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Quantum Circuit Transformation Based on
Simulated Annealing and Heuristic Search

Xiangzhen Zhou, Sanjiang Li, and Yuan Feng

Abstract—Quantum algorithm design usually assumes access
to a perfect quantum computer with ideal properties like full
connectivity, noise-freedom and arbitrarily long coherence time.
In Noisy Intermediate-Scale Quantum (NISQ) devices, however,
the number of qubits is highly limited and quantum operation
error and qubit coherence are not negligible. Besides, the con-
nectivity of physical qubits in a quantum processing unit (QPU)
is also strictly constrained. Thereby, additional operations like
SWAP gates have to be inserted to satisfy this constraint while
preserving the functionality of the original circuit. This process
is known as quantum circuit transformation. Adding additional
gates will increase both the size and depth of a quantum circuit
and therefore cause further decay of the performance of a
quantum circuit. Thus it is crucial to minimize the number of
added gates. In this paper, we propose an efficient method to
solve this problem. We first choose by using simulated annealing
an initial mapping which fits well with the input circuit and
then, with the help of a heuristic cost function, stepwise apply
the best selected SWAP gates until all quantum gates in the
circuit can be executed. Our algorithm runs in time polynomial
in all parameters including the size and the qubit number of
the input circuit, and the qubit number in the QPU. Its space
complexity is quadratic to the number of edges in the QPU.
Experimental results on extensive realistic circuits confirm that
the proposed method is efficient and the number of added gates
of our algorithm is, on average, only 57% of that of state-of-
the-art algorithms on IBM Q20 (Tokyo), the most recent IBM
quantum device.

Index Terms—NISQ, quantum circuit transformation, qubit
mapping, qubit allocation, qubit routing, quantum processing
unit

I. INTRODUCTION

IN Noisy Intermediate-Scale Quantum (NISQ) era, it is
unrealistic to implement quantum error correction due to

the strictly limited number of qubits [1]. This drawback brings
huge challenge to quantum program compilation because the
noise will have large impact on final circuits and may often
make the results meaningless. Besides, the connectivity of
qubits in an NISQ device is also limited. Only those neigh-
bouring qubits can be coupled and only between them can
two-qubit operations be implemented [2]. As a result, a large
number of modifications must be done to adapt a quantum
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circuit to the real quantum devices. This process is termed as
quantum circuit transformation [3], qubit mapping [4], qubit
allocation [5], qubit routing [6] or qubit movement [7] in the
literature. We call it quantum circuit transformation in this
paper.

Quantum circuit transformation is an essential part for
quantum circuit compilation. The main idea behind is to
convert an ideal quantum circuit, in which full connectivity
among qubits is assumed and noise is ignored, to a quantum
circuit respecting constraints imposed by the NISQ devices [3].
Usually this process will bring in a large number of auxiliary
gates like SWAP gates and Hadamard gates which will in turn
increase both the size and depth of the generated quantum
circuit and sometimes make the error of the whole circuit
unacceptable [2]. Hence, it is vital for the success of quantum
computation to find an automated approach that can efficiently
transform any input quantum circuit into one that respects the
physical constraints imposed by the NISQ devices with a small
overhead in terms of the size, depth or error. The aim of this
paper is to provide an efficient method to reduce the number
of added gates required for quantum circuit transformation.
Interested readers are referred to [8] and [9], [7], [10] for
works aiming to minimize depth and, respectively, error.

The quantum circuit transformation problem can be reduced
to token swapping or template matching in graph theory [11],
[12]. Unfortunately, both of these problems are NP-complete
[3]. Hence, designing algorithms to solve the quantum circuit
transformation problem while making trade off between time
consuming and the quality of results has brought lots of
interest in both the quantum computing community and the
integrated circuits community [2].

There are currently three major approaches to the quantum
circuit transformation problem. The first one is to use heuristic
search to construct the output quantum circuit step by step
from the original input quantum circuit [4], [6], [13], [5], [14].
Usually, these search algorithms need an initial mapping as
the input, and it can be set arbitrarily or via some greedy
methods [13], [6], [15]. Recently, a novel reverse traversal
technique is proposed in [4] to choose the initial mapping
with the consideration of the whole circuit. The second ap-
proach is to utilize unitary matrix decomposition algorithms
to reconstruct a quantum circuit from scratch while preserving
the functionality of the input circuit [16], [17]. The third one is
to convert the quantum circuit transformation problem to some
existing problems like AI planning [18], [19], Integer Linear
Programming (ILP) [20], and Satisfiability Modulo Theory
(SMT) [21], [7] and use ready-made tools for these problems
to find acceptable results.
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Fig. 1. Hadamard, CNOT and SWAP gate (from left to right).

In this paper, we follows the first approach. Our main
contributions are listed as follows. First, we propose a sim-
ulated annealing based algorithm to find a near-optimal initial
mapping for the input circuit. Second, we design a flexible
heuristic cost function to evaluate the possible operations that
may be applied to transform the current circuit. The heuristic
function supports weight parameters to reflect the variable
influence of gates in different layers. Third, a heuristic search
algorithm with a novel selection mechanism is designed, where
in each step of the search process, instead of selecting the
operation with minimum cost to apply, we look one step
ahead and select the operation which has the best consecutive
operation to apply. In this way, the algorithm is able to avoid
the local minimum effectively. Fourth, a pruning mechanism
is introduced to reduce the size of search space and ensure the
program terminates in reasonable time.

Note that the look-ahead mechanism has already been
introduced in the heuristic cost function during the search
process in existing works like [13], [4]. In [15], Cowtan et
al. introduced another look-ahead mechanism for selecting
the best SWAP for transforming CNOT gates in the current
front layer. In this paper, we adopt a ‘double’ look-ahead
mechanism: in addition to looking ahead at subsequent layers
when defining the cost function, we also look ahead (at grand-
child states) in finding the state with minimal cost in order
to make the best transformation. Thanks to this novel idea,
the proposed algorithm is able to find a better solution with
less circuit size within acceptable running time. Experimental
results on extensive realistic circuits show that our algorithm
is efficient and the number of added gates of our algorithm on
IBM Q20 (IBM QX5, resp.) is, on average, only 43% and 57%
(87% and 90%, resp.) of that of the state-of-the-art algorithms
in [4] and [15] ([13] and [15], resp.)

The remainder of this paper is organized as follows: some
background knowledge about quantum computation is given
in Section II, and the quantum circuit transformation problem
is formally defined in Section III. Section IV is devoted to
the detailed description of our proposed algorithm. We report
experimental results in Section V and conclude the paper in
Section VI.

II. BACKGROUND

In classical computation, information is stored in memory
in the form of binary digits, i.e., bits. The quantum counterpart
of bit, called qubit, has two basis states denoted by |0〉 and
|1〉, respectively. Different from a classical bit, a qubit |ψ〉 can
be in a linear combination of basis states [22], i.e.,

|ψ〉 = α |0〉+ β |1〉 (1)

where |α|2 + |β|2 = 1. Information processing or computation
is realized by applying quantum gates on qubits. Typical gates
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Fig. 2. Two architecture graphs for IBM QX architecture.

which we are concerned with in this paper are Hadamard gate
H, CNOT gate and SWAP gate, depicted in Fig. 1. H is a
single-qubit gate which can evenly mix the basis states to
produce a superposed one. CNOT and SWAP are both two-
qubit gates, i.e., they operate on two qubits. A CNOT gate flips
the target qubit (indicated graphically with ⊕) if and only if
the control qubit (indicated graphically with a black dot •) is
in state |1〉, while a SWAP gate exchanges the states of the
two qubits operated.

Quantum circuits are the most commonly used model to
describe quantum algorithms, which consist of input qubits,
quantum gates, measurements and classical registers [23].
However, as far as quantum circuit transformation is con-
cerned, only input qubits and quantum gates are relevant. Thus
in this paper, a quantum circuit is simply represented as a pair
(Q,C), where Q is the set of involved qubits and C a sequence
of quantum gates. For a generic quantum circuit to be executed
in a real quantum processing unit (QPU), two more steps have
to be taken:
• Compilation process. As only limited quantum operations

are available in a QPU, quantum gates in the circuit
must be decomposed into elementary gates first [24],
[25]. In this paper, we take single-qubit and CNOT gates
as elementary gates as they are universal to implement
any quantum circuit and supported by, say, IBM QX
architectures.

• Transformation process. Qubits in a real QPU are typi-
cally laid out in a fixed topology and CNOT gates can
only be applied on neighbouring qubits. Such a connec-
tivity topology can be described by an architecture graph
or coupling graph [3] which is a directed graph with each
node representing a qubit in the QPU. A quantum circuit
consisting of only single-qubit and CNOT gates is said
to respect the QPU constraint if for every CNOT gate in
the circuit, there is a directed edge in the architecture
graph from the control qubit to the target qubit. The
transformation process is then to convert a quantum
circuit (say, those obtained from the above compilation
process) into one that respects the QPU constraint so that
it can be executed on the QPU.

