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Abstract 1 

Continued declines in coral reef health over the past three decades have been punctuated by 2 

severe mass coral bleaching-induced mortality events that have grown in intensity and 3 

frequency under climate change. Intensive global research efforts have therefore persistently 4 

focused on bleaching phenomena to understand where corals bleach, when and why – 5 

resulting in a large – yet still somewhat patchy – knowledge base. Particularly catastrophic 6 

bleaching-induced coral mortality events in the past five years have catalysed calls for a more 7 

diverse set of reef management tools, extending far beyond climate mitigation and reef 8 

protection, to also include more aggressive interventions. However, the effectiveness of these 9 

various tools now rests on rapidly assimilating our knowledge base of coral bleaching into 10 

more integrated frameworks. Here, we consider how the past three decades of intensive coral 11 

bleaching research has established the basis for complex biological and environmental 12 

networks, which together regulate outcomes of bleaching severity. We discuss how we now 13 

have enough scaffold for conceptual biological and environmental frameworks underpinning 14 

bleaching susceptibility, but that new tools are urgently required to translate this to an 15 

operational system informing – and testing – bleaching outcomes. Specifically, network 16 

models that can fully describe and predict metabolic functioning of coral holobionts, and how 17 

this is regulated by complex doses and interactions amongst environmental factors. 18 

Identifying knowledge gaps limiting adoption of such models is the logical step to 19 

immediately guide and prioritise future experiments and observation. We are at a time-critical 20 

point where we can begin to resolve how coral bleaching patterns emerge from complex 21 

biological-environmental networks, and so more effectively inform rapidly evolving 22 

ecological management and social adaptation frameworks aimed at securing the future of 23 

coral reefs.  24 

  25 
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Introduction 26 

Global degradation of coral reefs is fast becoming a legacy of the Anthropocene. 27 

Continued declines in reef health worldwide through accelerated industrialization, 28 

urbanization and agriculture (Osborne et al. 2017, Lapointe et al. 2019) have been punctuated 29 

by heat wave-driven catastrophic coral mortality events that have grown in intensity and 30 

frequency under climate change (Hughes et al. 2017, 2018, Eakin et al. 2019). Extreme heat 31 

wave events conspicuously manifest as mass coral bleaching – the process whereby large 32 

extents of coral rapidly pale through loss of their algal endosymbionts (e.g. Glynn 1996, 33 

Suggett & Smith 2011) via destabilization of the coral-algal symbiosis (e.g. Smith et al. 2005, 34 

Weis 2008, Davy et al. 2012, Matthews et al. 2018). Bleached corals rapidly die unless the 35 

host coral can secure alternate sources of energy (Grotolli et al. 2006, 2014), causing 36 

ecological cascades that impact reef-associated fish communities (Bellwood et al. 2006, 37 

Richardson et al. 2018, Benkwitt et al. 2019) and ultimately reef landscape erosion 38 

(Montefalcone et al. 2018, Leggat et al. 2019) that together transform ecological and 39 

biogeochemical service provision.     40 

Instances of mass coral bleaching have been reported since the early 1980s, but it was 41 

not until 1998, just three years after the inception of Global Change Biology, when the first 42 

El Niño-driven global heat wave event resulted in catastrophic mass coral mortality 43 

worldwide (Eakin et al. 2019) – 1998 arguably placed coral bleaching on the world stage, 44 

kick-starting intensive efforts to understand the causes and effects (Cziesielski et al. 2019). 45 

Over 2,600 papers (ISI Web of Science search “coral” AND “bleaching”, 15th August 2019) 46 

have been published since 1998, whereby continually expanding knowledge gained has been 47 

periodically transformed by new tools and technologies that particularly advanced bleaching 48 

observations in nature or unlocked the biological mechanisms at play. Over the past 25 years, 49 

Global Change Biology has contributed as a major platform in disseminating many of the 50 
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breakthroughs from the global scientific community, including the process of bleaching at 51 

fundamental biological levels (e.g. Smith et al. 2005, Crawley et al. 2010, Chakravarti et al. 52 

2016, Pogoreutz et al. 2017, Ferrier‐Pagès et al. 2018), bleaching susceptibility and tolerance 53 

patterns in nature (e.g. Vega-Thurber et al. 2013, Silverstein et al. 2014, Grottoli et al. 2014, 54 

Osborne et al. 2017, Osman et al. 2018) and ensuing ecological cascades (e.g. Bellwood et al. 55 

2006, Anthony et al. 2011, Osborne et al. 2017, Montefalcone et al. 2018, Richardson et al. 56 

2018, Wolff et al. 2018, Benkwitt et al. 2019), and in turn how these processes and patterns 57 

inform management (e.g. Selig et al. 2012, Logan et al. 2014, van Hooidonk et al. 2015, 58 

