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Coupled matrix and tensor factorizations have been successfully used in many data fusion scenarios where datasets are assumed
to be exactly coupled. However, in the real world, not all the datasets share the same factor matrices, which makes joint analysis of
multiple heterogeneous sources challenging. For this reason, approximate coupling or partial coupling is widely used in real-world
data fusion, with exact coupling as a special case of these techniques.However, to fully address the challenge of tensor factorization,
in this paper, we propose two improved coupled tensor factorization methods: one for approximately coupled datasets and the
other for partially coupled datasets. A series of experiments using both simulated data and three real-world datasets demonstrate
the improved accuracy of these approaches over existing baselines. In particular, when experiments on MRI data is conducted, the
performance of our method is improved even by 12.47% in terms of accuracy compared with traditional methods.

1. Introduction

With the rapid development of cyber physical systems, a
soaring amount of data from heterogeneous sources is now
easily accessible. Analysing data from multiple sources has
been proven to enhance knowledge discovery by capturing
its underlying structures, which are otherwise difficult to
extract. For instance, in recommendation systems, it is not
only possible to rely on past user ratings as additional assis-
tance for joint analysis, but to also consider the supply chain
surrounding a product, or the similarity between users and
other information [1–3]. Drawing upon additional related
information can improve recommendation performance. In
metabolomics—an analytical technique used to study biolog-
ical fluids such as LC-MS (liquid chromatography-mass spec-
trometry) and NMR (nuclear magnetic resonance)—joint
analysis helps to accurately identify the various com-
ponent chemicals [4, 5]. Electroencephalography (EEG)
and functional magnetic resonance imaging (fMRI) are

complementary patterns and when jointly analyzed, can
provide “the best of both worlds,” i.e., EEG’s superior time
resolution and fMRI’s superior spatial resolution. Hence,
fusing models can, for example, provide deeper insights into
the activities of the brain or help improve medical treatments
for nervous system diseases [6–8].

A common and effective way to deal with multisource
data is to represent them as matrices and then use collective
matrix factorization (CMF) [9] for joint analysis. Matrix-
based joint analysis is used extensively in many fields,
including bioinformatics [10, 11], social network analysis
[12, 13], signal processing [14, 15], and so on. However, this
type of analysis only works with two-dimensional data and
cannot be applied to datasets of three or more dimensions.
However, recent developments in sensor technology now
allow more and different aspects of data to be captured,
and higher order tensors have become an important tool for
representing these multidimensional datasets. Accordingly,
tensor decomposition was introduced to accurately extract
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the correlations between different dimensions and extensions
to joint decomposition for heterogeneous and highly dimen-
sional datasets have naturally followed.

Applying coupled higher-order tensors and matrices to
heterogeneous datasets from multiple sources has been a
topic of interest in many areas, such as metabolomics [16],
blind source separation [17], recommendation systems [18,
19], link prediction [20], and brain imaging [21, 22]. The
various problems to be solved with this technique are called
coupled matrix and tensor factorization (CMTF) problems.
Acar et al. proposed an all-at-once optimization approach,
called CMTF-OPT [23], which is based on gradients. The
advanced version of CMTF-OPT, ACMTF-OPT [16], places
additional constraints on the CMTF model to force good
behavior when distinguishing between shared and unshared
data components. Many researchers have subsequently made
improvements to CMTF to allow for joint analysis on large-
scale data [24, 25], increase the speed of calculation on
large-scale data, and provide for situations with data sparsity.
As a result, through the joint decomposition of high-order
tensors and matrices, CMTF can extract shared and hidden
patterns from most heterogeneous datasets and construct
those patterns into a factor matrix. However, multisource
datasets hold unique forms of shared relationships, including
approximately shared or partially shared data.Models that are
solely designed for an exactly shared factor matrix may not
be suitable. For example, traffic flow data from upstream and
downstream highways are clearly related to each other but
may not be exactly coupled. There are many other examples,
such as MRI images from the same patient or continuous
tensor data streams that hold their own internal relationships.
For these types of real-life data fusion tasks, joint analysis is
crucial [26, 27].

In this paper, we focus on joint data analysis with datasets
that are partially or approximately coupled [28]. We propose
two improved coupled tensor factorization methods: one
for partially coupled datasets, called CTF-PSF, and one for
approximately coupled datasets, called CTF-AC.

A summary of our contributions follows.

(i) The proposed CTF-AC method is the very first ten-
sor factorization model to address data fusion with
approximately coupled datasets. This model is also
suitable for multisource datasets that are not coupled
but where the data are highly correlated.

(ii) By combining individual decomposition and coupled
decomposition, a new coupled tensor factorization
method called CTF-PSF emerges. This method han-
dles data fusion with partially coupled datasets.

(iii) Extensive experiments on synthetic and real-world
datasets verify that the two proposed methods gen-
erate more accurate results than the traditional meth-
ods.

The rest of this paper is organized as follows. Section 2
introduces some background knowledge on tensor decom-
position and provides the problem definition. The details
of how our approaches work are introduced in Section 3.
Section 4 describes the experimental design of this paper
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Figure 1: A CP decomposition of a third-order tensor. Figure
adapted from [29].

and numerical experiments to illustrate the advantages of the
proposedmethods. Finally, we conclude ourwork and discuss
future research directions in Section 5.

2. Preliminaries and Problem Definition

Following the notations in [29], vectors (tensors of order
one) are denoted in boldface lowercase letters, e.g., a, b, c.
Matrices (tensors of order two) appear as boldface capital
letters, e.g., A,B,C. The 𝑛th column of A is denoted as a𝑛.
A(𝑛) indicates the 𝑛th matrix in a sequence. For example,
A(1),A(2), . . . ,A(𝑁) represent a sequence of 𝑁 matrices. The
transpose of matrixA is denoted byAT. Higher-order tensors
(third-order or higher) appear as boldface Euler script letters,
e.g., X,W. X(𝑛) indicates the mode-n matricization of an
𝑁𝑡ℎ-order tensor X, which can be obtained by permuting
the dimensions ofX and reshaping the permuted tensor into
a matrix. ‖a‖ and ‖A‖ denote the two-norm of a and the
Frobenius norm ofA, respectively.TheHadamard products is
indicated by ∗. Table 1 lists all the symbols used in this paper.