In this paper, we only focus on the transformation process.
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Fig. 3. Some gate decomposition and transformation rules.

The QPU topologies we are concerned with are IBM QX
architectures QX5 and Q20 shown in Fig. 2, but our approach
is applicable to any architecture graph, including for example
Rigetti 16Q Aspen-41. Notice that edges in IBM Q20 are
bidirectional (or, undirected) and thus either node of each edge
can be the control qubit of a CNOT gate. Depicted in Fig. 3 are
several gate transformation rules which are quite useful in gate
decomposition and circuit transformation. The top equivalence
shows that we can exchange the control and target qubits of
a CNOT by adding two Hadamard gates before and after it,
while the bottom ones show different ways of implementing
a SWAP gate in QX structures.

To simplify the presentation, we distinguish between two
kinds of quantum circuits in this paper. Logical circuits are
ideal and high-level gate descriptions of quantum algorithms
without considering any physical constraints imposed by
QPUs. In contrast, physical quantum circuits are low-level
gate-model implementation which respect the QPU concerned.
The purpose of the circuit transformation process mentioned
above is then to convert a logical circuit to a physical one.
Accordingly, qubits appearing in logical circuits are called
logical qubits while those appearing in physical circuits are
called physical ones. We note here that the terms logical
circuits and logical qubits are also used in a different area,
namely, quantum error correction [26].

III. QUANTUM CIRCUIT TRANSFORMATION

The main objective of quantum circuit transformation is to
transform an input logical circuit to a physical one so that
the constraints imposed by the QPU are satisfied. To simplify
the problem, we only consider the connectivity constraints
for CNOT gates as specified by the architecture graph (see
Section II). This means that single-qubit gates have no effect
in the circuit transformation process, and we assume without
loss of generality that the input logical circuit consists only of
CNOT gates. Furthermore, a CNOT gate is simply denoted as
a pair 〈q, q′〉, where q is the control qubit and q′ is the target
qubit. We call the CNOT gate 〈q′, q〉 the inverse of 〈q, q′〉.

Let AG = (V,E) be the architecture graph of a QPU, where
V is the set of physical qubits and E the set of directed edges
along which CNOT gates can be performed. Given a logical
circuit LC = (Q,Cl) with |Q| ≤ |V |, we need to construct a
physical circuit PC = (V,Cp) such that
• LC and PC are equivalent in functionality.
• Cp only contains CNOT gates and single qubit gates.
• For any CNOT gate 〈q, q′〉 in Cp, (q, q′) ∈ E.

1https://www.rigetti.com/qpu
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Fig. 4. On the left is an example for logical quantum circuit with only CNOT
gates and right DAG representing dependency order of the left circuit.

It is easy to find a physical circuit that satisfies the above
conditions, but the real challenge is to find one with minimal
size or depth, which is NP-complete in general [27], [5]. In this
paper, we modify the input logical circuit stepwise by inserting
auxiliary gates like CNOT and H, as shown in Fig. 1, until
the logical circuit is transformed into a physical circuit that
can be executed on the QPU. To evaluate the effectiveness of
quantum circuit transformation algorithms, we use the sizes
of the output circuits, i.e., the total number of its elementary
gates.

A. Dependency Graph

CNOT gates in a logic circuit LC = (Q,Cl) are not
independent. We say a CNOT gate 〈q, q′〉 depends on another
〈p, p′〉 if the latter must be executed before the former. This
happens when 〈p, p′〉 is in front of 〈q, q′〉 in Cl and they share
a common qubit, or when 〈q, q′〉 depends on a CNOT gate
which depends on 〈p, p′〉.

In general, we can construct a directed acyclic graph (DAG),
called the dependency graph [28], to characterize the depen-
dency between gates in a logical circuit LC [4]. Each node
of the dependency graph represents a gate and each directed
edge the dependency relationship from one gate to another.
The front layer of LC, denoted F(LC) or L0(LC), consists
of all gates in LC which have no parents in the dependency
graph. The second layer L1(LC) is then the front layer of
the circuit obtained from LC by deleting all gates in F(LC).
Analogously, we can define the k-th layer Lk(LC) of LC for
all k ≥ 0. Consider the circuit shown in Fig. 4 as an example.
Initially, gates g0 and g1 can be applied in parallel because
there are no gates before them and they are independent from
each other. Thus F(LC) = {g0, g1}. Then, gate g2 can be
executed after g0, g3 after g2 and g0, and g4 after g3 and g1.
Thus L1(LC) = {g2}, L2(LC) = {g3}, and L3(LC) = {g4}.

B. Qubit Mapping

At each step of the circuit transformation, qubits in the
logical circuit are mapped or allocated to physical qubits in
the QPU [5]. Mathematically, a qubit mapping is a function τ
from Q to V such that τ(q) = τ(q′) if and only if q = q′

[3]. The mapping may change at consecutive steps of the
transformation which is determined by the inserted auxiliary
gates.
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Given a logical circuit LC and a mapping τ , a CNOT gate
g = 〈q, q′〉 in LC is said to be satisfied by τ , or τ satisfies
g, if (τ(q), τ(q′)) is a directed edge in AG. Furthermore, g is
executable by τ if it appears in the front layer of LC and is
satisfied by τ . In this case, we remove it from LC and append
a CNOT gate τ(g) := 〈τ(q), τ(q′)〉 to the end of the physical
circuit. This process is called the execution of g.

IV. THE PROPOSED ALGORITHM

In this section, details of the proposed algorithm will be
explained step by step. Let AG = (V,E) be the architecture
graph and LC = (Q,Cl) the input logic circuit consisting only
CNOT gates. The goal of the algorithm is to try to minimize
the size, i.e., the total number of elementary gates, of the
output physical circuit.

We first generate an initial mapping τini by using simulated
annealing (Algorithm 1), and then stepwise construct the out-
put physical circuit by adding auxiliary CNOT or Hadamard
gates while processing gates in the input logic circuit. The
state of each step is described by a mapping τ ′ from logic
qubits in Q to physical qubits in V , the currently constructed
physical circuit PC ′ which obeys the constraints imposed
by AG, and the logic circuit LC ′ with gates that have not
been processed. A cost function which assigns decreasing
weights to gates in later layers is used to select the state
of the next step. Note that the above procedure is standard
for circuit transformation, and has been adopted in [13]. Our
algorithm distinguishes itself from the previous ones in the
ways of choosing the initial mapping (Sec IV-B), the definition
of the cost function, and the strategy of updating step states
(Sec IV-C).

A. CNOT Distance

In graph theory, the distance from a source node v to a
destination node v′ in a directed graph G, written distG(v, v′),
is the minimal number of edges needed to traverse from v to v′.
Suppose AG is the architecture graph of the QPU we consider.
We define the CNOT distance from v to v′ in AG, written
distcnot(v, v′), as the minimal number of auxiliary CNOT and
Hadamard gates required to execute the CNOT gate 〈v, v′〉
in the QPU. Here ‘execute’ is in the same sense as we have
described in Section III-B. To execute 〈v, v′〉, we need to bring
the two qubits v and v′ close to each other by swapping and
then, when they are neighbours in AG, we further check if the
direction is from v to v′ or vice versa.

For bi-directed (or, undirected) architecture graph such
as that of Q20, we need only to bring v close to v′ or
vice versa, and the CNOT distance is simply computed as
distcnot(v, v′) = 3 × (distAG(v, v′) − 1). This is because
only distAG(v, v′) − 1 swaps are required and each SWAP
requires only 3 CNOT gates to implement (see Fig. 3 (top)).
For directed architecture graph such as that of QX5, the
situation is a little complicated, where we also need to con-
sider the direction of the CNOT gates. We first compute all
shortest paths from v to v′ (ignoring the directions). Suppose
d = distAG(v, v′). If there is an undirected shortest path
π = 〈v0 ≡ v, v1, ..., vd ≡ v′〉 in which (vi, vi+1) is a directed

edge in QX5 for some i, then the CNOT distance is computed
as distcnot(v, v′) = 7 × (d − 1), because a SWAP gate is
decomposed into 7 elementary gates (see Fig. 3 (bottom)).
Otherwise, we have distcnot(v, v′) = 7 × (d − 1) + 4, as we
need to add 2 Hadamard gates before and after to change the
direction of the target CNOT [13].

Take QX5 as an example. Suppose the logic qubits q and q′

are mapped to v3 and v1, which correspond to nodes 3 and 1 in
Fig. 2, respectively, and we want to implement the CNOT gate
〈q, q′〉, with q the control qubit and q′ the target qubit. One
solution is to add a SWAP gate between qubit v1 and v2 to
bring q one step close to q′, and a CNOT gate between v2 and
v3 together with 4 additional Hadamard gates (cf. Figure 3)
to change the direction of the CNOT gate. Because a SWAP
gate can be decomposed into 7 elementary gates complying
with the directions in QX5, the CNOT distance from v3 to v1
in QX5 is 11.