Anthony et al. 2015, Wolff et al. 2015). 59 

The most recent global back-to-back (2015-2017) bleaching events have re-affirmed 60 

the fragility of coral reef ecosystems to climate change and associated local social-61 

environmental stressors (e.g. Hughes et al. 2017, 2018, Darling et al. 2019, Lapointe et al. 62 

2019) – for many, these events were a confronting first for how rapid and destructive 63 

bleaching-driven mortality occurs. Advances in bleaching forecasting (e.g. Heron et al. 2016, 64 

van Hooidonk et al. 2015, Kumagai et al. 2018) meant that the most recent events particularly 65 

provided new capacity for research communities to capture mass bleaching as it unfolded, 66 

transforming empirical knowledge of bleaching patterns in nature as well as improving 67 

understanding of the core biological and ecological responses at play (Hughes et al. 2017, 68 

2018, McClanahan et al. 2019; see also Eakin et al, 2019). We are, as a result, at an 69 

important, and exceptionally time-sensitive, turning point in our understanding of coral 70 

bleaching and how we move forward. Catastrophic loss of coral cover worldwide in less than 71 

5 years has catalysed global calls for a more diverse set of reef management tools, extending 72 

far beyond climate mitigation and reef protection to also include real-time active 73 

interventions (e.g. Anthony et al. 2017, National Academies of Sciences, Engineering, and 74 

Medicine 2019). However, the viability and success of any forward-looking management 75 
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undoubtedly now rests on rapidly consolidating our ever improving – yet still somewhat 76 

patchy – knowledge of how coral bleaching ultimately manifests as a result of complex 77 

biological and environmental networks. Here, we consider how the past three decades of 78 

coral bleaching research has established the basis for biological and environmental networks, 79 

and how urgently developing research within the framework of these networks will likely be 80 

central to more accurately predict, and therefore manage for, beaching episodes. 81 

 82 

The mechanistic biological network underpinning bleaching severity  83 

Reconciling complex ecological outcomes of coral bleaching over space and time 84 

rests on isolating how the core biological constituents and pathways regulating coral 85 

holobiont fitness are governed by physico-chemical factors. Over three decades of 86 

experiments and observations have developed and refined the central bleaching paradigm 87 

(e.g. Cziesielski et al. 2019) whereby accumulation of reactive oxygen species (ROS), and/or 88 

reactive nitrogen species (RNS), leads to signaling cascades and in turn expulsion or 89 

xenophagy of the algal endosymbionts (Family: Symbiodiniaceae) from the coral host (Smith 90 

et al. 2005, Weis 2008, Tchernov et al. 2011, Davy et al. 2012). An overwhelming body of 91 

evidence has repeatedly demonstrated that perturbations to environmental factors 92 

underpinning optimum metabolic functioning can all result in bleaching; notably, temperature 93 

(Tchernov et al. 2004, Tolleter et al. 2013, Levin et al. 2016), light (Lesser & Farrell 2004, 94 

Downs et al. 2013), salinity (Aquilar et al. 2019, Gardner et al. 2016, Ochsenkühnet al. 2017) 95 

as well as inorganic nutrients including CO2 (Anthony et al. 2008, Crawley et al. 2010), iron 96 

and other trace metals (Shick et al. 2011, Biscéré et al. 2018, Ferrier‐Pagès et al. 2018), and 97 

the nitrogen-to-phosphate ratio (Wiedenmann et al. 2012, Fabricius et al. 2013, Pogoreutz et 98 

al. 2017). Stability of the symbiosis rests on fine-tuned resource exchange of primary 99 

metabolic currencies – C, N, P, electron carriers, etc. – amongst the algal symbionts, host 100 
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and/or broader associated microbiome (Suggett et al. 2017). Consequently, rapid changes in 101 

resource availability that is either externally provided (environmental flux) and/or internally 102 

sourced (enzymatic rates of currency uptake or internal recycling, ion channel functioning) 103 

drive metabolic imbalance that increases the potential to either accumulate or protect against 104 

ROS (e.g. Cziesielski et al. 2019, Wang et al. 2019). Many studies consistently demonstrate 105 

that declining metabolic competence is empirically accompanied by an increased emission of 106 

ROS. Thus ROS appears to be the “smoking gun”, but which metabolic pathways ‘pull the 107 

trigger’ remain very much unresolved.  108 

Targeted reductionist experiments have commonly been used to explore numerous 109 

mechanistic hypotheses to potentially isolate how ROS – in its various forms (see Smith et al. 110 

2005, Lesser 2006) – can accumulate and overwhelm steady state metabolic functioning of 111 

the coral symbiosis. Whilst experiments have unearthed the many cellular constituents that 112 

potentially contribute to ROS induced stress in corals, they have also led to somewhat 113 

contradictory views of the primary constituent(s) at play; such contrary views are perhaps 114 

best evidenced from the wealth of heat stress assays on Symbiodiniaceae isolates to date (see 115 

