controller is continued to update to reduce residual noise. 

     For Part A, the proposed method, EF-1 and EF-2 are able to reach same residual noise level 

of approximately -11.5 dB, where as the Yang’s method and Carini’s method are capable of 

achieving -7.5 dB despite having the fact that the convergence behaviour of the Yang’s method 

is the worst among the methods under study.  After acoustic path change, the achieved residual 

noise levels for the proposed method, Yang’s method and Carini’s method are -11 dB, 2 dB 

and -0.07 dB, respectively. The improved performance of the Carini’s method (among Yang’s 

method and Carini’s method) might be attributed to the use of optimal varible step size for 

control filter update and secondary path modelling and appropriate auxiliary noise power 

scheduling.    

      

 

Fig. 4: Case 1: Learning curve for the 5-stage method obtained from an AR(1) input signal.  

 

      The deterioration in performance for the EF methods after both the primary and the 

secondary path change is due to the fact that it is not capable of estimating the changed paths 

accurately. It is found that the phase error between the actual and estimated secondary path for 

the EF-1 and EF-2 methods is greater than ±90, thereby making both the algorithms diverge. 

Furthermore, in the simultaneous update of secondary path estimation filter and the control 

filter, both the processes interfere with each other. An inaccurate secondary path estimation 

filter leads to increased interferences in control operation. 

 

4.1.2 Case 2 



In this case, a more critical scenario is considered, where both the primary and secondary paths 

change frequently. The input signal is same as Case 1. The simulation runs for 25 seconds with 

normal acoustic paths (Part A), and then both the paths are changed (Part B). The acoustic 

paths again changes to Part A and Part B at 50th and 75th second, respectively. The simulation 

parameters used for this case are:  the proposed method (µp = 0.5, µs = 0.004, µw = 0.0001), the 

EF methods (µp = 0.0005, µs = 0.001, µw = 0.0001), Yang’s method (µw = 0.000005, α=0.02 

and µh=0.003, c=1, λ=0.999) and Carini’s method (𝜇smin
= 0.001, delay D=8, 𝜆̂=0.8, R=1). The 

step sizes are chosen by trial and error to have same initial convergence (the proposed method 

and EF methods), and stability of all the methods for the normal acoustic paths. The operation 

of the switches are same as Case 1. The learning curves are shown in Fig. 5, which shows the 

superiority of the proposed method after sudden path change. The EF-1 and EF-2 algorithms 

diverge after the acoustic path change for the same reason as Case 1. Though the Yang’s 

method and Carini’s method offer control operation after each path change, their control 

performance is limited due to the simultaneous update of control filter and secondary path 

modelling filter and the existence of auxiliary noise in the residual error signal. 

        

 

 

Fig. 5: Case 2: Learning curve for the 5-stage method obtained from an AR(1) input signal 

with a frequent acoustic path change. 

  

      For normal acoustic path (Part A), the proposed method, EF-1 and EF-2 are able to reach 

the same residual noise level (that is around -11.5 dB), whereas the Yang’s method and the 



Carini’s method achieves -2.8 dB and -6.5 dB, respectively. The residual noise levels for the 

proposed method, the Yang’s method and the Carini’s method for the first acoustic path change 

are -9 dB, 4 dB and 1dB, respectively, while such obtained values for the second path change 

are -10.8 dB, -5 dB and -6.5 dB, respectively. Also, the third acoustic path change offers -9.5 

dB, 3.5 dB and 0.9 dB, respectively, for such three mentioned methods.  

  One can observe from the results that the proposed method is able to achieve similar 

level of noise reduction only after remodelling the acoustic paths. The primary path 

modelling is carried out during 25th-35th second, 50th-60th second and 75th-85th second. 

Similarly, the secondary path modelling is carried out during 35th-45th second, 60th-70th 

second and 85th-95th second. The remodelling process took longer time compared to the 

controller update duration, which means the unwanted disturbance is present for a long time. 

Hence, it is expected that the time duration for remodelling the acoustic paths could be 

shorter compared to the time gap between two consecutive path changes. This may be 

achieved by accelerating the convergence behaviour of the adaptive filters used for 

modelling. The adaptive decorrelation filters are introduced in Section 4.2 to reduce the 

modelling time. 

     There might be some situations where only one acoustic path changes. If Tr < Tr0, the 

controller is ceased, K1 and K3 are turned off, K2 is turned on. If Tp < Tp0, it confirms the need 

for remodelling of the primary path. However, the remodelling of primary path takes some 

time. After the remodelling is completed, the controller update is continued, which means the 

convergence of the FxLMS algorithm in such a case depends on the primary path remodelling 

time. Similarly, if Tr < Tr0, and Tp > Tp0, it confirms the need for remodelling of the secondary 

path, for which K1 and K3 are turned on and K2 is turned off. The controller update is continued 

after remodelling of the secondary path, which means the convergence of the FxLMS algorithm 

in such a case depends on the secondary path remodelling time. 