For simplicity, in out algorithm we precompute the CNOT
distance for all node pairs in AG by using, say, a breadth-first
search algorithm.

B. Initial Mapping

For several state-of-the-art algorithms [6], [4], [13], the
selection of a good initial mapping has a significant impact
on the quality of the final physical circuit. Motivated by this
observation, our algorithm intends to find an initial mapping
that ‘fits’ most gates such that fewer SWAP gates are required
in the circuit transformation process.

To this end, we define the gate cost of a CNOT gate g =
〈q, q′〉 under a mapping τ : Q→ V as

costgate(g, τ) = distcnot(τ(q), τ(q′)). (2)

Our ideal initial mapping τ∗ini is then given by

τ∗ini = arg min
τ

 ∑
g∈C∗

costgate(g, τ)

 (3)

where C∗ is a selected subset of the logical circuit LC. Here
we use C∗ instead of Cl to calculate the initial mapping. This
is because taking into account all gates in Cl would bring
further overhead and be unnecessary because gates in the tail
of the circuit would have little impact on the initial mapping.

Simulated annealing (SA), inspired by the annealing process
in metallurgy [29], is designed for approximating the global
optimum of a given cost function. The algorithm tries to find
the best state in the search space. In each trial for searching
a better state, the algorithm generates a new state based on
the previous one, calculates its cost and compares it with the
previous one and decides whether this new state should be
accepted. To escape from local optima, the algorithm accepts
the new generated state with a certain probability even if its
cost is worse than the previous one. The acceptance probability
is decided by the current temperature which declines during
the search process until the minimum value is reached.

We propose an efficient simulated annealing based algo-
rithm (Algorithm 1) to find a good approximation of τ∗ini,
where Tmax, Tmin, ∆ and R are, respectively, the starting
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Fig. 5. Convergence of the simulated annealing algorithm on circuit adr4-197
and IBM Q20, where the blue and orange lines represent the cost of accepted
states and existing best states, respectively. We set empirically Tmax = 100,
Tmin = 1, ∆ = 0.98, R = 100 and C∗ the first half of gates in the logical
circuit.

temperature, the minimum temperature, the decline coefficient
for the temperature and the repeated times for one temperature.
Fig. 5 shows convergence of the simulated annealing process
on a real quantum circuit adr4-197. Note that the cost of
states converges after sufficient iterations, showing that the
temperature is low enough. The fluctuation of the cost of
accepted states is caused by the above mentioned acceptance
probability for worse states.

In the following two subsections, we describe in detail how
to generate all possible child and grandchild states and how
the cost of a child or grandchild state is calculated. We will
illustrate the construction by using the quantum circuit shown
in Fig. 6 and the test architecture graph AGtest in Fig. 7.

C. Heuristic search with look-ahead

We have shown in the previous section how to construct the
initial mapping τini for our circuit transformation algorithm,
thus obtaining the state s0 := (τini, PC0, LC0) for the first
step, where PC0 and LC0 are respectively the physical and
logic circuits after executing all gates in LC which are exe-
cutable in τini. Suppose we are in state si := (τi, PCi, LCi)
at the i-th step for i ≥ 0. This section is devoted to the
strategy of choosing si+1 for the i + 1-th step. Obviously,
depending on the different ways of adding auxiliary CNOT
and H gates, there are multiple child states of si to choose
from. One natural way is to select the one with the minimal
cost. This surely gives a fine method for extending si, but (as
shown in Fig. 10) the sizes of the output physical circuits are
not always desirable. In this paper, we propose a novel way to
select the next state: we look one level ahead to calculate the
costs of all grandchild states of si, and choose the child of si

which has a child (thus a grandchild of si) with the minimum
cost among all grandchildren of si.

To this end, we have to specify for a given state si :=
(τi, PCi, LCi), (1) how to extend si to get all its children
and grandchildren, and (2) how to define the costs of its
grandchildren. We are going to elaborate these two points one
by one in the following.

Algorithm 1: Simulated annealing for computing the
initial mapping
input : A set C∗ for considered gates in a logical

quantum circuit.
output: An approximation of the optimal initial

mapping given in Eq.(3).
begin

Initialize parameters Tmax, Tmin, ∆, R, and an
arbitrary mapping τ ;
T ← Tmax, bcost←∞, cost←∞;
while T ≥ Tmin do

i← 1;
while i ≤ R do

i← i+ 1;
Change mapping τ randomly to generate a
new mapping τnew;
ncost =

∑
g∈C∗ costgate (g, τnew);

if ncost < bcost then
bcost← ncost;
τini ← τnew;

end
if ncost < cost then

cost← ncost;
τ ← τnew;

else
cost← ncost and τ ← τnew with prob.
exp( cost−ncostT );

end
end
T ← ∆× T ;

end
return τini

end

Extend si. There are two natural ways to extend si.

• Way 1: Apply on τi a swap operation represented as an
edge in AG one of whose end nodes is the image under
τi of some qubit appearing in a gate in the front layer
of LCi, and obtain a new mapping τ ′i . Accordingly, we
extend PCi with the CNOT + H implementation of the
SWAP gate corresponding to this swap operation. Then
we execute recursively all gates in LCi (not only those
in the front layer, but also those executable when their
precedents have already been executed by τ ′i ) which are
executable in τ ′i . The resultant state is then a child of si.

• Way 2 only applies when AG is directed and there is
a CNOT gate 〈q, q′〉 in the front layer of LCi which
is inversely executable, i.e. its inverse gate 〈q′, q〉 is
executable, in τi. In this case, we add 4 Hadamard gates to
change the direction of 〈q, q′〉 (cf. Figure 3 (top)), extend
PCi with all these 5 gates, and delete 〈q, q′〉 from LCi.
Again, we execute recursively all gates in LCi which are
executable in τi to get a child of si.

Finally, for each child of si, we extend one level further
to get its grandchildren. We denote by {sij : j ∈ J} and
{sij,k : j ∈ J, k ∈ K} the set of children and grandchildren of
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si, respectively.

Example 1. We consider the quantum circuit shown in Fig. 6
and the test architecture graph AGtest in Fig. 7. Applying
Alg. 1 we get the initial mapping τini : Q → V which maps
qi to vi for each 0 ≤ i ≤ 4. For convenience, we write such a
mapping as a list of length 5. For example, τini = [0, 1, 2, 3, 4].
Note that the front layer contains two gates, viz., 〈q2, q1〉 and
〈q3, q4〉. As the latter is directly executable by τini, the initial
state s = (τini, PC0 := {〈q3, q4〉}, LC0 := LC\{〈q3, q4〉}),
where LC is the circuit shown in Fig. 6.

We next show how to construct the child states of s. Note
that there is only one gate, viz. 〈q2, q1〉, in the first layer of
LC0, and τini maps q1 and q2 to, respectively, v1 and v2. Only
4 edges, (1, 0), (1, 2), (2, 3) and (5, 2), in AGtest (see Fig. 7)
are relevant. For each of them, we obtain a corresponding
swap operation and a corresponding child state. Since AGtest

is directed and τini can execute 〈q1, q2〉, another child state
can be obtained by using Way 2. Therefore, s has in total
5 child states and Table I gives the mappings and physical
circuits of these child states as well as the corresponding
operations. Similarly, we also construct the grandchild states
of s, also shown in Table I. Here in the ‘Operation’ column,
we use an edge in AGtest to denote the corresponding swap
operation on mappings, and a CNOT gate to denote the
operation of changing its direction.

Evaluate the grandchildren of si. The cost of a grandchild
sij,k of si consists of two parts: the first part, costg(sij,k), is the
number of auxiliary CNOT and Hadamard gates added during
the evolution from si to sij,k, and the second part, costh(sij,k),
is an estimated cost for completing the remaining gates in the
logic circuit of sij,k.

The first part depends on the different ways of extending
si and sij to obtain sij,k. If AG is undirected, then only Way
1 is available for the extensions and 3 CNOT gates suffice
to implement the required swap operation on the mapping.
Thus costg(sij,k) = 6. Otherwise, 7 gates (3 CNOTs and
4 Hadamard shown in Fig. 3) for Way 1 and 4 Hadamard
for Way 2 are needed. Thus costg(sij,k) can be 14, 11, or 8.
Consider the state s in Example 1. From Table I we can see
that each grandchild state of s has costg 14 or 11.