Warner & Suggett 2016). Extreme high temperature sub-optimality (or “stress”) 116 

fundamentally slows enzymes, e.g. Rubisco (Lilley et al. 2010), that otherwise prevent a 117 

backlog of photochemically generated electrons within electron carrier systems. Enhanced 118 

excitation pressure increases the probability for ROS damage at the sites of light trapping 119 

(Lesser & Farrell 2004, Takahashi et al. 2008) unless electrons can be safely dissipated 120 

through alternative metabolic pathways, many of which also generate ROS (and/or RNS) as 121 

metabolic intermediaries (Suggett et al. 2008, Roberty et al. 2014). Where ROS accumulates, 122 

and hence targets, represents the net outcome of crosstalk between many dynamic metabolic 123 

pathways operating in concert. Thus, how ROS stress manifests will inevitably depend on the 124 

environmental conditions and taxon of interest. Such dependency may be further 125 
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compounded over time where Symbiodiniaceae taxon can acclimatize (Takahashi et al. 2013) 126 

or even evolve (Chakravarti et al. 2017) heat tolerance when maintained for prolonged 127 

periods under sub-lethal upper temperatures, which may in turn reflect the capacity for 128 

associated, possibly obligate, bacterial communities of Symbiodiniaceae (Lawson et al. 2018) 129 

to modify resource availability and/or ROS accumulation. 130 

Heat stress susceptibility in fact appears fundamentally dependent on how a whole 131 

network of ‘tolerance promoters’ – cellular constituents that act to neutralize exposure to 132 

stressors – including ROS scavenger and heat shock proteins (Lesser & Farrell 2004, Suggett 133 

et al. 2008, Takahashi et al. 2008, Davy et al. 2012, Levin et al. 2016, Gierz et al. 2017, 134 

Goyen et al. 2017; reviewed in Cziesielski et al. 2019), occur for any given Symbiodiniaceae 135 

taxon (Fig. 1). Recent transcriptomic studies have indeed confirmed that different heat stress 136 

sensitivity – via ROS generation and photosynthetic reaction centre degradation – between 137 

closely related genotypes of the same Symbiodiniaceae species is governed by a whole 138 

repertoire of cellular constituents operating to differing extents (Levin et al. 2016, Gierz et al. 139 

2017). Consequently, heat stress sensitivity (or tolerance) is likely better described as a series 140 

of ‘phenotypes’ that capture alternate modes of tolerance promotion (Goyen et al. 2017) and 141 

thus encapsulate the broad functional diversity in metabolic functioning that has evolved 142 

amongst the Symbiodiniaceae (Suggett et al. 2017). This notion is even more relevant where 143 

heat stress accompanied by other stressors further expands the range of bleaching stress-144 

response phenotypes observed for Symbiodiniaceae (e.g. high light, Downs et al. 2013; high 145 

CO2, Crawley et al. 2010; phosphate limitation, Wiedenmann et al. 2013).  146 

Considering stress-induced bleaching as a metabolically networked process – as 147 

opposed to pinned on a single (primary) cellular constituent – is even more central when 148 

placing Symbiodiniaceae within the context of the coral symbiosis (see Palmer 2018). ROS 149 

(and RNS) emission from Symbiodiniaceae cells are thought to act as a signaling cue to the 150 
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surrounding coral host tissues triggering dysbiosis (and hence bleaching) (Smith et al. 2005, 151 

Weis et al. 2008, Davy et al. 2012). Consequently, “shuffling” one Symbiodiniaceae taxon to 152 

another, with different repertoires of tolerance promotion (Levin et al. 2016) likely serves as 153 

a primary means to mitigate stress induced ROS (RNS) susceptibility (e.g. Silverstein et al. 154 

2014, Howells et al. 2016). Such “shuffling” therefore serves as a form of biological 155 

recombination to maintain host-symbiont metabolic homeostasis as the resource landscape 156 

changes (Suggett et al. 2017, Matthews et al. 2018). Coral hosts further exhibit a complex 157 

repertoire of tolerance prompters that regulate sensitivity to bleaching; for example, ROS 158 

scavenging and heat shock proteins (Dixon et al. 2015, Gardner et al. 2016, 2017, Traylor-159 

Knowles et al. 2017, Aguilar et al. 2019; reviewed in Cziesielski et al. 2019), as well as 160 

constituents for regulating excitation energy (Lutz et al. 2015) and silencing apoptosis 161 

(Tchernov et al. 2011) (Fig. 1). Coral hosts also have the added advantage of up-regulating 162 

feeding to support the energetic demands in repair of ROS damaged constituents (Grottoli et 163 

al. 2006, 2014). Consequently, any one Symbiodiniaceae taxon can exhibit very different 164 

heat tolerance properties when hosted by different coral hosts but in the same environment 165 