2.1. CANDECOMP/PARAFAC Decomposition. CANDE-
COMP/PARAFAC (CP) is one of the most popular tensor
decompositions. The goal of CP decomposition is to factorize
a tensor into a sum of rank-one tensors. For instance, given a
third-order tensor X ∈ R𝐼×𝐽×𝐾, after CP decomposition, X
can be approximately represented as

X ≈
𝑅

∑
𝑟=1

X𝑟 ≡
𝑅

∑
𝑟=1

a𝑟 ∘ b𝑟 ∘ c𝑟, (1)

whereX𝑟 is a rank-one tensor and the symbol “∘” represents
the vector outer product operator [29]. 𝑅 is a positive integer,
which means it approximates X with 𝑅 rank-one tensors.
This CP model can be concisely described by

X ≈
𝑅

∑
𝑟=1

a𝑟 ∘ b𝑟 ∘ c𝑟 ≡ ⟦A,B,C⟧ , (2)

where ⟦ ⟧ denotes the CP decomposition operator [30]. In
this CP decomposition, A,B, and C are the factor matrices
ofX, which represent a combination of the vectors from the
rank-one components in Figure 1; i.e., A = [a1 a2 . . . a𝑅].
Later, Acar et al. improved CP algorithm and developed
an algorithm named CP-WOPT [31]; it uses a first-order
optimization method to solve the weighted least squares
problem.
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Table 1: List of symbols used in this paper.

Symbol Definition
X,X, x tensor, matrix, column vector
X(𝑛) mode-𝑛matricization of a tensor
a𝑛 the nth column vector of A
A(𝑛) the nthmatrix in the sequence A(1), A(2),..., A(𝑁)

∘ Outer product
⃝ Outer product of multiple matrices

∗ Hadamard product
R the set of real numbers
AT transpose of A
‖ ⋅ ‖ for matrices and vectors, it refers to the analogous Frobenius and two-norm, respectively
W missing index tensor
𝑠𝑖𝑧𝑒(A) number of entries in matrix A
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Figure 2: An illustration of a joint decompositionwith a third-order
tensor and a matrix factorization of 𝑅 components.X and Y share
one dimension; that is, A = [a1, a2, . . . , a𝑅] as the common factor
matrix. Figure adapted from [32].

2.2. Coupled Tensor Factorization. Coupled factorization
methods have become an effectivemeans for jointly analyzing
multisource datasets. The simplest form of coupled tensor
factorization is collective matrix factorization (CMF). For
example, in a movie recommendation system, additional
information about the movie, such as the movie genre, its
actors, or the user’s social network, in addition to the user’s
historical ratings, could be used to improve the accuracy
of rating predictions. For example, a user rating matrix for
the movie can be expressed as matrix X, which represents
𝑚𝑜V𝑖𝑒 × 𝑢𝑠𝑒𝑟, coupled with matrix Y, which represents
𝑚𝑜V𝑖𝑒 × 𝑡𝑦𝑝𝑒. This CMF model can be defined as

𝑓 (U,V,W) = 󵄩󵄩󵄩󵄩󵄩X − UVT󵄩󵄩󵄩󵄩󵄩
2 + 󵄩󵄩󵄩󵄩󵄩Y − UWT󵄩󵄩󵄩󵄩󵄩

2 , (3)

whereU, V, andW are the factor matrices.

As shown in Figure 2, a high-order extension of CMF, i.e.,
a CMTF model, can be simply defined as

𝑓 (A,B,C,V) = 󵄩󵄩󵄩󵄩X − ⟦A,B,C⟧󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩󵄩Y − AVT󵄩󵄩󵄩󵄩󵄩
2 , (4)

whereA, B,C, andV are the factor matrices. In this problem,
CMTF-OPT is used to vectorize all the factor matrices and
their partial derivatives so the problem can be solved by any
gradient-based optimization algorithm, such as the nonlinear
conjugate gradient (NCG)method.More details can be found
in [23].

2.3. ProblemDefinition. Consider a coupled tensor factoriza-
tion of two third-order tensorsX1 and X2 that are coupled
in the first dimension. A,B, and C are the factor matrices of
X1 andU,V, andW are the factor matrices ofX2. To jointly
factorize X1 and X2, the objective function can be written
as

𝑓 (A,B,C,U,V,W) = 1
2
󵄩󵄩󵄩󵄩X1 − ⟦A,B,C⟧󵄩󵄩󵄩󵄩2

+ 1
2
󵄩󵄩󵄩󵄩X2 − ⟦U,V,W⟧󵄩󵄩󵄩󵄩2 .

(5)

Given our focus is on situations that are not exactly coupled,
but rather approximately coupled, e.g., A ≈ U, function
(5) is no longer applicable. However, like soft constraints,
the matrices can be coupled approximately by adding a
regularization term. Then, the objective function becomes

𝑓 (A,B,C,U,V,W) = 1
2
󵄩󵄩󵄩󵄩X1 − ⟦A,B,C⟧󵄩󵄩󵄩󵄩2

+ 1
2
󵄩󵄩󵄩󵄩X2 − ⟦U,V,W⟧󵄩󵄩󵄩󵄩2

+ 𝜆
2 ‖A − U‖2 .

(6)

However, function (6) has two potential issues. (i)Themodel
loses accuracy when there is a large difference between the
number of entries in tensors X1 and X2. The errors from
approximating X1 and X2 will have a different impact on
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the objective function depending on whether there are many
more or many less entries in X1 than X2. Therefore, using
the same weight ratio will, obviously, result in a loss of
accuracy [33]. (ii) Further, thismodel is only suitable for cases
of two-tensor coupling and cannot be applied to multiple
tensor scenarios.

A completely shared factor matrix, whether approximate
or not, is only one type of exact coupling, e.g., A = U.
There are other types of exact coupling scenarios, such as
partial coupling, e.g., A = [a1 a2 a3], U = [a1 a2 u3],
where heterogeneous datasets only share some, but not all,
components [34]. The methods based on function (4) may
not be applicable to such situations. Hence, we turn our
attention to partial coupling with an extension to CTF-AC,
called CTF-PSF. CTF-PSF is based onAcar et al.’s [23] CMTF-
OPT algorithm, but with somemodifications to allow for data
reconstruction with heterogeneous data that has both shared
and unshared components.More details on thismodel appear
in Section 3.2.

3. The Proposed Models

In real life, many heterogeneous datasets are only approxi-
mately coupled, which means that their dimensions are not
exactly coupled. The CTF-AC model offers a joint decom-
position solution to situations with approximately coupled
datasets. Moreover, it is relatively common for multisource
datasets to be partially coupled, which means that only some
of the factors in a potential matrix are shared, not all, as
is the case with exact coupling and its variants. To address
these situations, we have extendedCTF-AC to incorporate the
CMTF-OPT algorithm in a method called CTF-PSF to offer
joint decomposition for partially coupled datasets. The CTF-
AC model is presented in Section 3.1. The CTF-PSF model is
presented in Section 3.2.