For the second part of the cost, we employ a look-ahead
mechanism first demonstrated in [4]. Given a generic state
s = (τs, PCs, LCs), we partition the gates in LCs into
different layers according to its dependency graph. Denote by
Lk, k ≥ 0, these layers such that L0 is the front layer. Then
the heuristically estimated cost of s is defined as

costh(s) =
∑̀
k=0

wk

∑
g∈Lk

costgate(g, τs)


+ ws × (d− 1)×Nswap ×Ns

, (4)

where d is the diameter of the architecture graph, Nswap the
number of elementary gates needed to compose a SWAP gate,
and Ns is the number of gates in LCs. The parameters ` > 0,
wk (0 ≤ k ≤ `) and ws are taken empirically but normally
we assume 1 = w0 ≥ w1 ≥ · · · ≥ wl ≥ ws ≥ 0. This
reflects the intuition that the closer a gate is from the front

layer of the circuit, the more it contributes to the total cost
of executing the whole circuit, as subsequent dependent gates
will not be executable unless it has been processed. Table I
gives the heuristic costs for all child and grandchild states of
s in Example 1, where we take ` = 3, w1 = 1, w2 = 0.8,
w3 = 0.6, ws = 0.4. Note that the diameter of QX5 is 8 and
each SWAP gate is composed by 7 elementary gates in QX5.
Thus d = 8 and Nswap = 7.

Finally, the total cost of a grandchild sij,k of si is computed
as

cost(sij,k) = costg(sij,k) + costh(sij,k). (5)

Suppose sij∗,k∗ is a grandchild state with the minimum cost.
Then sij∗ is selected as the state for the i+ 1-th step; that is,
we let si+1 = sij∗ . For the state s in Example 1, we can see
from Table I that s1,2 is the grandchild state with minimum
cost. Thus we select its parent s1 as our next state. Note that
s1 happens to be the child state which also has the minimum
cost among all child states of s. In general, this coincidence
does not hold. The whole algorithm for circuit transformation
is shown in Algorithm 2.

D. Fallback via remote CNOT

During the search process, there is a small possibility that
our algorithm does not halt. This happens when a child state
with better cost may be good for gates in look-ahead layers but
increases the distances of gates in the front layer. To address
this problem, a fallback mechanism is introduced to ensure
that the program terminates in reasonable time.

A direct way for fallback is to select a gate 〈q, q′〉 in the
front layer and then choose a SWAP operation that will reduce
the shortest path between the two corresponding nodes v, v′

with τs(q) = v and τs(q′) = v′ in the architecture graph [3],
where s denotes the current state. However, this method may
change the mapping that the algorithm may want to keep as
it is preferred by look-ahead layers. To protect the preferred
mapping, remote CNOT operations [9], which are depicted in
Fig. 8, are introduced in the fallback. After imposing remote
CNOT gates, the circuit has the same functionality while
preserving the current mapping. The fallback is activated when
no gates are removed from LCs after a certain prefixed number
of rounds.

E. Complexity of the Search Process

In each layer, there are at most |Q|/2 gates, where Q is
the set of qubits in the input logic circuit. Thus, the time
complexity of computing the cost (cf. Eq.(5)) of any state is
O(` · |Q|), where ` is the prefixed small number of layers we
select for Eq.(4). For our evaluation (see Section V), we take
` = 3 for all circuits.

By construction, each state s has at most |E|+ |Q|/2 child
states, where E is the set of edges in the architecture graph,
or, equivalently, the number of possible SWAP operations that
can be added to the circuit and |Q|/2 is the number of CNOT
gates in the front layer of the current logic circuit that can be
applied by adding four extra Hadamard gates to change the
direction.



7

q0 : |0

q1 : |0

q2 : |0

q3 : |0

q4 : |0

c0 :  0 

c1 :  0 

c2 :  0 

c3 :  0 

c4 :  0 

Fig. 6. The quantum circuit alu-v0 27 with all single qubit gates removed.

TABLE I
THE CHILD AND GRANDCHILD STATES OF A STATE IN EXAMPLE 1.

Child State Mapping Newly added gates in PCs Operation costg costh
s0 [1,0,2,3,4] {0←−→1} (1,0) 7 208.2
s1 [1,0,2,3,4] {1←−→2, 〈1, 2〉, 〈2, 3〉, 〈1, 2〉} (1,2) 7 167.2
s2 [0,1,3,2,4] {2←−→3} (2,3) 7 199.0
s3 [0,1,5,3,4] {5←−→2} (5,2) 7 203.0
s4 [0,1,2,3,4] {

←−−−
〈1, 2〉} 〈q2, q1〉 4 188.8

s0,0 [0,1,2,3,4] {0←−→1} (0,1) 14 195.8
s0,1 [1,5,2,3,4] {0←−→5} (0,5) 14 195.8
s0,2 [2,0,1,3,4] {1←−→2, 〈1, 0〉} (1,2) 14 199.2
s0,3 [1,0,3,2,4] {2←−→3} (2,3) 14 211.4
s0,4 [1,0,5,3,4] {2←−→5, 〈5, 0〉} (2,5) 14 196.0
s1,0 [1,2,0,3,4] {0←−→1} (0,1) 14 177.6
s1,1 [0,1,2,3,4] {1←−→2} (1,2) 14 166.2
s1,2 [0,3,1,2,4] {2←−→3} (2,3) 14 157.6
s1,3 [0,2,1,4,3] {3←−→4} (3,4) 14 175.0
s2,0 [1,0,3,2,4] {0←−→1} (0,1) 14 211.4
s2,1 [0,2,3,1,4] {1←−→2} (1,2) 14 194.6
s2,2 [0,1,2,3,4] {2←−→3} (2,3) 14 195.8
s2,3 [0,1,4,2,3] {3←−→4} (3,4) 14 208.6
s3,0 [1,0,5,3,4] {0←−→1, 〈5, 0〉} (0,1) 14 196.0
s3,1 [5,1,0,3,4] {0←−→5} (0,5) 14 201.8
s3,2 [0,2,5,3,4] {1←−→2, 〈5, 2〉, 〈2, 3〉, 〈5, 2〉} (1,2) 14 160.8
s3,3 [0,1,2,3,4] {2←−→5} (2,5) 14 195.8
s3,4 [0,1,4,3,5] {4←−→5} (4,5) 14 211.4
s4,0 [1,0,2,3,4] {0←−→1} (0,1) 11 200.6
s4,1 [0,2,1,3,4] {1←−→2, 〈2, 3〉, 〈1, 2〉} (1,2) 11 167.2
s4,2 [0,1,3,2,4] {2←−→3, 〈1, 2〉} (2,3) 11 177.6
s4,3 [0,1,2,4,3] {3←−→4} (3,4) 11 200.0

Here s = (τini, PC0 := {〈q3, q4〉}, LC0 := LC\{〈q3, q4〉}), i� j denotes the swap
operation of i and j and

←−−
〈i, j〉 denotes the operation that changes the direction of the

CNOT gate 〈i, j〉.

1 2 3

0 5 4

Fig. 7. A test architecture graph AGtest.

Suppose the input circuit contains m CNOT gates. If
we activate the fallback when no gates are removed from
LCs after K rounds, then the search procedure has at most
K × m states. This is because each activation of the fall-
back will execute a selected gate due to the use of remote
CNOT. Therefore, the overall time complexity of the search
is O(` · |Q| · (|E|+ |Q|/2)2 ·m ·K). Because |Q| ≤ |V | and
|E| ≤ |V |·(|V |−1)/2, it is bounded by O(|V |4 ·|Q|·`·m·K).

For the space complexity, in each state s, we maintain a
depth-2 search tree rooted at s. Thus the space complexity of

Fig. 8. Schematic for remote CNOT operations with 2 and 3 hops. Generalized
form can be found in [16].

the algorithm is bounded by O((|E|+ |Q|/2)2), i.e., O(|V |4).
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Algorithm 2: Circuit transformation with look-ahead

input : A logic circuit LC = (Q,Cl), an initial
mapping τ constructed by Algorithm 1 and an
architecture graph AG = (V,E) with
|Q| ≤ |V |.

output: A physical circuit (V,Cp) which satisfies AG
and is equivalent to LC.

begin
(PC,LC)← Execute(τ, PC,LC);
while LC 6= ∅ do

L← F(LC), the first layer of LC;
Cld← ∅;
for e ∈ E which touches some gate in L under
τ do
τ ′ ← swape ◦ τ ;
PC ′ ← PC ′ by adding (the CNOT + H
implementation of) a SWAP gate
corresponding to swape;

(PC ′, LC ′)← Execute(τ ′, PC ′, LC);
gcost← 3 if e−1 ∈ E and 7 otherwise;
Cld← Cld ∪ {(τ ′, PC ′, LC ′, gcost)};

end
for g ∈ L which is inversely executable by τ do

PC ′ ← PC ′ by adding τ(g) complemented
by four H gates before and after it;
LC ′ ← LC ′ by deleting g;
(PC ′, LC ′)← Execute(τ, PC ′, LC ′);
Cld← Cld ∪ {(τ, PC ′, LC ′, 4)};

end
mCost←∞;
for (τ ′, PC ′, LC ′, gcost) ∈ Cld do

cost← minChildHcost(τ ′, LC ′);
if cost+ gcost < mCost then

mCost← cost+ gcost;
(τ, PC,LC)← (τ ′, PC ′, LC ′);

end
end

end
return PC

end

F. Optimization

In Algorithm 2, the search space grows exponentially if
the depth of look-ahead is increased. Therefore, a pruning
mechanism is introduced to reduce the size of the search space
while preserving the quality of the output physical circuit.
More specifically, a child state sij of si will be removed if
both cost′h(sij) > cost′h(si) and costh(sij) − cost′h(sij) >
costh(si)−cost′h(si), where cost′h(s) = w×(d−1)×Nswap×
Nss as defined in Eq.(4). In Example. 1, states s1,0 will be
pruned. This is because cost′h(s) = 145.6, costh(s) = 167.2,
cost′h(s0) = 145.6, costh(s0) = 177.6 and costh(s0) >
costh(s), costh(s0)− cost′h(s0) > costh(s)− cost′h(s).