(Hoadley et al. 2019), presumably since the host-symbiont metabolic network, and notably 166 

the resource landscape available to both partners to limit ROS accumulation and/or aid repair 167 

of damaged constituents, are altered. Such capacity to network tolerance promotion amongst 168 

coral host and Symbiodiniaceae partners, as well as surface associated bacteria that may aid 169 

to consume ROS (Diaz et al. 2016, Ziegler et al. 2019), may well determine the finer scale 170 

patterns of stress susceptibility within and between coral populations.  171 

 172 

Environmental interactions regulate networked bleaching at the ecosystem scale 173 

Evidence has overwhelmingly established the role of heat waves as the primary driver 174 

of coral bleaching, and in particular mass bleaching events (Hughes et al. 2018, Eakin et al. 175 
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2019, McClanahan et al. 2019). Heat wave severity is commonly estimated as Degree 176 

Heating Weeks (DHWs), the cumulative time with which sea surface temperature (SST) 177 

exceeds the maximum monthly mean SST, thereby exceeding the seasonal ‘norms’ that are 178 

already near corals’ upper thermal thresholds. Both empirical (e.g. Hughes et al. 2017, 2018, 179 

McClanahan et al. 2019) and experimental mechanistic (e.g. Ainsworth et al. 2016, Leggat et 180 

al. 2019) studies have repeatedly demonstrated how increasing DHWs exacerbate bleaching, 181 

unless corals have inherent capacity to thrive well below the maximum monthly mean SST 182 

(see Osman et al. 2018). Increased ocean warming over the past three decades has resulted in 183 

both ‘warmer summers’ and ‘reduced winter reprieves’ (Heron et al. 2016), amplifying the 184 

severity of both DHWs mass beaching events (Hughes et al. 2017, 2018, Eakin et al. 2019).  185 

Bleaching can in fact be induced through subjecting corals to sub-optimal conditions 186 

of any factor, not just temperature, central to growth and survivorship. High light enhances 187 

photosynthetic excitation and hence potential to emit ROS (RNS) (Lesser & Farrell 2004), 188 

thereby exacerbating the effect of warming events (Jokiel & Brown 2004); as such, exposure 189 

to herbicides (Negri et al. 2011) that mimic high light-induced ‘bottlenecking’ of electron 190 

carriers that otherwise dissipate excitation energy similarly increases the potential for ROS 191 

accumulation via heat stress. Capacity to consume ROS but also repair constituents damaged 192 

(targeted) by ROS further rests on sufficient cellular ‘building materials’ and hence inorganic 193 

nutrient availability. For example, low phosphate availability, and hence high N:P, reduces 194 

integrity of lipid membranes that are targeted by ROS and thus exacerbates stress-induced 195 

bleaching (Wiedenmann et al. 2013); so much so, that decadal scale declines in Florida’s 196 

reefs have recently been attributed to persistently high N:P through eutrophication (LaPointe 197 

et al. 2019; also, Vega-Thurber et al. 2013). A particularly intriguing factor, but perhaps still 198 

the most unexplored, is oxygen availability. Hypoxia (insufficient supply of O2 for ‘normal’ 199 

functioning) trigger ROS (RNS) cascades that appear similarly initiated by heat induced ROS 200 
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(Hughes et al. in review), potentially explaining why bleaching can be triggered under heat 201 

stress in darkness (Tolleter et al. 2013). As such, hypoxia events driven by dead zone 202 

advection, but also local eutrophication that accelerate ‘reef microbialisation’ to enhance 203 

biological oxygen demand (Haas et al. 2016), can drive mass bleaching in the absence of heat 204 

(Altieri et al. 2017).  205 

Bleaching ultimately occurs where severe (“lethal”) doses of any one environmental 206 

factor occurs, but importantly also if moderate (“sublethal”) doses of factors operate in 207 

concert (e.g. Anthony et al. 2011, Vega-Thurber et al. 2013, Ban et al. 2014); the intensive 208 

experimental and observation efforts to date documenting coral bleaching has resulted in a 209 

dizzying array of outcomes depending on environmental context (Fig. 2). Importantly, all 210 

environmental factors noted above have been documented to influence the severity with 211 

which heat stress-induced bleaching occurs, when and where – such that we now have an 212 

exceptionally complex environmental network where in effect, “all roads can lead to [some 213 

form of] coral bleaching” (Fig. 2). Interactions amongst environmental factors regulating 214 

coral metabolism operate in several key ways to determine how the ‘winners and losers’ are 215 

observed at the ecosystem scale (e.g. Carilli et al. 2010, Ban et al. 2014, Ellis et al. in press), 216 

yet we are still far from a complete understanding of this network:  217 

Classic single factor experiments have been central to isolate mechanistic biological 218 

pathways or the response of ecological outcomes to any one factor. However, single factor 219 

perturbations are not representative of the complex biogeochemistry of reef habitats or indeed 220 

future climate scenarios (see Camp et al. 2018a), so much so that they may mis-inform as to 221 

how successfully taxa tolerate multi-factor interactions. For example, corals adapted to 222 

tolerate enhanced CO2 have been shown to downregulate molecular chaperones that would 223 

ultimately enhance heat stress sensitivity (Kenkel et al. 2018). More sophisticated multifactor 224 

experiments have demonstrated how cumulative or synergistic interactions exacerbate the 225 
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severity of stress – whilst there are now many examples – the enhancement of heat stress 226 

sensitivity under high light is particularly common (Lesser & Farrell 2004, Jokiel & Brown 227 