3.1. CTF-AC. To address the two potential problems associ-
ated with function (7), i.e. unbalanced tensor entries and its
inapplicability to multitensor scenarios, we have developed a
“two birds with one stone” solution. To overcome potential
inaccuracies as a result of unbalanced tensor entry distribu-
tions, we have added error weights to the objective function
(Section 3.1.1) and to extend traditional models for use with
more than two tensors, we have added a soft constraint to the
transfer factor matrix (Section 3.1.2).

3.1.1. Adding Error Weights. When a weight is assigned to the
fitting error for each tensor, function (6) becomes

𝑓 (A,B,C,U,V,W) = 𝜔1
2

󵄩󵄩󵄩󵄩X1 − ⟦A,B,C⟧󵄩󵄩󵄩󵄩2

+ 𝜔2
2

󵄩󵄩󵄩󵄩X2 − ⟦U,V,W⟧󵄩󵄩󵄩󵄩2

+ 𝜆
2 ‖A − U‖2 ,

(7)

where 1/2 helps with the derivative calculations and 𝜔1, 𝜔2
are the error weights from approximating X1 and X2,
respectively. 𝜆 is the error weight of the Frobenius norm of

A and U. To equalize the contribution of errors in each part
of the objective function, 𝜔1 and 𝜔2 are set to the reciprocals
of the number of entries inX1 and X2, respectively. 𝜆 is set
to the reciprocal of number of entries in A.

𝑓 (A,B,C,U,V,W) =
󵄩󵄩󵄩󵄩X1 − ⟦A,B,C⟧󵄩󵄩󵄩󵄩2

2 󵄩󵄩󵄩󵄩W(1)󵄩󵄩󵄩󵄩2

+
󵄩󵄩󵄩󵄩X2 − ⟦U,V,W⟧󵄩󵄩󵄩󵄩2

2 󵄩󵄩󵄩󵄩W(2)󵄩󵄩󵄩󵄩2

+ ‖A − U‖2
2𝑠𝑖𝑧𝑒 (A) ,

(8)

whereW(1) andW(2) are binary tensors of the same size as
X1 and X2, respectively. Therefore, ‖W(1)‖2 and ‖W(2)‖2
indicate the number of entries of X1 and X2, and 𝑠𝑖𝑧𝑒(A)
denotes the number of entries in A. In this way, the model
eliminates the influence an imbalanced number of tensor
entries has on accuracy.

3.1.2. Adding a Soft Constraint to the Transfer Factor Matrix.
To extend traditional models for use with more than two
tensors, we have modified function (8) on the assumption
that the Frobenius norm may have possible transitiveness.
Assume that tensorX3 is approximately shared withX1 and
X2. D,E, and F are the factor matrices ofX3. Three tensors
can then be approximately coupled by

𝑓 (A,B,C,U,V,W,D,E, F)

=
󵄩󵄩󵄩󵄩X1 − ⟦A,B,C⟧󵄩󵄩󵄩󵄩2

2 󵄩󵄩󵄩󵄩W(1)󵄩󵄩󵄩󵄩2
+

󵄩󵄩󵄩󵄩X2 − ⟦U,V,W⟧󵄩󵄩󵄩󵄩2
2 󵄩󵄩󵄩󵄩W(2)󵄩󵄩󵄩󵄩2

+
󵄩󵄩󵄩󵄩X3 − ⟦D,E, F⟧󵄩󵄩󵄩󵄩2

2 󵄩󵄩󵄩󵄩W(3)󵄩󵄩󵄩󵄩2

+ ‖A − U‖2 + ‖U −D‖2 + ‖D − A‖2
2𝑠𝑖𝑧𝑒 (A) .

(9)

Now consider a more general situation. Suppose there are
𝑀 tensors X(𝑚) ∈ R𝐼

(𝑚)

1 ×𝐼
(𝑚)

2 ×⋅⋅⋅×𝐼
(𝑚)

𝑁𝑚 from 𝑀 sources. The
objective function of the joint decomposition of these tensors,
based on the CP model, is defined as

𝑓 =
𝑀

∑
𝑚=1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩X
(𝑚) − 𝑁𝑚⃝
𝑛=1

A(𝑛)𝑚
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2

, (10)

where
𝑁𝑚⃝
𝑛=1

A(𝑛)𝑚 = A(1)𝑚 ∘ A(2)𝑚 ∘ ⋅ ⋅ ⋅ ∘ A(𝑁𝑚)𝑚 . (11)

Further, assume that there are 𝐶 related factors in these 𝑀
relevant tensors; i.e.,

𝐼(1)𝑐 = 𝐼(2)𝑐 = ⋅ ⋅ ⋅ = 𝐼(𝑀)𝑐 . (12)

Thus, functions (9) and (10) can be modified as
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𝑓 (A(1)1 , . . . ,A(𝑁)1 ,A(1)2 , . . . ,A(𝑁)2 , . . . ,A(1)𝑀 , . . . ,A(𝑁)𝑀 )

=
󵄩󵄩󵄩󵄩󵄩X(1) − ⃝𝑁1𝑛=1A(𝑛)1 󵄩󵄩󵄩󵄩󵄩

2

󵄩󵄩󵄩󵄩W(1)󵄩󵄩󵄩󵄩2
+

󵄩󵄩󵄩󵄩󵄩X(2) − ⃝𝑁2𝑛=1A(𝑛)2 󵄩󵄩󵄩󵄩󵄩
2

󵄩󵄩󵄩󵄩W(2)󵄩󵄩󵄩󵄩2
+ ⋅ ⋅ ⋅ +

󵄩󵄩󵄩󵄩󵄩X(𝑀) − ⃝𝑁𝑀𝑛=1A(𝑛)𝑀 󵄩󵄩󵄩󵄩󵄩
2

󵄩󵄩󵄩󵄩W(𝑀)󵄩󵄩󵄩󵄩2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑡𝑒𝑛𝑠𝑜𝑟𝑠

+ ∑𝑀−1𝑚=1 󵄩󵄩󵄩󵄩󵄩A(1)𝑚 − A(1)𝑚+1
󵄩󵄩󵄩󵄩󵄩
2

𝑠𝑖𝑧𝑒 (A(1)1 ) +
󵄩󵄩󵄩󵄩󵄩A(1)𝑀 − A(1)1

󵄩󵄩󵄩󵄩󵄩
2

𝑠𝑖𝑧𝑒 (A(1)1 )⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
1𝑠𝑡 𝑠ℎ𝑎𝑟𝑒𝑑 𝑓𝑎𝑐𝑡𝑜𝑟 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡

+ ∑𝑀−1𝑚=1 󵄩󵄩󵄩󵄩󵄩A(2)𝑚 − A(2)𝑚+1
󵄩󵄩󵄩󵄩󵄩
2

𝑠𝑖𝑧𝑒 (A(2)1 ) +
󵄩󵄩󵄩󵄩󵄩A(2)𝑀 − A(2)1

󵄩󵄩󵄩󵄩󵄩
2

𝑠𝑖𝑧𝑒 (A(2)1 )⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
2𝑠𝑡 𝑠ℎ𝑎𝑟𝑒𝑑 𝑓𝑎𝑐𝑡𝑜𝑟 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡

+ ⋅ ⋅ ⋅

+ ∑𝑀−1𝑚=1 󵄩󵄩󵄩󵄩󵄩A(𝐶)𝑚 − A(𝐶)𝑚+1
󵄩󵄩󵄩󵄩󵄩
2

𝑠𝑖𝑧𝑒 (A(𝐶)1 ) +
󵄩󵄩󵄩󵄩󵄩A(𝐶)𝑀 − A(𝐶)1

󵄩󵄩󵄩󵄩󵄩
2

𝑠𝑖𝑧𝑒 (A(𝐶)1 )⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐶𝑠𝑡 𝑠ℎ𝑎𝑟𝑒𝑑 𝑓𝑎𝑐𝑡𝑜𝑟 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡

=
𝑀

∑
𝑚=1

󵄩󵄩󵄩󵄩󵄩X(𝑚) − ⃝𝑁𝑚𝑛=1A(𝑛)𝑚 󵄩󵄩󵄩󵄩󵄩
2

󵄩󵄩󵄩󵄩W(𝑚)󵄩󵄩󵄩󵄩2
+
𝐶

∑
𝑐=1

∑𝑀−1𝑚=1 󵄩󵄩󵄩󵄩󵄩A(𝑐)𝑚 − A(𝑐)𝑚+1
󵄩󵄩󵄩󵄩󵄩
2

𝑠𝑖𝑧𝑒 (A(𝑐)1 )

+
𝐶

∑
𝑐=1

󵄩󵄩󵄩󵄩󵄩A(𝑐)𝑀 − A(𝑐)1
󵄩󵄩󵄩󵄩󵄩
2

𝑠𝑖𝑧𝑒 (A(𝑐)1 ) .

(13)

Let 𝜕‖X(𝑚) − ⃝𝑁𝑚𝑛=1A(𝑛)𝑚 ‖2/𝜕A(𝑛)𝑚 = 𝑔(A(𝑛)𝑚 ). Then, the partial
derivatives of 𝑓 with respect to A(𝑛)𝑚 can be calculated with

function (14) as follows:

𝜕𝑓
𝜕A(𝑛)𝑚 =

{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{
{

{{{{{{{{{{{
{{{{{{{{{{{
{

2 ∗ 𝑔 (A(𝑛)𝑚 )
󵄩󵄩󵄩󵄩W(𝑚)󵄩󵄩󵄩󵄩2

+ 2 ∗ (2 ∗ A(𝑛)𝑚 − A(𝑛)𝑚−1 − A(𝑛)𝑚+1)
𝑠𝑖𝑧𝑒 (A(𝑛)1 ) , 𝑚 ̸= 1,𝑚 ̸= 𝑀

2 ∗ 𝑔 (A(𝑛)𝑚 )
󵄩󵄩󵄩󵄩W(𝑚)󵄩󵄩󵄩󵄩2

+ 2 ∗ (2 ∗ A(𝑛)𝑚 − A(𝑛)𝑀 − A(𝑛)𝑚+1)
𝑠𝑖𝑧𝑒 (A(𝑛)1 ) ,𝑚 = 1

2 ∗ 𝑔 (A(𝑛)𝑚 )
󵄩󵄩󵄩󵄩W(𝑚)󵄩󵄩󵄩󵄩2

+ 2 ∗ (2 ∗ A(𝑛)𝑚 − A(𝑛)𝑚−1 − A(𝑛)1 )
𝑠𝑖𝑧𝑒 (A(𝑛)1 ) , 𝑚 = 𝑀

}}}}}}}}}}}
}}}}}}}}}}}
}

𝑛 <= 𝐶

2 ∗ 𝑔 (A(𝑛)𝑚 )
󵄩󵄩󵄩󵄩W(𝑚)󵄩󵄩󵄩󵄩2

, 𝐶 < 𝑛 <= 𝑁.

(14)

The factormatrix between multiple tensors is constrained
using the soft constraint transfer method. When taking
partial derivatives of the shared factor matrix, the solution
of the factor matrix for the first tensor and the last tensor
is somewhat different from that in the middle. Hence, the
shared factormatrix is divided into these three different types
of partial derivatives, i.e., the first, last, and middle.

With all the gradients of the factor matrix derived, the
problem can be solved with any gradient-based method. The
algorithmflowof the joint-filled nonlinear conjugate gradient
with C related factors of these M relevant tensors is shown
in Algorithm 1. Convergence is achieved when the relative
change of the objective function is less than the set threshold.
The algorithm terminates when the number of iterations
reaches its maximum.

3.2. CTF-PSF. The CTF-AC model outlined above can fur-
ther be evolved into a new model that deals with partially
coupled datasets, i.e., CTF-PSF [35].

As shown in Figure 3, when heterogeneous datasets only
share some components rather than all, methods based on
objective function (4) may not be applicable. Without loss
of generality, we take the coupled datasets of a tensor and a
matrix as an example. Figure 3 shows that a third-order tensor
X ∈ R𝐼×𝐽×𝐾 and a matrix Y ∈ R𝐼×𝑀 are coupled in the first
dimension. However, suppose they have the same low-rank
structures, i.e., the same number of 𝑅. Let A1 ∈ R𝐼×𝑅, B ∈
R𝐽×𝑅, and C ∈ R𝐾×𝑅 be the factor matrices of X extracted
through a individual decomposition with 𝑅 components.
Similarly, A2 ∈ R𝐼×𝑅 and V ∈ R𝑀×𝑅 are the factor matrices
extracted from matrix Y using a matrix factorization with
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Input: X(𝑚) ∈ R
𝐼
(𝑚)
1
×𝐼
(𝑚)
2
×⋅⋅⋅×𝐼
(𝑚)
𝑁𝑚 , 𝑚 ∈ [1,𝑀],𝑅, 𝐶