From Fig. 9 we can see that the pruning mechanism has
limited influence on the sizes of the output circuits while the
time consumption is reduced by a large amount.

Procedure Execute(τ, PC,LC)
input : A mapping τ : Q→ V , a physical circuit PC,

and a logic circuit LC.
output: A pair (PC ′, LC ′) obtained by executing as

many as possible gates which satisfy τ .
begin

PC ′ ← PC; LC ′ ← LC;
do

EL← {g ∈ F(LC ′) : g is executable by τ};
for g ∈ EL do

PC ′ ← PC ′ by adding τ(g);
LC ′ ← LC ′ by deleting g;

end
while EL 6= ∅;
return (PC ′, LC ′)

end

Procedure minChildHcost(τ, LC)
input : A mapping τ : Q→ V and a logic circuit LC.
output: The minimal cost of all children of τ .
begin

L← F(LC);
mCost←∞;
for e ∈ E which touches some gate in L under τ
do
τ ′ ← swape ◦ τ ;
(PC ′, LC ′)← Execute(τ ′, ∅, LC);
gcost← 3 if e−1 ∈ E and 7 otherwise;
hcost← hcost(τ ′, LC ′) according to Eq.(4);
if hcost+ gcost < mCost then

mCost← hcost+ gcost;
end

end
for g ∈ L which is inversely executable by τ do

LC ′ ← LC by deleting g;
(PC ′, LC ′)← Execute(τ, ∅, LC);
hcost← hcost(τ, LC ′) according to Eq.(4);
if hcost+ 4 < mCost then

mCost← hcost+ 4;
end

end
return mCost;

end

V. PROGRAMMING AND BENCHMARKS

To evaluate our approach, we compare it with previous algo-
rithms proposed for the same purpose in the literature [13], [4],
[15]. We use Python as our programming language and IBM
Qiskit [30] as auxiliary environment. The code can be found
in GitHub. All experiments are conducted in a laptop with i7-
8750H CPU and 16GB memory. The results are reported in
Tables II, III and IV, in which column ‘Comparison’ shows
the percentage of the number of added gates in our algorithm
to the compared one. Specifically, let ncomp and nours be
the numbers of gates added by the compared algorithm and

https://github.com/BensonZhou1991/circuittransform/
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Fig. 9. Effectiveness of the pruning mechanism obtained by running exem-
plary circuits on IBM Q20. The gray and blue bars on the bottom are ratios
(corresponding to the left vertical axis) of the number of added gates to that
of original gates for the proposed algorithm with and without pruning. The
bars on the top correspond to the time consumption (seconds, corresponding
to the right vertical axis) for the search process.

by ours respectively, then the percentages in the above column
are obtained by nours/ncomp. Note that a symbol 0/0 appears
when both ncomp and nours are zero.

Table II demonstrates the superiority of the initial mapping
output by simulated annealing (Alg. 1) (SA-based for short)
compared to the naive initial mapping2 (naive for short) and
the initial mapping generated in the A∗ algorithm [13] (A∗-
based for short) on IBM Q20, where the ‘Comparison’ column
shows the comparison between the SA-based initial mapping
and the A∗-based one. From the last row of Table II we
can see that, on average, the number of added gates by our
algorithm with SA-based initial mappings is only 62.95% of
the number of added gates by our algorithm with A∗-based
initial mappings.

For the heuristic search, we compare our algorithm to the
ones introduced in [13] and [4], which are, respectively, the
state-of-the-art algorithms for IBM QX5 and Q20. We set
the number of look-ahead layers as ` = 3, and the weight
parameters w1 = 1, w2 = 0.8, w3 = 0.6, w4 = 0.4 ×
(DAG − 1)×Nswap in Eq.(4), where DAG is the diameter of
the architecture graph and Nswap the number of elementary
gates needed to compose a SWAP gate. The threshold number
K for activating fallback is set to be 0.5×DAG.

The algorithm proposed in [13] utilizes A∗ to find the best
solution of each layer. It has exponential time complexity and
only considers one layer for look-ahead when designing the
heuristic cost function. Like ours, their A∗-based algorithm
works for both directed and undirected architecture graphs.
As confirmed in [4], it is comparable with the algorithm in
[4] when Q20 is used as the QPU. So we only make the
comparison on QX5. From the experimental results reported
in Table III, we can see that our algorithm has a conspicuous
improvement over the algorithm in [13]. Moreover, it is very
efficient: for input circuits with up to 10,000 elementary gates,
our algorithm finds the solution within one minute.

The algorithm proposed in [4] uses reverse traversal tech-
nique to search for a good initial mapping and has polyno-
mial complexity. Although it considers multiple levels in its

2The mapping which maps the i-th logical qubit qi to the i-th physical
qubit vi for all i.
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Fig. 10. Experiments on IBM Q20 for different look-ahead depths. The bars
on the bottom and top represent respectively the ratio (corresponding to the
left vertical axis) of the number of added gates to that of the original gates
and the consumed time (seconds, corresponding to the right vertical axis) for
different circuits and different look-ahead depths.
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Fig. 11. Experiments for random circuits on IBM Q20 for different look-
ahead depths. The horizontal axis denotes the number of gates of input circuits
which are generated randomly. The bars and lines represent respectively the
ratio (corresponding to the left vertical axis) of the average number of added
gates to that of the original gates and the average consumed time (seconds,
corresponding to the right vertical axis) for different random circuits and
different look-ahead depths.

heuristic function, this algorithm does not consider the weights
for gates in different layers in the heuristic function. Unlike
our algorithm, the algorithm in [4] can only be applied to
undirected architecture graphs. Therefore, we only compared
it with ours on Q20. From the experimental results reported in
Table IV, we see that, for small circuits, both algorithms find
the optimal output circuits; but for circuits with large size, our
algorithm again has a conspicuous improvement. As for QX5,
our algorithm is able to find within two minutes the solution
to input circuits with up to 30,000 elementary gates.

We also compared our algorithm with the algorithm pro-
posed in [15], which also works for both directed and undi-
rected architecture graph and its performance is comparable
with the one in [13]. In Appendix, from the experimental
results reported in Table 5 and 6, we can see that our algorithm
also has a better performance.

It is worth mentioning that, if the depth for look-ahead in the
selection process is increased, the quality of the output circuits
could be further improved. However, the time consumption
will be increased dramatically. See Fig. 10 for the experiment
on a few examples, which indicates that 1-depth look-ahead
reaches the best trade off of time and performance. Fig. 11
exhibits the time consumption and quality for some random
circuits. It further confirms that increasing the search depth
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TABLE II
THE PERFORMANCE IMPROVEMENT BROUGHT BY SIMULATED ANNEALING ON IBM Q20.

Circuit
Name

Original
#Gates

Original
#CNOT

#Added
Naive

#Added
A∗-based

#Added
SA-based Comparison

4mod5-v1 22 21 11 9 3 0 0.00%
mod5mils 65 35 16 21 9 0 0.00%

alu-v0 27 36 17 15 21 6 28.57%
decod24-v2 43 52 38 33 12 0 0.00%

4gt13 92 66 30 54 33 0 0.00%
ising model 10 480 90 48 36 0 0.00%
ising model 13 633 120 54 51 0 0.00%
ising model 16 786 150 96 60 0 0.00%

qft 10 200 90 90 45 36 80.00%
qft 16 512 240 228 198 135 68.18%

rd84 142 343 154 147 120 102 85.00%
adr4 197 3439 1498 1044 1056 711 67.33%
radd 250 3213 1405 969 789 729 92.40%
z4 268 3073 1343 852 879 546 62.12%

sym6 145 3888 1701 846 1425 744 52.21%
misex1 241 4813 2100 1017 1560 921 59.04%

rd73 252 5321 2319 1803 1494 1125 75.30%
cycle10 2 110 6050 2648 1383 1599 1038 64.92%
square root 7 7630 3089 1620 1989 1353 68.02%

sqn 258 10223 4459 3105 2766 1953 70.61%
rd84 253 13658 5960 4140 3642 3198 87.81%
co14 215 17936 7840 4878 6348 4356 68.62%
sym9 193 34881 15232 9663 11055 6123 55.39%

9symml 195 34881 15232 9663 11055 6036 54.60%
Summary 152170 65782 41778 46245 29112 62.95%

TABLE III
COMPARISON OF OUR ALGORITHM WITH THE A∗-BASED ALGORITHM IN [13] ON IBM QX5.