2004, Robison & Warner 2006). Such interactions inevitably mean that factors can also 228 

operate antagonistically, e.g. reduced severity of heat stress under low light (e.g. Mumby et 229 

al. 2001) or cyclone-driven cooling (Carrigan & Puotinen 2014) (Fig. 2). The two cases of 230 

light as a regulatory factor to heat stress susceptibility here fundamentally highlights that 231 

non-linearity in the dose-response effect will result in different outcomes. Such non-linear 232 

response effects can also be seen for other regulatory factors, e.g. nutrients (Fabricius et al. 233 

2013), where relatively small additions in fact may aid heat tolerance, but larger additions 234 

rapidly accumulate stress and amplify heat stress sensitivity. Whilst the increasing transition 235 

towards multifactor experiments over time has been central in identifying these interactions 236 

(e.g. Boyd et al. 2018), they still remain limited in scale to be meaningful. Notably, we are far 237 

from understanding at what point interactions amongst multiple factors transition from 238 

positive to negative outcomes, or indeed when they operate cumulatively or antagonistically, 239 

and hence the sophisticated dynamics needed to accurately predict – or indeed interpret – 240 

networked outcomes to complex environmental scenarios.  241 

Dose delivery in terms of magnitude is further regulated by time-dependency; 242 

specifically, how the dose response of any one factor accumulates (or dampens) over time. 243 

Lethal outcomes can be achieved through acute or chronic doses, but this outcome may hinge 244 

on very different mechanistic responses. The past 30 years of heat stress experiments to 245 

evaluate the bleaching process have employed heating protocols that transition a huge range 246 

of acute to chronic dosage – not all mimic development of DHW severity that occurs 247 

chronically over weeks to months in nature to drive mass bleaching (e.g. Ainsworth et al. 248 

2016, Hughes et al. 2017, McClanahan et al. 2019). Whilst acute heat stress assays have been 249 

central in generating a wealth of knowledge by which different coral species bleach (e.g. 250 
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Gardner et al. 2017, Biscéré et al. 2018) or different Symbiodiniaceae photoinactivate (e.g. 251 

Suggett et al. 2008, Roberty et al. 2014, Goyen et al. 2017), they preclude capacity for 252 

thermal acclimatization (Takahashi et al. 2013, Ainsworth et al. 2016), which in turn may be 253 

driven by availability of other resources. Therefore, it is still uncertain how well outcomes 254 

from acute heat stress assays accurately inform our capacity to interpret responses to chronic 255 

exposure – resolving such uncertainly is critical given that developing more synoptic views 256 

of bleaching susceptibility over space and time will inevitably need to rest on standard high-257 

throughput, and hence rapid and acute, field-based experimental assays (e.g. Morikawa & 258 

Palumbi 2019). Again, more sophisticated recent experiments that have altered the temporal 259 

history of thermal exposure, e.g. patterns by which DHWs build (Ainsworth et al. 2016) or 260 

introducing natural day-night temperature variance (Klein et al. 2019), have demonstrated 261 

important – often non-linear – time-based dependencies in the severity with which heat stress 262 

results in bleaching. Similarly, highly detailed assessment of thermal histories is now 263 

demonstrating how localized differences in bleaching severity may be fundamentally 264 

determined by pre-DHW warming (Ainsworth et al. 2016) or cooling (McClanahan et al. 265 

2019). 266 

Time-based regulation focusing on the specific ‘pulse’ stress (sensu Anthony et al. 267 

2015) of transient heat waves that drive bleaching, are of course relative to the background 268 

‘press’ stress of ocean warming that pushes corals closer to lethal thresholds. Models 269 

demonstrate that heat wave frequency and severity will grow with further ocean warming 270 

(Frölicher et al. 2018). This is likely also true for the regulatory factors, notably oxygen 271 

availability, where eutrophication events that drive hypoxia are occurring against the 272 

backdrop of ocean warming-driven deoxygenation (e.g. Altieri et al. 2017). Consequently, 273 

whilst environmental models describing reef trajectories are becoming increasingly 274 

sophisticated (e.g. Baird et al. 2018, Kumagai et al. 2018, Wolff et al. 2018, Ellis et al. in 275 



 13 

press), we now need to urgently develop these to account for how net bleaching outcomes 276 

reflect dose-dependencies within the entire environmental network (Fig. 2), and in turn the 277 

affect the inherent underlying metabolic network(s) (Fig. 1). This is no small task but central 278 

to guiding more informed management decisions and interventions based on what will 279 

bleach, where and when.  280 

 281 

Operationalizing management in the framework of bleaching-dependent networks 282 

Recent catastrophic loss of corals globally (Hughes et al. 2018, Eakin et al. 2019) has 283 

catalyzed the need to consider, and rapidly operationalize, novel management interventions 284 