Output: factor matricesA(𝑛)𝑚 , 𝑚 ∈ [1,𝑀], 𝑛 ∈ [1,𝑁𝑚]
1 𝑖𝑡𝑒𝑟 = 0;
2 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 = 0;
3 𝑐𝑜𝑛V𝑒𝑟𝑔𝑒𝑛𝑐𝑒 = 0;
4 initialize A(𝑛)𝑚 , 𝑚 ∈ [1,𝑀], 𝑛 ∈ [1,𝑁𝑚];
5 while 𝑐𝑜𝑛V𝑒𝑟𝑔𝑒𝑛𝑐𝑒 ̸= 1 or 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 ̸= 1 do
6 x ←󳨀 A(𝑛)𝑚 ,vectorized factor matrices;
7 𝑓 ←󳨀 calculate objective function using (13);
8 𝜕𝑓/𝜕A(𝑛)𝑚 ←󳨀 calculate the partial derivatives of 𝑓 with respect to A(𝑛)𝑚 using (14);
9 g ←󳨀 vectorized combination of 𝜕𝑓/𝜕A(𝑛)𝑚 ;
10 x ←󳨀 x, 𝑓, g, update with nonlinear conjugate gradient and linear search;
11 A(𝑛)𝑚 ←󳨀 x, convert the vector to the factor matrices;
12 𝑐𝑜𝑛V𝑒𝑟𝑔𝑒𝑛𝑐𝑒 ←󳨀 convergence analysis;
13 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 ←󳨀 termination analysis;
14 𝑖𝑡𝑒𝑟 ←󳨀 𝑖𝑡𝑒𝑟 + 1;
15 end

Algorithm 1: The pseudocode of CTF-AC.
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Figure 3: Illustration of a joint decomposition for a third-orderX
and aY coupled in one dimension.They have𝑅𝑐 shared components
and 𝑅 − 𝑅𝑐 unshared components rather than sharing all the
components.

𝑅 components. In partially coupled multisource datasets,
the factor matrix derived from each source will not match
exactly; i.e.,A1 and A2 are likely to only share some columns.
Further suppose that tensor X and matrix Y have 𝑅𝑐 shared
components and 𝑅𝑠 (𝑅−𝑅𝑐) unshared components. Then, the
objective function (4) can be modified to

𝑓 (A1,B,C,A2,V) = 1
2
󵄩󵄩󵄩󵄩X − ⟦A1,B,C⟧󵄩󵄩󵄩󵄩2

+ 1
2
󵄩󵄩󵄩󵄩󵄩Y − A2V

T󵄩󵄩󵄩󵄩󵄩
2 ,

(15)

where

A1 = [
[
a1, a2, . . . , a𝑅𝑐⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

A𝑐

, a𝑅𝑐+1, . . . , a𝑅⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
A𝑠1

]
]

,

A2 = [[
[
a1, a2, . . . , a𝑅𝑐⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

A𝑐

, a󸀠𝑅𝑐+1, . . . , a󸀠𝑅⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
A𝑠2

]]
]

,
(16)

and where A𝑠1 ∈ R𝐼×𝑅𝑠 and A𝑠2 ∈ R𝐼×𝑅𝑠 are the unshared
columns of A1 and A2, respectively, and A𝑐 ∈ R𝐼×𝑅𝑐 are the
shared 𝑅𝑐 columns. Thus, the objective function (15) can be
further modified to

𝑓 (A𝑐,A𝑠1,A𝑠2,B,C,V)
= 1

2
󵄩󵄩󵄩󵄩X − ⟦[A𝑐,A𝑠1] ,B,C⟧󵄩󵄩󵄩󵄩2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑓1

+ 1
2
󵄩󵄩󵄩󵄩󵄩Y − [A𝑐,A𝑠2]VT󵄩󵄩󵄩󵄩󵄩

2

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑓2

.
(17)

Here, the shared and unshared components are optimized
separately. The unshared components of the tensors and
matrix are updated using individual decompositions, and
the shared components of the tensor and the matrix are
updated using joint decompositions. Specific details of this
optimization can be found in [35].

The pseudocode for CTF-PSF is shown in Algorithm 2.
The algorithm terminates when the number of iterations and
the number of function evaluations reach their respective
maximums. The algorithm converges based on the relative
change value and the two-norm of the gradient of all factor
matrices divided by the number of entries in the gradient.The
functions of 𝐼𝑛𝐷 and 𝐽𝑜𝐷 in Algorithm 2 denote individual
and joint decompositions, respectively. First, each single
dataset is decomposed individually to update the unshared
columns (A𝑠1, A𝑠2) in the matrix of shared dimension (line 7
to 17 in Algorithm 2). The others factor matrices (B, C, and
V) and the shared columns (A𝑐) in the matrix of the shared
dimension are updated through joint decomposition (line 19
in Algorithm 2). However, this does mean that the number
of shared components needs to be determined in advance.
To ensure proper modeling (line 20 Algorithm 2), there is a
necessary adjustment step to combine A𝑐, A𝑠1, and A𝑠2 into
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Input: X,Y, 𝑅𝑐, 𝑅̂
Output: A1,A2,B,C,V
1 initialize A1,A2,B,C,V whereA1 = A2;
2 𝑖𝑡𝑒𝑟 = 0;
3 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 = 0;
4 𝑐𝑜𝑛V𝑒𝑟𝑔𝑒𝑛𝑐𝑒 = 0;
5 while 𝑐𝑜𝑛V𝑒𝑟𝑔𝑒𝑛𝑐𝑒 ̸= 1 or 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 ̸= 1 do
6 individual decompositions;
7 if 𝑅𝑐 < 𝑅̂ then
8 if iter = 0 then
9 update by initialization;
10 A𝑠1 ←󳨀 𝐼𝑛𝐷(X,A1,B,C, 𝑅̂);
11 A𝑠2 ←󳨀 𝐼𝑛𝐷(Y,A2,V, 𝑅̂);
12 else
13 update by the result of last iteration;
14 A𝑠1 ←󳨀 𝐼𝑛𝐷(X,A1,B,C, 𝑅̂);
15 A𝑠2 ←󳨀 𝐼𝑛𝐷(Y,A2,V, 𝑅̂);
16 end
17 end
18 joint decomposition;
19 A𝑐,B,C,V ←󳨀 𝐽𝑜𝐷(X,Y,A1,A2,B,C,V, 𝑅̂);
20 A1,A2 ←󳨀 𝐴𝑑𝑗𝑢𝑠𝑡(A𝑐,A𝑠1,A𝑠2);
21 𝑐𝑜𝑛V𝑒𝑟𝑔𝑒𝑛𝑐𝑒 ←󳨀 convergence analysis;
22 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 ←󳨀 termination analysis;
23 𝑖𝑡𝑒𝑟 ←󳨀 𝑖𝑡𝑒𝑟 + 1;
24 end

Algorithm 2:The pseudocode of CTF-PSF.

A1, A2. It is worth noting here that CMTF-OPT is a special
case of CTF-PSF when 𝑅𝑐 = 𝑅̂.

4. Experiments

4.1. Experimental Design. We tested and verified the advan-
tages of both CTF-AC and CTF-PSF through a series of
comparative experiments with several baselines on both
simulated data and three real-world datasets.