In summary, the proposed 5-stage method is capable of maintaining the noise reduction 

performance even both the primary and the secondary path change. However, one weakness 

of this method is that it takes some time for remodelling the acoustic paths, which makes it 

ill-suited for the situation where the changes in the acoustic paths occur more frequently 

before one remodelling is completed.   

 

4.2  The Decorrelation filter 

In this subsection, the advantages of using the adaptive decorrelation filter is illustrated through 

simulations. For applying the decorrelation filter for modelling the secondary path (Part B), the 



modelling signal used is the controller output signal from Part A. After the confirmation of 

secondary path change, K1 and K3 are turned on, K2 is turned off, the controller preserves the 

previously updated coefficients (from Part A). Please note that this decorrelation filter is not 

effective for tonal and white excitation signal.  

 

4.2.1 Case 1 

The input signal and other simulation parameters are same as the Case 1 of previous section. 

The step size used for updating the coefficients of the decorrelation filter is µq = 0.01. It is 

evident from Fig. 6 that the decorrelation filter accelerates the convergence behaviour of the 

secondary path modelling filter. Unlike the conventional LMS adaptive filter, the decorrelation 

adaptive filter takes approximately 2 second to achieve similar modelling accuracy. That means 

the use of adaptive decorrelation filter can reduce the overall modelling time. The improvement 

in the convergence behaviour of the decorrelation adaptive filter is due to its pre-whitening 

operation, which decreases the spectral dynamic range of the excitation signal used for 

modelling. 

 

 

Fig. 6: Relative modelling error for the AR(1) signal. 

 

4.2.2 Case 2 

A broadband reference noise signal is considered in this case. A 21 order FIR filter with a pass 

band of [100 500] Hz is designed using fir1 command. A white noise of zero mean and unit 

variance is filtered through this bandpass filter to generate the reference signal x(n). A white 



Gaussian measurement noise with an SNR of 40 dB is considered. The acoustic paths used in 

the simulation are shown in Fig. 3. The control operation is carried out for Part A and the 

acoustic paths are changed suddenly (Part B). The decorrelation adaptive filter is used for 

remodelling the secondary path. The simulation parameters used for the proposed method are: 

µp = 0.9, µs = 0.01, µw = 0.00005 and µq = 0.01. 

      The relative modelling error is shown in Fig. 7(a), from which one can notice that the 

proposed decorrelation filter is improving the modelling accuracy by approximately 3 dB. The 

adaptive filter without the decorrelation filter takes 10 second to achieve approximately –4 dB 

modelling error, while the decorrelation adaptive filter reaches the same level at around 2 

second. The reason for such improvement is explained in the previous case. In this case, the 

reference signal has bandwidth [100 500] Hz, and the secondary path can be modelled 

accurately only in that band. Fig. 7 (b) shows the modelling error in the frequency band of the 

reference signal, from which it is clear that the modelling is improved using the decorrelation 

filter. The modelling error in Fig .7(a) is higher compared to the previous case as it is obtained 

by considering the whole range of frequency response of the secondary path. However, the 

condition Ts > Ts0 is met. 

 

   

                                   (a)                                                                    (b) 

Fig. 7: (a) Relative modelling error for the full frequency range, (b) Relative modelling error 

for the frequency band of [100 500] Hz. 

 

4.2.3 Case 3 

In this case, the reference signal is a mixture of white noise with zero mean and unit variance 

and multitone signal comprising frequencies of 100, 200, 300, 400 and 500 Hz. The variance 

of the multitone signal is adjusted to 2. A white Gaussian measurement noise with an SNR of 



40 dB is considered. The acoustic paths used in the simulation are shown in Fig. 3. The control 

operation is carried out for Part A and the acoustic paths are changed suddenly (Part B). The 

decorrelation adaptive filter is used for remodelling the secondary path. The simulation 

parameters used for the proposed method are : µp = 0.9, µs = 0.003, µw = 0.0002 and µq = 0.004. 

     The relative modelling error is illustrated in Fig. 8, from which it is clear that the 

decorrelation filter accelerates the convergence speed of the secondary path modelling filter. 

Although the reference signal constitutes white noise, the presence of the control filter makes 

the output of controller as a correlated (coloured) signal, increasing the spectral dynamic range. 

The adaptive decorrelation filter, in such a case, improves the convergence speed. It is to be 

noted that if the controller output, the excitation signal for modelling the secondary path is 

white or tonal, the decorrelation filter is not more effective than that without using the 

decorrelation filter for modelling the secondary path. 

 

 

Fig. 8: Relative modelling error for the mixture of white noise and multitone signal. 