(Anthony et al. 2015, 2017). Established practices largely employ marine protected areas 285 

(MPAs) and water quality management, but alone appear currently insufficient to offset 286 

climate change (e.g. Hughes et al. 2017). Reducing climate gas emissions is the core solution 287 

to stem catastrophic large-scale coral loss – thus, whilst climate change mitigation rests as the 288 

fundamental priority for current (not just reef) management directives, it does carry risks as a 289 

sole solution. Current IPCC Representative Concentration Pathway (RCP) scenarios are 290 

governed by the capacity for national-scale governance to implement emission reduction and 291 

mitigation strategies. Whilst the most optimistic strategies (RCP2.6) will limit further 292 

warming, heat wave frequency and global mean SSTs will persist elevated for decades 293 

(Frölicher et al. 2018). More pessimistic strategies (RCP4.5 and above) will drive further 294 

warming and heat wave frequency. Consequently, reefs will at best remain close to their 295 

thermal limits, and thus at risk from catastrophic heat wave events as well as other climatic 296 

and environmental factors that regulate heat stress sensitivity and bleaching outcomes (Fig. 297 

2), for at least decadal time frames (Frieler et al. 2013, Kwiatkowski et al. 2015, Beyer et al. 298 

2018). Without significant rates of thermal adaptation (see Donner et al. 2005, Logan et al. 299 

2014), even the most optimistic forecast therefore poses very real concerns for the short to 300 
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mid-term future of global reef health – hence more aggressive interventions have been 301 

proposed to at least “buy time” (Anthony et al. 2015), and indeed are in various states of 302 

trials worldwide (e.g. National Academies of Sciences, Engineering, and Medicine 2019). 303 

Whilst investing in such interventions has been argued to distract from tackling emissions 304 

reductions, nations are in fact left with little alternative than to adopt novel, immediate and 305 

aggressive reef management interventions, where they already have low emissions and 306 

significant reliance on marine protection (Wolff et al. 2015). 307 

 MPAs are undoubtedly essential for aiding the health of reef systems (see Darling et 308 

al. 2019), in particular from reducing fisheries pressure that perturb ecosystem states towards 309 

algal dominance that in turn places corals at greater risk from mortality or capacity to recruit 310 

(e.g. Steneck et al. 2018), to provide some “buffering” from extreme events (Roberts et al. 311 

2017). Coupled to this is effective regulation of land-derived nutrient balances entering reef 312 

systems that similarly promote algal growth and/or exacerbate sensitivity to heat induced 313 

bleaching (Fig. 2). For example, coastal nutrient discharge from the Everglades has 314 

contributed to the periods of bleaching on the Florida reef tract (Lapointe et al. 2019), and 315 

reduced nutrient subsidies from loss of seabirds around oceanic reefs has altered reef 316 

recovery trajectories post-bleaching (Benkwitt et al. 2019). Operationalizing management in 317 

the context of environmental networks that enhance (or potentially mitigate) bleaching is 318 

therefore essential for novel “land to reef” integrated approaches underpinning resilience-319 

based management (Deleveaux et al. 2018, McLeod et al. 2019). Whilst protection afforded 320 

to reefs by MPAs does not generally appear to reduce the impact of thermal anomalies (Selig 321 

et al. 2012), it can aid reef recovery (Mellin et al. 2016). With this in mind, management 322 

efforts and investment could prioritise reefs with greater resilience, focusing on corals with 323 

inherently greater stress tolerance (or recovery potential) or operate as climate change refugia 324 

(e.g. Beyer et al. 2018, Osman et al. 2018). However, in doing so, management (re-) 325 
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prioritisation must be careful that efforts to minimise exposure to one stressor does not 326 

increase exposure to another (see Bruno et al. 2018), returning us a central issue: how can 327 

MPA (re-) planning be effectively achieved without understanding the complex 328 

environmental network that governs bleaching susceptibility? Realising such a goal clearly 329 

rests on rapidly improving capacity to monitor reef environment condition, but also applying 330 

this data to more advanced network models that can track how changing reef environments 331 

(Fig. 2; see also, Ellis et al. in press) trigger alternate metabolic cascades and hence bleaching 332 

outcomes (Fig. 1) (Baird et al. 2018 Kumagai et al. 2018). 333 

 A huge canvas of more aggressive management interventions have been proposed for 334 

coral reefs (Anthony et al. 2017, van Oppen et al. 2017, National Academies of Sciences, 335 

Engineering, and Medicine 2019, and refences therein) – approaches range from mitigation 336 

of incident environmental stressors (e.g. reef cooling or shading, Couce et al. 2013, 337 