Circuit
Name

Original
#Gates

Original
#CNOT

#Added
A∗

#Added
Ours

Running
Time (s) Comparison

mini alu 305 173 77 561 372 0.27 66.31%
qft 10 200 90 437 273 0.30 62.47%

sys6-v0 111 215 98 725 486 0.32 67.03%
rd73 140 230 104 704 504 0.42 71.59%
sym6 316 270 123 875 655 0.43 74.86%
rd53 311 275 124 817 710 0.44 86.90%
sym9 146 328 148 989 777 0.53 78.56%
rd84 142 343 154 1038 782 0.59 75.34%

ising model 10 480 90 200 142 0.65 71.00%
cnt3-5 180 485 215 1218 1068 0.83 87.68%

qft 16 512 240 1264 890 0.91 70.41%
ising model 13 633 120 280 199 1.36 71.07%
ising model 16 786 150 320 263 1.64 82.19%

wim 266 986 427 2881 2071 1.86 71.88%
cm152a 212 1221 532 3307 2613 1.95 79.01%
cm42a 207 1776 771 4433 3836 3.39 86.53%
pm1 249 1776 771 4433 3800 3.42 85.72%
dc1 220 1914 833 5095 4043 3.44 79.35%

squar5 261 1993 869 5355 4648 4.60 86.80%
sqrt8 260 3009 1314 8331 7172 8.05 86.09%

z4 268 3073 1343 8120 6922 8.40 85.25%
adr4 197 3439 1498 9273 8084 8.70 87.18%
sym6 145 3888 1701 9538 7906 10.95 82.89%

misex1 241 4813 2100 12620 10901 14.74 86.38%
ham15 107 8763 3858 22980 20066 44.66 87.32%

dc2 222 9462 4131 26441 22955 58.38 86.82%
sqn 258 10223 4459 26734 22851 58.91 85.48%
inc 237 10619 4636 28532 24896 59.28 87.26%

co14 215 17936 7840 51894 43424 320.81 83.68%
life 238 22445 9800 59672 52827 265.09 88.53%

max46 240 27126 11844 69726 61829 395.91 88.67%
9symml 195 34881 15232 95272 82310 667.18 86.39%

dist 223 38046 16624 103683 92045 829.44 88.78%
sao2 257 38577 16864 108419 93533 1059.06 86.27%
Summary 250896 109180 676167 585853 # 86.64%
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TABLE IV
COMPARISON OF OUR ALGORITHM WITH THE ALGORITHM IN [4] ON IBM Q20.

Circuit
Name

Original
#Gates

Original
#CNOT

#Added
Alg. in [4]

#Added
Ours

Running
Time (s) Comparison

4mod5-v1 22 21 11 0 0 0.00 0/0
mod5mils 65 35 16 0 0 0.00 0/0

alu-v0 27 36 17 3 6 0.00 200.00%
decod24-v2 43 52 38 0 0 0.00 0/0

4gt13 92 66 30 0 0 0.00 0/0
ising model 10 480 90 0 0 0.00 0/0
ising model 13 633 120 0 0 0.01 0/0
ising model 16 786 150 0 0 0.01 0/0

qft 10 200 90 54 36 0.16 66.67%
qft 16 512 240 186 135 0.38 72.58%

rd84 142 343 154 105 102 1.50 97.14%
adr4 197 3439 1498 1614 711 2.08 44.05%
radd 250 3213 1405 1275 729 2.13 57.18%
z4 268 3073 1343 1365 546 2.65 40.00%

sym6 145 3888 1701 1272 744 2.82 58.49%
misex1 241 4813 2100 1521 921 3.44 60.55%

rd73 252 5321 2319 2133 1125 5.21 52.74%
cycle10 2 110 6050 2648 2622 1038 5.46 39.59%
square root 7 7630 3089 2598 1353 12.24 52.08%

sqn 258 10223 4459 4344 1953 13.91 44.96%
rd84 253 13658 5960 6147 3198 34.75 52.03%
co14 215 17936 7840 8982 4356 88.90 48.50%
sym9 193 34881 15232 16653 6123 126.68 36.77%

9symml 195 34881 15232 17268 6036 137.47 34.95%
Summary 152170 65782 68142 29112 # 42.72%

will produce a significant improvement on the size of output
circuit, sometimes more than 20%. However, the running
time will increase hugely and become unacceptable when the
depth becomes 2. This suggests that the benefit brought by
increasing the depth seems to be uneconomical. Nevertheless,
it may still be acceptable in some application scenarios if high-
performance computing devices are available and smaller size
of the output circuit is desired. If this is the case, the algorithm
can be easily adjusted by modifying the relevant parameters of
our algorithm. Besides, the weight parameters in the heuristic
function are also adjustable when different architecture graphs
and circuits are considered.

VI. CONCLUSION AND DISCUSSION

In this paper, we propose an algorithm to solve the quantum
circuit transformation problem by using simulated annealing
and heuristic search. A double look-ahead mechanism is
novelly adopted in the algorithm. We look ahead at subsequent
layers when defining a flexible heuristic cost function which
also supports weight parameters to reflect the variable influ-
ence of gates in different layers. Moreover, we look ahead at
grandchild states with minimal cost in selecting the best state
for the next step of the circuit transformation. Detailed evalua-
tion on extensive realistic circuits shows that our algorithm has
consistent and significant improvement when compared with
the two state-of-the-art algorithms proposed in the literature
for IBM QX5 and Q20.

Although our algorithm can produce significantly better
results than the state-of-the-art algorithms, it is not optimal.
As discussed in Sec V, even better results could be obtained
through increasing the search depth in our algorithm. Appar-
ently, if exhaustive search is employed, in principle we can
even generate the optimal results. Indeed, it was shown in [31]

that, for circuits with up to 5 qubits and 100 gates and IBM
QX4, the exact solution can be computed within an acceptable
time. Similar sub-optimal results were obtained in [32] by
using exhaustive search on IBM QX5 for circuits with up to
6 qubits and 800 gates. These approaches are unpractical for
circuits with more qubits and/or a large number of CNOT
gates. In [20], the permutation problem is formulated as an
ILP problem and the same results as in [32] are obtained with
smaller time overhead. This ILP approach is still not scalable,
especially for circuits with ≥ 10 qubits and ≥ 500 gates. For
examples, consider the circuits ‘cm82a 208’ with 8 qubits and
650 gates and ‘sys6-v0 111’ with 10 qubits and 215 gates. The
ILP-based algorithm, also implemented in Python, needs 414
seconds and, respectively, 1 hour while our algorithm only
needs 0.93 and, respectively, 0.32 seconds.

While our aim in this paper is to show that the number of
SWAPs required for quantum circuit transformation could be
significantly reduced, minimizing depth or latency and circuit
error is also important. Note that in most cases, the number
of CNOT gates in our output circuit is already smaller than
the depth of the output circuit (only CNOT gates are counted)
of the compared algorithm. Consider all circuits in Table IV.
The sum of the depths of the output circuits (CNOT only)
obtained by the algorithm in [15] is 394192 (not shown in the
table), while the sum of the numbers of CNOT gates in the
output circuits obtained by our algorithm is 365040 = 248553
(original #CNOT) + 116487 (added #CNOT) (see the last row
of the table).

For future studies, we propose the following problems to
solve. First, our program still runs slowly for circuits with
large sizes. Thus it is necessary to optimize the code to
reduce the running time. Second, the quality of the initial
mappings obtained from the simulated annealing algorithm
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(Alg. 1) is not stable, which is not acceptable for commercial
use. Third, we only considered connectivity in the architecture
graphs; other constraints like cross talk, which will invalidate
some concurrent gate operations [33], [27], gate error caused
by various noise effects [7], [10], [34], classical control led
by shared channels among physical qubits [8] and qubits
decoherence [7], [9], [35] should be included to make the
algorithm more practical. Fourth, only using the sizes of
circuits as the criterion for evaluation is not enough. Criteria
like circuit error and running time should also be considered
in future work.
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[25] T. Häner, D. S. Steiger, K. Svore, and M. Troyer, “A software
methodology for compiling quantum programs,” Quantum Science and
Technology, vol. 3, no. 2, p. 020501, 2018.

[26] J. M. Gambetta, J. M. Chow, and M. Steffen, “Building logical qubits
in a superconducting quantum computing system,” npj Quantum Infor-
mation, vol. 3, no. 1, pp. 1–7, 2017.