4.1.1. Baselines. The baselines roughly fall into two different
categories: methods that jointly decompose multiple tensors,
such as CMTF-OPT and ACMTF-OPT, and methods that
individually decompose a single tensor, such as CP-WOPT.
A description of each follows.

(i) CMTF-OPTfirst vectorizes all the factormatrices and
their partial derivatives so that problems can be solved
using any gradient-based optimization algorithm.

(ii) ACMTF-OPT is an advanced version of CMTF-OPT
that includes additional constraints to allow analysis
of more complex coupled data. It can also be used for
missing completion.More details can be found in [16].

(iii) CP-WOPT is an individual decomposition method
for single tensors, it uses a first-order optimization
method to solve the weighted least squares problem.

4.1.2. Performance Metrics. The performance of all methods,
including CTF-AC and CTF-PSF, was evaluated according to
the accuracy of missing completions. Hence, missing index
tensors in the models were added to deal with incomplete
data. The assessment metric is defined as the difference
between the original and the estimated entries for missing
values, known as a tensor completion score (TCS). TCS is
defined as

TCS =
󵄩󵄩󵄩󵄩󵄩(1 −W) ∗ (X − X̂)󵄩󵄩󵄩󵄩󵄩

‖(1 −W) ∗X‖ , (18)

where X is the initial tensor and X̂ indicates the datasets
estimated by different methods. W is a binary tensor of the
same size asX and represents the missing entries inX with
zeros to represent themissing data and ones to represent valid
data. Obviously, the smaller the TCS value, the better the
result.

In the CTF-AC experiments, we also used RMSE to
measure the fitness of the observable values for each method,
defined as

RMSE =
󵄩󵄩󵄩󵄩󵄩W ∗ (X − X̂)󵄩󵄩󵄩󵄩󵄩

‖W‖ . (19)

4.1.3. Real-World Datasets. Dataset1 (Dataset1 is available
at http://www.models.life.ku.dk/3Dnosedata) contains data
from an electronic nose sensor. It comprises structural data
from readings on the smell of licorice given 18 licorice
samples × 241 times × 12 sensors [36], including 6 good
licorice samples, 6 bad licorice samples, and 6 fabricated bad
licorice samples. These were mixed into three tensors, each
with a dimension of 6× 241× 12 to test approximately coupled
datasets with CTF-AC.

Dataset2 (Dataset2 is available at http://www.med-
info.cs.ucy.ac.cy) consists of 38 patients who underwent two
MRI scans of different parts of the brain within the same year.
One patientwas randomly selected from38patients, and then
we randomly selected twoMRI brain scans of the same site as
the two sources of data. Each scan has a size of 378 × 378.The
two MRI images are shown in Figure 4. 𝐷𝑎𝑡𝑎𝑠𝑒𝑡2 was also
used to assess CTF-AC.

Dataset3 (Dataset3 is available at http://www.models.life
.ku.dk/joda/prototype) contains 29 chemical mixtures, each
comprising five chemicals measured using LC-MS (liquid
chromatography-mass spectrometry) and NMR (nuclear
magnetic resonance). NMRwas able to detect all five compo-
nent chemicals and the results can be formulated as tensors
X ∈ R28×13324×8. LC-MS, however, only detected four
components and therefore the results were formulated as a
matrixY ∈ R28×168.More details about these coupled datasets
can be found in [16].This dataset was used to assess CTF-PSF.

4.1.4. General Experimental Parameters. For all comparative
experiments, each method was given the same termination
conditions. The maximum number of iterations was set to
(104), and the maximum number of function evaluations was
set to (105). Additionally, the relative change in loss function

http://www.models.life.ku.dk/3Dnosedata
http://www.medinfo.cs.ucy.ac.cy
http://www.medinfo.cs.ucy.ac.cy
http://www.models.life.ku.dk/joda/prototype
http://www.models.life.ku.dk/joda/prototype
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(a) First MRI scan of the brain (b) Second MRI scan of the same site

Figure 4: The results of two brain examinations of the same patient on the same site within the same year.

values was set to 10−6 and the two-norm of the gradient
divided by the number of entries in the gradient was set to
10−7. The sparsity penalty parameters for ACMTF-OPT were
set to 10−3; i.e., 𝛽 = 10−3.

4.2. Partially Coupled Data

4.2.1. Simulated Data

Experimental Set-Up. Tensor data X ∈ R𝐼1×𝐼2×⋅⋅⋅×𝐼𝑁 and
matrix data Y ∈ R𝐼𝑛×𝑀 were generated according to the same
technique in [32] using the following formulation:

X = ⟦A(1),A(2), . . . ,A(𝑁)⟧ + ⟦B(1), . . . ,B(𝑁)⟧ ,
Y = A(𝑛)VT + C(1)C(2)

T,
(20)

where A(𝑛) ∈ R𝐼𝑛×𝑅𝑐 is the factor matrix shared by both
datasets and the other matrices A(𝑖) ∈ R𝐼𝑖×𝑅𝑐 (𝑖 = 1, 2, . . . , 𝑁
and 𝑖 ̸= 𝑛) are the factor matrices for other dimensions of the
tensor. V ∈ R𝐼𝑖×𝑅𝑐 denotes the factor matrix corresponding
to the second dimension of matrix Y. 𝑅𝑐 denotes the number
of shared components. The factor matrices B(𝑖) ∈ R𝐼𝑛×𝑅𝑠 ,
𝑖 ∈ [1,𝑁], are the unshared factors for each dimension of
the tensor. C(1) ∈ R𝐼𝑛×𝑅𝑠 and C(2) ∈ R𝑀×𝑅𝑠 are the unshared
factors of the matrix Y, and 𝑅𝑠 represents the number of the
unshared components in each dataset. B(𝑛), C(1), and A(𝑛)
correspond to A𝑠1, A𝑠2, and A𝑐 in Section 3.2, respectively.

All matrices, except for B(𝑛) and C(1), were generated
randomly with entries drawn from a standard normal distri-
bution. All matrix columns were normalized to a unit norm.
Then, Gaussian noise was added to the tensor and matrix
using X𝑛 = X + 𝜂N(‖X‖/‖N‖), Y𝑛 = Y + 𝜂N(‖Y‖/‖N‖),
respectively, where 𝜂 indicates that the noise levels, tensors
N, and matrixN are the same size. All entries had a standard
normal distribution. Finally, the simulated missing values
were added to tensor X𝑛 according to a sampling ratio,
denoted as SR.