Kwaitkowski et al. 2015) to enhancing stress resistance (e.g. Chakravarti et al. 2017, Chan et 338 

al. 2018) and/or recovery (e.g. larval enhancement, dela Cruz & Harrison 2017; reef re-339 

colonisation via substrate stabilization, coral propagation and out-planting, Baums et al. 340 

2019, Boström-Einarsson et al. 2018). Many of these approaches are already in different 341 

stages of feasibility evaluation as to what could be successful, where and when (and at what 342 

scale), should they be needed. Importantly, whilst the most aggressive synthetic biology tools 343 

are seen as a ‘last option’ should all other climate gas emission reductions and reef 344 

management options fail, their lead-in time can take decades and hence equally time sensitive 345 

as those already in more advanced stages of development and application (Anthony et al. 346 

2017, van Oppen et al. 2017). Efforts to implement locally tailored (small scale) but cheap 347 

coral propagation and re-planting practices to supplement existing MPA-based management 348 

are accelerating globally (Boström-Einarsson et al. 2018). However, success of these various 349 

efforts – and hence accurate evaluation of feasibility – again rests on resolving what 350 
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environmental factors have contributed to the fitness of corals being used to re-build reefs: 351 

are the survivors more stress tolerant or simply “lucky” via refugia? (e.g. Camp et al. 2018b). 352 

Developing tools that can identify coral populations with enhanced stress tolerance (Baums et 353 

al. 2019, Morikawa & Palumbi 2019) or indeed the complex environmental networks that 354 

precondition enhanced survival (Camp et al. 2018a) are undoubtedly a priority. Using 355 

knowledge of site-specific differences in thermal histories has indeed proven central in the 356 

success of propagating coral populations more resistant to thermally induced bleaching 357 

(Morikawa & Palumbi 2019), but how this can further scale to include other factors 358 

moderating bleaching severity will require more advanced environmental assessment 359 

capability.  360 

Identification of ‘stress tolerance promoters’ as a central principle in guiding more 361 

aggressive intervention approaches – either for providing ‘diagnostics’ for targeted 362 

management decisions or for biological manipulation – is underpinned by resolving the 363 

metabolic network that drives bleaching susceptibility. In the case of thermal tolerance, how 364 

heat tolerance promoters (as per Fig. 1) are expressed is inevitably regulated by resource 365 

availability, and hence the specific cocktail of environmental factors and metabolic network 366 

(re-) organisation for any given time (e.g. Gardner et al. 2017, Wright et al. in press). A major 367 

limitation at present is therefore whether selection for enhanced tolerance promotors to any 368 

one stressor (e.g. heat) also gains a competitive advantage for any other environmental 369 

(metabolic network) combinations. For example, hosting heat tolerant Symbiodiniaceae 370 

strains can enhance bleaching tolerance (e.g. Howells et al. 2016, Hoadley et al. 2019), but 371 

may not necessarily support fitness under environmental ‘norms’ (Ortiz et al. 2013). The 372 

fundamental unknowns of – and predictive outcomes from – ‘fitness trade-offs’ has been 373 

tackled in other fields by moving to metabolic pathway analysis (“fluxomics”) (e.g. Beckers 374 

et al. 2016, Salon et al. 2017), based on knowledge of the entire biological system of the 375 
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organism of interest, to predict an integrated functional response to changing environments – 376 

or in the case of synthetic biology, to a manipulated gene or set of genes of interest. 377 

Transitioning to a systems-level scale of bleaching outcomes as a dynamic networked 378 

response has been catalyzed by recent transformations in genomic (Levin et al. 2016, 379 

Traylor-Knowles et al. 2017, Ziegler et al. 2017, Chan et al. 2018, Aguilar at el. 2019), and 380 

even more recently metabolomic (Matthews et al. 2018), capability in corals and coral-381 

associated microbes (reviewed in Cziesielski et al. 2019). Even so, we are far from 382 

developing the system-wide understanding needed to develop metabolic pathway analysis. 383 

Rapidly addressing this lack of capacity seems obvious, if not essential, to better inform 384 

efforts attempting to enhance coral tolerance to complex environmental scenarios. Similarly, 385 

to aid development of more sophisticated diagnostics that may ultimately require a repertoire 386 

of variables be quantified simultaneously. Whilst we currently have the scaffold for 387 

conceptual maps underpinning bleaching susceptibility (Figs. 1, 2), we urgently need to 388 

translate these to operational maps governing bleaching outcomes. 389 

 390 

Conclusion 391 

Mass coral bleaching has driven catastrophic loss of coral cover and ecosystem service 392 

provision from coral reefs worldwide. Three decades of intensive global research into coral 393 

bleaching processes and patterns has been essential in gaining critical mass to identify the 394 

many constituents governing bleaching susceptibility over space and time. Immense 395 

knowledge gains have identified how bleaching manifests from the operation of few 396 

environmental stressors at any one time, highlighting how bleaching outcomes will inevitably 397 