[27] A. Botea, A. Kishimoto, and R. Marinescu, “On the complexity of
quantum circuit compilation,” in Eleventh Annual Symposium on Com-
binatorial Search, 2018.

[28] T. Itoko, R. Raymond, T. Imamichi, A. Matsuo, and A. W. Cross, “Quan-
tum circuit compilers using gate commutation rules,” in Proceedings of
the 24th Asia and South Pacific Design Automation Conference. ACM,
2019, pp. 191–196.

[29] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by
simulated annealing,” Science, vol. 220, no. 4598, pp. 671–680, 1983.

[30] G. Aleksandrowicz, T. Alexander, P. Barkoutsos, L. Bello, Y. Ben-
Haim, D. Bucher, F. Cabrera-Hernández, J. Carballo-Franquis, A. Chen,
C. Chen et al., “Qiskit: An open-source framework for quantum com-
puting,” Accessed on: Mar, vol. 16, 2019.

[31] R. Wille, L. Burgholzer, and A. Zulehner, “Mapping quantum circuits
to IBM qx architectures using the minimal number of swap and h
operations,” in Proceedings of the 56th Annual Design Automation
Conference 2019. ACM, 2019, p. 142.

[32] A. A. De Almeida, G. W. Dueck, and A. C. Da Silva, “Cnot gate
optimizations via qubit permutations for IBM’s quantum architectures,”
Journal of Low Power Electronics, vol. 15, no. 2, pp. 182–192, 2019.

[33] D. Venturelli, M. Do, B. O’Gorman, J. Frank, E. Rieffel, K. E. Booth,
T. Nguyen, P. Narayan, and S. Nanda, “Quantum circuit compilation:
An emerging application for automated reasoning,” in Proceedings of
the Scheduling and Planning Applications Workshop, 2019.

[34] G. Li, Y. Ding, and Y. Xie, “SANQ: A simulation framework for
architecting noisy intermediate-scale quantum computing system,” arXiv
preprint arXiv:1904.11590, 2019.

[35] P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson, and
W. D. Oliver, “A quantum engineer’s guide to superconducting qubits,”
Applied Physics Reviews, vol. 6, no. 2, p. 021318, 2019.



13

APPENDIX

Circuit
Name

Original
#Gates

Original
#CNOT

#Added
Alg. In [15]

#Added
Ours

Running
Time(s) Comparison

graycode6 47 5 5 8 8 0.00 100.00%
xor5 254 7 5 23 7 0.00 30.43%
ex1 226 7 5 23 14 0.00 60.87%
4gt11 84 18 9 37 29 0.01 78.38%
ex-1 166 19 9 49 29 0.01 59.18%
ham3 102 20 11 56 32 0.01 57.14%

4mod5-v0 20 20 10 41 29 0.01 70.73%
4mod5-v1 22 21 11 41 32 0.01 78.05%
mod5d1 63 22 13 56 36 0.02 64.29%

4gt11 83 23 14 59 40 0.02 67.80%
4gt11 82 27 18 82 51 0.03 62.20%

rd32-v0 66 34 16 74 57 0.02 77.03%
mod5mils 65 35 16 97 53 0.02 54.64%
4mod5-v0 19 35 16 93 60 0.02 64.52%
rd32-v1 68 36 16 74 57 0.02 77.03%
alu-v0 27 36 17 82 61 0.02 74.39%
3 17 13 36 17 66 57 0.02 86.36%

4mod5-v1 24 36 16 77 60 0.02 77.92%
alu-v1 29 37 17 82 61 0.02 74.39%
alu-v1 28 37 18 94 68 0.02 72.34%
alu-v3 35 37 18 82 69 0.02 84.15%
alu-v2 33 37 17 82 54 0.02 65.85%
alu-v4 37 37 18 82 61 0.02 74.39%
miller 11 50 23 119 89 0.03 74.79%

decod24-v0 38 51 23 103 75 0.03 72.82%
alu-v3 34 52 24 129 108 0.03 83.72%

decod24-v2 43 52 22 103 89 0.02 86.41%
mod5d2 64 53 25 109 110 0.03 100.92%

4gt13 92 66 30 152 121 0.04 79.61%
4gt13-v1 93 68 30 144 118 0.05 81.94%

one-two-three-v2 100 69 32 148 130 0.04 87.84%
4mod5-v1 23 69 32 165 145 0.05 87.88%
4mod5-v0 18 69 31 146 143 0.05 97.95%

one-two-three-v3 101 70 32 174 129 0.06 74.14%
4mod5-bdd 287 70 31 149 130 0.04 87.25%

decod24-bdd 294 73 32 143 133 0.04 93.01%
4gt5 75 83 38 180 143 0.05 79.44%

alu-v0 26 84 38 197 164 0.06 83.25%
rd32 270 84 36 180 161 0.05 89.44%

alu-bdd 288 84 38 161 163 0.07 101.24%
decod24-v1 41 85 38 196 160 0.05 81.63%

4gt5 76 91 46 211 180 0.08 85.31%
4gt13 91 103 49 245 190 0.08 77.55%
4gt13 90 107 53 264 212 0.09 80.30%
alu-v4 36 115 51 260 211 0.08 81.15%
4gt5 77 131 58 278 232 0.10 83.45%

one-two-three-v1 99 132 59 315 260 0.09 82.54%
rd53 138 132 60 280 249 0.22 88.93%

one-two-three-v0 98 146 65 299 282 0.12 94.31%
4gt10-v1 81 148 66 358 274 0.10 76.54%

decod24-v3 45 150 64 346 257 0.11 74.28%
aj-e11 165 151 69 321 258 0.11 80.37%

4mod7-v0 94 162 72 378 294 0.14 77.78%
alu-v2 32 163 72 354 309 0.13 87.29%
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Circuit
Name

Original
#Gates

Original
#CNOT

#Added
Alg. In [15]

#Added
Ours

Running
Time(s) Comparison

4mod7-v1 96 164 72 332 321 0.12 96.69%
cnt3-5 179 175 85 667 342 0.59 51.27%
mod10 176 178 78 388 320 0.15 82.47%
4gt4-v0 80 179 79 417 325 0.11 77.94%

4gt12-v0 88 194 86 450 373 0.14 82.89%
0410184 169 211 104 666 453 0.61 68.02%

4 49 16 217 99 508 395 0.16 77.76%
4gt12-v1 89 228 100 523 441 0.19 84.32%
4gt4-v0 79 231 105 489 437 0.22 89.37%
hwb4 49 233 107 512 451 0.20 88.09%

4gt4-v0 78 235 109 504 448 0.19 88.89%
mod10 171 244 108 535 452 0.23 84.49%
4gt12-v0 87 247 112 539 467 0.21 86.64%
4gt12-v0 86 251 116 554 478 0.26 86.28%
4gt4-v0 72 258 113 560 483 0.27 86.25%
4gt4-v1 74 273 119 627 528 0.22 84.21%

mini-alu 167 288 126 631 548 0.24 86.85%
one-two-three-v0 97 290 128 571 563 0.23 98.60%

rd53 135 296 134 733 623 0.36 84.99%
ham7 104 320 149 803 659 0.30 82.07%

decod24-enable 126 338 149 753 667 0.30 88.58%
mod8-10 178 342 152 886 685 0.32 77.31%

4gt4-v0 73 395 179 894 758 0.43 84.79%
ex3 229 403 175 844 763 0.37 90.40%

mod8-10 177 440 196 961 859 0.46 89.39%
alu-v2 31 451 198 1007 845 0.42 83.91%
C17 204 467 205 1121 972 0.54 86.71%
rd53 131 469 200 1145 925 0.52 80.79%
alu-v2 30 504 223 1123 1011 0.50 90.03%

mod5adder 127 555 239 1203 1021 0.60 84.87%
rd53 133 580 256 1374 1163 0.84 84.64%

majority 239 612 267 1461 1179 0.64 80.70%
ex2 227 631 275 1499 1264 0.73 84.32%

cm82a 208 650 283 1443 1370 0.93 94.94%
sf 276 778 336 1703 1463 0.74 85.91%
sf 274 781 336 1727 1494 0.87 86.51%

con1 216 954 415 2278 2086 1.50 91.57%
rd53 130 1043 448 2375 2067 1.39 87.03%

f2 232 1206 525 2681 2421 1.65 90.30%
rd53 251 1291 564 3144 2576 1.77 81.93%
hwb5 53 1336 598 3126 2606 1.52 83.37%
radd 250 3213 1405 8117 7227 8.81 89.04%
rd73 252 5321 2319 13349 12014 18.87 90.00%

cycle10 2 110 6050 2648 15654 13649 25.44 87.19%
hwb6 56 6723 2952 15779 13848 22.13 87.76%

cm85a 209 11414 4986 30371 27202 72.29 89.57%
rd84 253 13658 5960 36445 32626 115.99 89.52%
root 255 17159 7493 44265 41138 204.43 92.94%
mlp4 245 18852 8232 52128 44865 205.33 86.07%
urf2 277 20112 10066 58598 50031 241.43 85.38%

sym9 148 21504 9408 51730 45903 211.39 88.74%
hwb7 59 24379 10681 57679 51226 240.25 88.81%
clip 206 33827 14772 91616 81390 663.92 88.84%

sym9 193 34881 15232 91036 82224 651.67 90.32%
dist 223 38046 16624 99497 92225 829.44 92.69%
sao2 257 38577 16864 107369 93956 989.69 87.51%
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Circuit
Name

Original
#Gates

Original
#CNOT

#Added
Alg. In [15]

#Added
Ours

Running
Time(s) Comparison

urf5 280 49829 23764 133827 122929 1216.33 91.86%
urf1 278 54766 26692 153709 141286 1666.36 91.92%

sym10 262 64283 28084 171519 153981 2467.67 89.77%
Summary 485117 218181 1284512 1151566 # 89.65%

TABLE V: Comparison between our algorithm and the algorithm in
[15] on IBM QX5.