In the first dimension, we used a tensor size of 50×30×20
coupled with a matrix of 50 × 100. The factor matrices were
generated and constructed as coupled datasets using (20).
Let 𝑅̂ indicate the estimation rank of the coupled datasets.
In individual decompositions, 𝑅̂ denotes the estimation rank
of the individual datasets. In the experiments with CTF-
PSF, the total number of shared and unshared components
were set to four unless otherwise specified; i.e., the rank of
each individual dataset was set to 4 (𝑅 = 𝑅𝑐 + 𝑅𝑠 = 4).
The noise level 𝜂 and the sampling ratio of missing values
(SR) were set independently for each comparative test. As
previously mentioned, performance was evaluated according
to the estimation accuracy of missing values as calculated by
(18).

Numerical Results. Figures 5 and 6 shows the TCSs of all four
methods for different SR at 𝑅𝑐 = 3, 𝑅𝑠 = 1, and 𝜂 = 0.1
when 𝑅̂ = 3 and 𝑅̂ = 4, respectively. Figure 5(a) shows
similar performance by the three joint decompositions based
methods when 𝑅𝑐 = 𝑅̂. In Figure 5(b), we see that CP-WOPT,
which is based on individual decomposition was relatively
stable and ostensibly equivalent to the joint decomposition
methodswith amissing value ratio of less than 90%.However,
Figure 5(c) shows that the joint decomposition methods
performed well with many missing values, while individual
decomposition produced completely inaccurate results. CTF-
PSF considers the shared components and does not take
the unshared components into account when 𝑅̂ = 𝑅𝑐. In
other words, CMTF-OPT is a special case of CTF-PSF when
the coupled datasets do not have any unshared components.
Figure 6(a) shows that CMTF-OPT and ACMTF-OPT gave
almost the same performance when 𝑅𝑐 ̸= 𝑅̂. However,
in contrast to the previous experiment, individual decom-
position had certain advantages with a missing value ratio
below 90%, as shown in Figure 6(b). It is worth noting that
since CTF-PSF considers both the unshared components
and the shared components, this method performed almost
as well as the methods based on individual decomposition.
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Figure 5: The TCS for each baseline with different amounts of missing data (𝑅̂ = 3 when 𝑅𝑐 = 3, 𝑅𝑠 = 1). The performance of joint
decompositions methods was almost the same because CMTF-OPT is a special case of CTF-PSF when 𝑅̂ = 𝑅𝑐. Figures 5(b) and 5(c) are local
amplifications of Figure 5(a). The sampling ratio of missing values is represented by SR.

However, as can be seen in Figure 6(c), once the proportion
of missing values reached 90%, the TCS for the individual
decomposition method rapidly increased, while CTF-PSF
continued to provide good performance.

The influence of different numbers of shared components
with the methods based on joint decomposition is shown in
Figure 7. CTF-PSF and CMTF-OPT were tested with 𝑅̂ =
𝑅 = 6, 𝑅𝑐 = {1, 3, 5}, and 𝜂 = 0.1 at different missing
value ratios. As shown, increasing the number of shared
components helped to improve completion accuracy. This
is mainly because the factor matrix provides more auxiliary
information as the number of shared components increases.
In addition, the advantages of CTF-PSF becamemore obvious
as the number of shared components increased compared to
CMTF-OPT.

Figure 8 shows the TCSs for the joint decomposition
methods when X and Y were simultaneously sampled at
𝑅𝑐 = 3, 𝜂 = 0.1 and SR(%) = [90, 40]. Here, 𝑅̂ = 𝑅 = 4. S-1 and
S-2 representX andY, respectively.The results show that our
method still achieved good completion accuracy when every
tensor and matrix contained at least some missing values.

4.2.2. Real-World Data. Recall that X and Y in 𝐷𝑎𝑡𝑠𝑒𝑡3
(described in Section 4.1.3) are partially coupled in terms of
the constituent chemicals. These datasets have four shared
components and X has an unshared component. LC-MS
data are often noisy and contain many irrelevant features.

Table 2: The TCSs for methods based on joint decomposition with
the LC-MS and NMR dataset at 𝑅̂ = 5, SR(%) = {30, 50, 80} at 𝜂 =
0.1.
SR(%) CTF-PSF ACMTF-OPT CMTF-OPT CTF-AC
[30 0] 0.2669 0.3363 0.2550 4.0155
[50 0] 0.4517 0.5184 0.4470 2.0650
[80 0] 1.2403 1.2336 1.2424 3.5604

Therefore, noise can also be regarded as an unshared com-
ponent of Y.

To compare the performance of differentmethods,Xwas
simulated with different proportions of missing values, and
TCSs were evaluated for all baselines using joint decomposi-
tion, as shown in Table 2. CMTF-OPT preformed better than
CTF-PSF with lower amounts of missing values (SR(%)), and
ACMTF-OPT was superior to CTF-PSF when the missing
value ration reached 80%. The reason for this is that CTF-
PSF does not consider the weight of shared and unshared
components. Unsurprisingly, CTF-AC did not perform as
well as the other methods, including CTF-PSF, when faced
with partially coupled datasets.

4.2.3. Discussion. Figure 9 shows the TCSs for the methods
based on joint decomposition at 𝜂 = {0.1, 0.3}, SR(%) =
{20, 40, 60, 80}, 𝑅𝑐 = {1, 2, 3, 4}, and 𝑅̂ = 𝑅𝑐 +𝑅𝑠. As indicated
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Figure 6:The TCS for each baseline with different amounts of missing data (𝑅̂ = 4when 𝑅𝑐 = 3, 𝑅𝑠 = 1). CTF-PSF performed better than the
baseline joint decomposition methods, indicating that CTF-PSF does not lose accuracy with high amounts of missing data like CP-WOPT.
Figures 6(b) and 6(c) are local amplifications of Figure 6(a).
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in the figure, the accuracy of these methods deteriorated
as noise increased, particularly with higher proportions of
missing values. CTF-PSF performed better than the other
methods when 𝑅𝑐 < 𝑅̂, but not obviously so with high levels
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Figure 8: An illustration of the joint decomposition methods with
a third-order tensor and a matrix with 𝑅 components. X and Y
share one dimension (i.e.,A = [a1, a2, . . . , a𝑅]) as the common factor
matrix. Figure adapted from [32].

of noise (𝜂 = 0.3). This is because unshared components
can be very helpful with data reconstruction when 𝑅𝑐 < 𝑅̂.
The accuracy of these methods improved as the number of
shared components (𝑅𝑐) increased. And their performance
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Figure 10: The TCSs for coupled factorization methods with
different numbers of estimated components (𝑅̂) (at SR = 80%, 𝜂 =
0.1 and 𝑅𝑐 = 2, 𝑅𝑠 = 2). CTF-PSF showed its best performance at
𝑅̂ = 4, while CMTF-OPT and ACMTF-OPT peaked at 𝑅̂ = 6.

was almost the same when 𝑅𝑐 = 𝑅 = 4, i.e., when all
components are shared, whereCMTF-OPTbecomes a special
case of CTF-PSF.