 

In summary, although the decorrelation filter is not effective to increase the convergence 

speed for tonal and white excitation signals, it can accelerate the convergence speed of the 

secondary path modelling for broadband and narrowband signals. Even though the reference 

signal might be white noise, the presence of the control filter, the frequency response of which 

is not flat in general, converts a white reference input signal to a coloured excitation signal for 

the secondary path modelling, which makes the decorrelation filter become effective. The 

effectiveness decreases with the reduction of bandwidth of the excitation signal. The order of 



the decorrelation filter also plays a role in improving the convergence speed. In the 

simulations, a small order filter is considered. However, a higher order filter may be chosen 

for complicated coloured signals. 

 

4.3 The 5-stage method with decorrelation filter 

In this subsection, the complete ANC operation is carried out, which includes the proposed 5-

stage method and the adaptive decorrelation filter. Three cases have been considered here.  

 

4.3.1 Case 1 

 The input signal considered in this case is a coloured signal, generated by passing a white 

noise with zero mean and unit variance through a filter (1 + 0.5𝑧−1 + 0.81𝑧−2)/(1 −

0.59𝑧−1 + 0.4𝑧−2). A white Gaussian measurement noise with an SNR of 40 dB is considered. 

The acoustic paths considered are depicted in Fig. 3. The simulation is carried out with normal 

acoustic paths (Part A), then there is a sudden change in both the acoustic paths at 40th second. 

The operation of the switches for remodelling of acoustic paths and control operation are same 

as previous cases.  The simulation parameters used for this case are:  the proposed method (µp 

= 0.5, µs = 0.004, µw = 0.0001, µq = 0.5), the EF methods (µp = 0.01, µs = 0.004, µw = 0.0001), 

Yang’s method (µw = 0.000005, α=0.02 and µh=0.003, c=1, λ=0.999) and Carini’s method 

(𝜇smin
= 0.06, delay D=8, 𝜆̂=0.9, R=1).   

       In the proposed method, the primary path modelling is carried out during 40th-50th second. 

After the detection of secondary path change, K2 is turned off, K1 and K3 are turned on. The 

secondary path modelling can be completed earlier using the decorrelation filter because the 

controller output signal is coloured. The adaptive decorrelation filter reduces the spectral 

dynamic range of the control signal, there by improves the convergence speed of the modelling 

filter. Unlike the LMS adaptive filters, the decorrelation adaptive filter takes approximately 2 

second (50th-52nd second) data samples for the secondary path modelling. The learning curves 

of the system are shown in Fig. 9, from which it is clear that the decorrelation filter reduces the 

remodelling time and helps to resume the control operation. The steady-state performance with 

and without the decorrelation filter are similar. It is also evident that both the primary and the 

secondary path change cause the EF-1 and EF-2 algorithms diverge, while the proposed 

algorithm is able to achieve similar level of noise reduction. Yang’s method and Carini’s 

method are also capable of maintaining control operation after acoustic path change, the control 

performances of which are less compared to the proposed method. 



 

 

Fig. 9: Learning curve for the 5-stage method obtained from a coloured input signal. 

 

     For Part A, the proposed method (with and without decorrelation filter), EF-1 and EF-2 

reach the same residual noise level, i.e., around -9.5 dB, whereas the Yang’s method and the 

Carini’s method achieves similar residual noise level, i.e., around -5.5 dB. The residual noise 

levels for the proposed methods, the Yang’s method and the Carini’s method after the acoustic 

path change are -10.2 dB, -0.1 dB and -0.8 dB, respectively. 

 

4.3.2 Case 2 

In this case, the input signal and other simulation parameters (for the proposed methods) are 

same as the Case 3 of Section 4.2. The simulation is carried out with normal acoustic paths 

(Part A), then there is a sudden change in both the acoustic paths at 25th second. The operation 

of the switches for remodelling of acoustic paths and control operation are same as previous 

cases. The simulation parameters used for the existing methods are: the EF methods (µp = 

0.001, µs = 0.01, µw = 0.0002), Yang’s method (µw = 0.00001, α=0.07 and µh=0.003, c=1, 

λ=0.999) and Carini’s method (𝜇smin
= 0.02, delay D=8, 𝜆̂=0.9, R=1).   

     It can be observed from the relative modelling error depicted in Fig. 8 that the decorrelation 

adaptive filter can remodel the secondary path earlier compared to the LMS counterpart. The 

primary path remodelling is carried out fast, with in one second as the reference signal 

constitutes a white noise. The LMS adaptive filter remodels the secondary path during 26th-31st 

second, while the decorrelation adaptive filter can do it in 2 second. The learning curves of the 



system are shown in Fig. 10, from which it is clear that the decorrelation filter reduces the 

remodelling time and the control operation is maintained. The EF-1 and EF-2 algorithms 

diverge after both the primary and the secondary path change. 