Circuit
Name

Original
#Gates

Original
#CNOT

#Added
Alg. In [15]

#Added
Ours

Running
Time(s) Comparison

graycode6 47 5 5 0 0 0.00 0/0
xor5 254 7 5 0 0 0.00 0/0
ex1 226 7 5 0 0 0.00 0/0
4gt11 84 18 9 0 0 0.00 0/0
ex-1 166 19 9 0 0 0.00 0/0
ham3 102 20 11 0 0 0.00 0/0

4mod5-v0 20 20 10 9 0 0.00 0.00%
4mod5-v1 22 21 11 9 0 0.00 0.00%
mod5d1 63 22 13 0 0 0.00 0/0

4gt11 83 23 14 12 0 0.00 0.00%
4gt11 82 27 18 12 3 0.00 25.00%

rd32-v0 66 34 16 0 0 0.00 0/0
mod5mils 65 35 16 9 0 0.00 0.00%
4mod5-v0 19 35 16 9 0 0.00 0.00%
rd32-v1 68 36 16 0 0 0.00 0/0
alu-v0 27 36 17 3 6 0.01 200.00%
3 17 13 36 17 0 0 0.00 0/0

4mod5-v1 24 36 16 12 0 0.00 0.00%
alu-v1 29 37 17 3 6 0.01 200.00%
alu-v1 28 37 18 3 6 0.01 200.00%
alu-v3 35 37 18 3 6 0.01 200.00%
alu-v2 33 37 17 9 6 0.01 66.67%
alu-v4 37 37 18 3 6 0.01 200.00%
miller 11 50 23 0 0 0.00 0/0

decod24-v0 38 51 23 0 0 0.00 0/0
alu-v3 34 52 24 3 6 0.01 200.00%

decod24-v2 43 52 22 0 0 0.00 0/0
mod5d2 64 53 25 12 12 0.01 100.00%

4gt13 92 66 30 18 0 0.00 0.00%
4gt13-v1 93 68 30 18 0 0.00 0.00%

one-two-three-v2 100 69 32 9 9 0.01 100.00%
4mod5-v1 23 69 32 12 9 0.02 75.00%
4mod5-v0 18 69 31 9 9 0.01 100.00%

one-two-three-v3 101 70 32 15 6 0.01 40.00%
4mod5-bdd 287 70 31 15 6 0.01 40.00%

decod24-bdd 294 73 32 21 15 0.02 71.43%
4gt5 75 83 38 15 15 0.02 100.00%

alu-v0 26 84 38 21 9 0.01 42.86%
rd32 270 84 36 18 12 0.01 66.67%

alu-bdd 288 84 38 45 24 0.03 53.33%
decod24-v1 41 85 38 18 15 0.02 83.33%

4gt5 76 91 46 27 15 0.02 55.56%
4gt13 91 103 49 6 15 0.02 250.00%
4gt13 90 107 53 9 27 0.02 300.00%
alu-v4 36 115 51 36 15 0.02 41.67%
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Circuit
Name

Original
#Gates

Original
#CNOT

#Added
Alg. In [15]

#Added
Ours

Running
Time(s) Comparison

4gt5 77 131 58 36 9 0.04 25.00%
one-two-three-v1 99 132 59 39 12 0.02 30.77%

rd53 138 132 60 39 27 0.05 69.23%
one-two-three-v0 98 146 65 27 24 0.04 88.89%

4gt10-v1 81 148 66 33 27 0.04 81.82%
decod24-v3 45 150 64 39 15 0.04 38.46%

aj-e11 165 151 69 24 18 0.02 75.00%
4mod7-v0 94 162 72 39 12 0.04 30.77%

alu-v2 32 163 72 39 15 0.02 38.46%
4mod7-v1 96 164 72 42 18 0.03 42.86%

cnt3-5 179 175 85 87 15 0.04 17.24%
mod10 176 178 78 36 24 0.03 66.67%
4gt4-v0 80 179 79 78 24 0.05 30.77%
4gt12-v0 88 194 86 21 21 0.05 100.00%
0410184 169 211 104 75 12 0.02 16.00%

4 49 16 217 99 69 36 0.04 52.17%
4gt12-v1 89 228 100 93 24 0.03 25.81%
4gt4-v0 79 231 105 96 12 0.04 12.50%
hwb4 49 233 107 45 33 0.04 73.33%

4gt4-v0 78 235 109 99 15 0.05 15.15%
mod10 171 244 108 60 24 0.04 40.00%
4gt12-v0 87 247 112 123 6 0.01 4.88%
4gt12-v0 86 251 116 123 9 0.02 7.32%
4gt4-v0 72 258 113 90 42 0.05 46.67%
4gt4-v1 74 273 119 114 78 0.10 68.42%

mini-alu 167 288 126 75 33 0.06 44.00%
one-two-three-v0 97 290 128 66 66 0.09 100.00%

rd53 135 296 134 48 54 0.11 112.50%
ham7 104 320 149 102 81 0.08 79.41%

decod24-enable 126 338 149 81 87 0.14 107.41%
mod8-10 178 342 152 162 21 0.04 12.96%

4gt4-v0 73 395 179 177 42 0.05 23.73%
ex3 229 403 175 174 18 0.05 10.34%

mod8-10 177 440 196 135 39 0.05 28.89%
alu-v2 31 451 198 63 54 0.07 85.71%
C17 204 467 205 114 96 0.14 84.21%
rd53 131 469 200 87 90 0.17 103.45%
alu-v2 30 504 223 105 45 0.07 42.86%

mod5adder 127 555 239 87 51 0.11 58.62%
rd53 133 580 256 159 105 0.16 66.04%

majority 239 612 267 123 84 0.13 68.29%
ex2 227 631 275 270 96 0.22 35.56%

cm82a 208 650 283 222 84 0.14 37.84%
sf 276 778 336 384 24 0.05 6.25%
sf 274 781 336 381 24 0.04 6.30%

con1 216 954 415 375 192 0.39 51.20%
rd53 130 1043 448 390 171 0.31 43.85%

f2 232 1206 525 225 213 0.43 94.67%
rd53 251 1291 564 309 204 0.34 66.02%
hwb5 53 1336 598 210 174 0.30 82.86%
radd 250 3213 1405 1647 669 2.34 40.62%
rd73 252 5321 2319 2115 1065 5.31 50.35%

cycle10 2 110 6050 2648 2424 1296 6.25 53.47%
hwb6 56 6723 2952 1719 1104 3.88 64.22%

cm85a 209 11414 4986 4173 2337 16.67 56.00%
rd84 253 13658 5960 5286 3246 37.18 61.41%
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Circuit
Name

Original
#Gates

Original
#CNOT

#Added
Alg. In [15]

#Added
Ours

Running
Time(s) Comparison

root 255 17159 7493 5601 3525 48.44 62.94%
mlp4 245 18852 8232 6462 4116 66.49 63.70%
urf2 277 20112 10066 8205 5934 77.04 72.32%

sym9 148 21504 9408 6438 2172 31.55 33.74%
hwb7 59 24379 10681 6378 4602 63.92 72.15%
clip 206 33827 14772 12624 6843 173.59 54.21%

sym9 193 34881 15232 11454 6441 144.55 56.23%
dist 223 38046 16624 12834 6936 187.64 54.04%
sao2 257 38577 16864 11742 7827 233.36 66.66%
urf5 280 49829 23764 20436 13065 374.76 63.93%
urf1 278 54766 26692 24600 15678 649.03 63.73%

sym10 262 64283 28084 20115 11697 518.75 58.15%
hwb8 113 69380 30372 35376 14976 646.41 42.33%
Summary 554497 248553 206142 116487 # 56.51%

TABLE VI: Comparison between our algorithm and the algorithm in
[15] on IBM Q20.
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