stem as the net outcome of complex multifactor networks operating at organism (cellular) and 398 

ecosystem (environmental) scales. However, despite the time-sensitive nature of managing 399 

against further bleaching-induced coral loss, we are far from operationalizing our current 400 
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knowledge base into rapidly evolving ecological management and social adaptation 401 

frameworks aimed at securing the future of coral reefs. To achieve this goal, it is critical that 402 

we rapidly invest in developing tools that can fully describe – and predict – metabolic 403 

dysfunction of coral holobionts, and how this is regulated by complex dosage amongst 404 

multiple environmental factors. In doing so, that we use the knowledge gaps currently 405 

limiting adoption of these tools to govern and prioritise our next phase of experiments and 406 

observations. Whilst the research community has recently coalesced to develop more unified 407 

efforts for what/how to report and measure (Coral Bleaching Research Collaborative 408 

Network) and so overcome knowledge patchiness, aligning this capability alongside models 409 

and applications that can integrate biological and environmental networking will be critical to 410 

more effectively diagnose, and hence treat, the global acceleration of coral bleaching.    411 
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Figure Legends 

 

Figure 1. Conceptual coral biological network regulation of the “ROS (RN) reservoir”. Key 

components comprising the coral holobiont – the coral host, Symbiodiniaceae and wider 

microbiome (notably bacteria) – all contribute to ROS (RN) production. Whilst net 

production is locally restricted to each component, the potential for crosstalk by highly 

reactive ROS (RN) results in an effective pool. Each component regulates this pool via their 

own metabolism sustaining signaling activities for cellular homeostasis and pathogen 

protection (immunity). However, under perturbations that drive suboptimum environmental 

exposure, or restricted resource availability, this pool accumulates beyond the capacity for 

homeostasis requiring up-regulation of tolerance promoters to reduce this pool size (dashed 

open arrows) or otherwise sites are targeted (solid arrows) that result in metabolic 

dysfunction and/or cellular consistent degradation. Triggers begin with environmentally 

driven metabolic cues (*enzyme slow-down, e.g. Rubisco, and changing ion channel 

functioning in elemental homeostasis, e.g. Ca2+). The inter-play between tolerance promoters 

versus dysfunction determine whether ROS (RN) accumulation proceeds via internal positive 

or negative feedbacks. The past thirty years of coral-bleaching based research has identified a 

large number of tolerance promoters and/or sites targeted; notably in the Symbiodiniaceae 

(reviewed in Warner & Suggett 2016), antennae “superquenching”, alternative electron flows 

(AEF), photosystem II reaction centre (D1) repair, heat shock proteins (HSP) and carbon 

anhydrases (CA), Calvin Cycle (CC) functioning, various antioxidants (including DMSP, 

superoxide dismutases (SODs) and alternative oxidases (AOXs) and peroxidases) and 

ultimately programmed cell death (PCD). Host systems express several of the same, as well 

as additional, constituents (see main text) including electron consumers (CoQ) and 

chromophores, and factors such as HIF (Hypoxia Inducible Factor). Evidence is largely 
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derived from highly targeted reductionist studies to provide the scaffold for this conceptual 

network. However, systems-based metabolic maps will be required to fully establish network 

wiring and functioning and how it determines bleaching outcomes.    

 

Figure 2. Conceptual environmental network regulating coral optimum metabolic 

performance – and hence coral bleaching phenotypes. Whilst high temperatures are the 

primary cause of mass bleaching, other environmental factors that are central to coral 

metabolic optimization – notably availability of light, O2 (and so Biological Oxygen 

Demand, BOD), CO2, salinity and (organic and inorganic) nutrient availability – can either 

induce bleaching in their own right, but also interact with other factors to regulate the net 

bleaching outcome (extent or severity) – see main text. Importantly, research from the last 

thirsty years has shown that all of these factors regulate the severity with which heat stress 

drives mass bleaching outcomes. For example, some of these factors can cause dampening 

(e.g. cyclone cooling, reduced light) or exacerbate (low salinity, high light) heat stress. Most 

factors – and hence the effect size – likely operate non-linearly such that they may in fact 

provide enhanced tolerance under low dose, but susceptibility under higher dose (e.g. 

nutrients, see main text). Currently evaluating how bleaching outcomes reflect the operation 

of this entire network is limited by lack of environmental data to dial in-or-out factors but 

also their relative dose-dependencies over time. Some factors are exclusively driven by 

broad-scale climate change (warming, acidification), some by local-scale industry agriculture 

and urbanization (e.g. eutrophication, “pollutants” such as *mining waste, herbicides etc.), 

and some by both climate change and local impacts (e.g. deoxygenation). Reducing 

emissions that drive climate change is the primary solution to tackling heat stress-induced 

bleaching, but clearly social adaptation and mitigation programs that tackle factors inherent 



 39 

to both climate change and local impacts are also likely to have a strong effect in reducing 

bleaching severity over time.  
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