     For Part A, the proposed method (with and without decorrelation filter), EF-1 and EF-2 

reach the same residual noise level, i.e., around -9.3 dB, whereas the Yang’s method and the 

Carini’s method achieves similar level of residual noise, i.e., around -8 dB. The residual noise 

levels for the proposed methods, the Yang’s method and the Carini’s method after the acoustic 

path change are -10.5 dB, 2.4 dB and -0.5 dB, respectively. It can also be noticed from part A 

that the initial residual noise levels for Yang’s method and Carini’s method are higher than that 

of the other methods, which are caused by the power scheduling of the injected auxiliary noise.  

 

 

Fig. 10: Learning curve for the 5-stage method obtained from a mixture of white noise and 

multitone input signals. 

 

4.3.3 Case 3 

In this case, the effect of different level of measurement noise on the performance of the 

proposed method is investigated. The input signal, simulation condition and all other 

simulation parameters are same as Case 1 of Section 4.3. A white Gaussian  measurement noise 

with four different SNR values such as 30 dB, 20 dB, 10 dB and 0 dB are considered. The 

obtained learning curves are depicted in Fig. 11. As it can be observed from Fig. 9 that the EF-

1 and EF-2 results in algorithmic divergence after the acoustic path change, only Yang’s 

method and Carini’s method are compared with the proposed method with decorrelation filter. 



The residual noise levels for Part A and Part B are shown in Table III, from which one can 

observe that the SNR values of 30 dB and 20 dB has little effect on the residual noise levels 

for the methods, but all the three methods are affected by the measurement noise of SNR values 

10 dB and 0 dB. Furthermore, the proposed method outperforms the Yang’s and Carini’s 

method and achieves lower level of residual noise for all SNR values.     

 

 

                                       (a)                                                                     (b) 

 

                                  (c)                                                                     (d) 

Fig. 11: Learning curves for the proposed method obtained from a coloured input signal and 

different level of measurement noise. (a) SNR = 30 dB, (b) SNR = 20 dB, (c) SNR = 10 dB 

and (d) SNR = 0 dB. 

 

 

 

Table III: Residual noise levels of different methods for different measurement noise levels. 

 Residual noise level (dB) 

 SNR=30 dB SNR = 20 dB SNR = 10 dB SNR = 0 dB 



Methods Part A Part B Part A Part B Part A Part B Part A Part B 

Proposed -9.5 -10.2 -9.2 -10.0 -6.7 -7.3 0.3 0.1 

Yang’s -5.4 -0.1 -5.2 0.0 -3.8 0.6 1.9 3.0 

Carini’s -5.0 -0.8 -5.0 -0.7 -3.8 0.0 1.8 3.0 

 

 

     In summary, the proposed 5-stage method and the decorrelation filter maintain the control 

operation when both the primary and the secondary path change. Unlike the existing 

algorithms, the proposed method detects the change of acoustic paths by monitoring the pre-

set thresholds, and then uses three switches for choosing the active control operation, 

remodelling the primary path and remodelling the secondary path. It removes the primary 

disturbance during secondary path modelling, reduces the convergence time of the control filter 

by reducing the remodelling time of the secondary path modelling filter with the decorrelation 

filter. The proposed method possesses larger computational complexity than the EF-1, the EF-

2 algorithms and Yang’s method due to the threshold detections, the presence of two identical 

decorrelation filters, the coefficient update of the decorrelation filters and obtaining the pre-

whitened signals. Furthermore, the remodelling of the acoustic paths requires few seconds. The 

price paid for the improved performance is the increased computational load. The proposed 

method is also robust enough to handle higher level of measurement noise. Although the 

proposed method can be useful for narrowband and broadband signals for handling both the 

primary and the secondary path change, it may not provide significant improvement in 

performance in situations where the excitation signal is tonal or white and the changes in the 

acoustic paths occur more frequently before one remodelling is completed. 

 

5. Conclusion 

A five-stage systematic method is proposed for practical active control operation which can 

maintain control when both the primary and the secondary path change. To improve the 

convergence speed of the secondary path modelling with the control signal, adaptive 

decorrelation filters are incorporated in the online secondary path modelling by pre-whitening 

the modelling signals used in the modelling. Simulation study reveals that the proposed method 

outperforms the conventional extended adaptive filtering methods in terms of convergence rate 

and stability, and outperforms Yang’s method and Carini’s method in terms of noise reduction. 

However, the proposed 5-stage method is ill-suited for the situation where the changes in the 



acoustic paths occur more frequently before one remodelling is completed. Although the 

decorrelation filter reduces the modelling time of the secondary path modelling for broadband 

and narrowband signals, it is not effective for tonal and white excitation signals. Future work 

includes applying the variable-tap-length algorithm to find the optimum number of 

decorrelation filter coefficients necessary to pre-whiten complicated coloured signals, which 

in turn can reduce the computational complexity imposed by the use of the decorrelation filters. 
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