Figure 10 shows the TCSs for the joint decomposition-
based methods for different numbers of estimated compo-
nents. 𝑅̂ (i.e., 𝑅̂ = {2, 3, 4, 5, 6, 7}, at SR(%) = 80, 𝜂 = 0.1, and
𝑅𝑐 = 2,𝑅𝑠 = 2).The TCSs for CMTF-OPT and ACMTF-OPT
improved as the number of estimated components increased,
peaking at 𝑅̂ = 6. However, despite CTF-PSF’s performance
improvement until 𝑅̂ = 4, there were no significant changes
when 𝑅̂ > 4. These results demonstrate that CTF-PSF is able

to improve accuracy at relatively low estimation ranks over
CMTF-OPT and ACMTF-OPT.

4.3. Approximately Coupled Data

4.3.1. Simulated Data

Experimental Set-Up. The multisource datasets we generated
contained two types of shared data to simulate the different
kinds of shared relationships found in reality. Without loss of
generality, two third-order tensors are used as an example to
explain the way the data was generated. Suppose the tensors
X ∈ R𝐼×𝐽×𝐾 and Y ∈ R𝐼×𝑀×𝑁 are two related tensors.
The factor matrices for tensorX derived through individual
decomposition are A, B, and C, and the factor matrices for
tensor Y derived through individual decomposition are U,
V, andW. From these matrices, two simulated datasets were
generated in two different ways:

Case 1. The unshared factor matrices B, C,V, andW and the
shared factor matrix A were randomly generated from the
normal distribution. U = 𝑟𝑎𝑛𝑑𝑜𝑚(0, 1) ∗ A + 𝑟𝑎𝑛𝑑𝑜𝑚(0, 1),
where the 𝑟𝑎𝑛𝑑𝑜𝑚 function represents the random arrays
generated from a specified distribution. Two third-order ten-
sors were then formed based on the generated factor matrix
and normalized to arrive atX and Y. Then, Gaussian noise
was added to the tensor, i.e.,X𝑛 = X + 𝜂N(‖X‖𝐹/‖N‖𝐹),
whereN ∈ R𝐼×𝐽×𝐾 corresponds to the random noise tensor
and 𝜂 is used to adjust the noise level. The same process
applies toY𝑛.

Case 2. The only difference between this case and Case 1 is
that U = 𝑛𝑜𝑟𝑚𝑎𝑙(0.5 ∗ 𝑛, 1), where 𝑛 indicates the parameter
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Table 3: TCSs and RMSEs for three methods on two datasets at SR(%)= [0, 95].
SR(%) CTF-AC MTF CP-WOPT

RMSE1 RMSE2 TCS2 RMSE1 RMSE2 TCS2 TCS2
Case 1 2.8155e-4 2.5189e-4 0.1155 2.8108e-4 4.3111e-4 0.2455 0.2841
Case 2 2.8270e-4 3.7283e-4 0.2137 2.8111e-4 3.7471e-4 0.2257 0.3040

related to the number of tensors and the 𝑛𝑜𝑟𝑚𝑎𝑙 function
produces random arrays from a normal distribution.

The difference between these two datasets is the relation-
ship between the factor matrices A and U. In Case 1, A has a
linear relationship to U. In Case 2, the elements in A and U
have normal distributions that satisfy the same variance with
different mean values. Both these datasets approximate real-
world data.

We use CMTF-OPT to realize the traditional multi-
source tensor decomposition, i.e., MTF. In the experiments
with simulated datasets, we compared CTF-AC with a joint
decomposition method (MTF) and an individual decompo-
sition method (CP-WOPT). We set the dimensions of the
tensor to 50 and the estimation rank to 5.The estimated rank
for joint decomposition methods was set to 𝑅̂ = 10. 𝑅̂ is the
estimated rank for CP-WOPT. All noise levels were set to 𝜂 =
0.1 and, again, the sampling ratio of missing values is denoted
as SR.

Numerical Results. Table 3 shows the completion degree of
the observed values and the completion accuracy of the
missing values for both simulated datasets with a missing
value ratio of SR(%) = [0, 95]. Amissing value ration of SR(%)
= [0, 95] means that the first tensor has no missing values,
while 95% of the values in the second tensor are missing.
Since the two tensors are the same size, but the amount
of missing values is very different, the completions for the
first tensor and the second differ greatly, i.e., 100 : 5. Table 3
shows the root mean square errors for the observable data
in the first tensor (RMSE1) and the second tensor (RMSE2).
TCS1 represents the missing value results for the first tensor,
with TCS2 representing the second tensor. The results in
Table 3 show that RMSE1 for MTF was similar to CTF-AC.
In Case 2, CTF-AC’s RMSE1 (2.8270e-4) was actually larger
than MTF (2.8111e-4). However, regardless of the type of
dataset, theRMSE2 forMTFwas larger than that forCTF-AC,
especially in Case 1. This indicates that traditional models,
like MTF, sacrifice completion accuracy with tensors that
have a smaller number of observables to compensate for
completion accuracy with tensors that have a larger number
of observables. Therefore, the CTF-AC tensor completion
score for the second tensor (TCS2) is better than the MTF
under this circumstance. CTF-PSF was not included in the
experiments with these simulated datasets given that both are
approximately coupled. However, CTF-PSF is included in the
following experiments with real-world datasets.

4.3.2. Real-World Datasets. Table 4 shows the TSCs for the
four methods with the electronic nose dataset and missing
value sampling ratios of SR (%) = [5, 50, 90]. Here, MTF had

Table 4: The TCSs for all four methods using the electronic nose
dataset sampled at different proportions of missing values (SR(%)
= [5, 50, 90]). OVERALL denotes the sum of all TCSs at different
proportions.

METHODS TCS1 TCS2 TCS3 OVERALL
CTF-AC 0.0049 0.0070 0.0858 0.0977
CTF-PSF 0.0040 0.0107 0.1699 0.1846
MTF 0.0029 0.0053 0.1635 0.1717
CP-WOPT 0.0037 0.0034 0.1284 0.1355

better completion accuracy with small missing value ratios
(TCS=0.0029 at SR(%)= 5), but this accuracywas significantly
reduced on tensors with large ratios (TCS=0.1635 at SR(%)
= 90). CTF-AC shows better TCSs with more missing values
because, again, traditional methods, like MTF, sacrifice accu-
racy with fewer observables in favor of better accuracy with
more. With a missing value ratio of 90%, CTF-AC’s TCS was
half that of MTF. Adding the TCSs for all three missing value
ratios, CTF-AC achieved better overall accuracy. CTF-PSF
was less effective than other methods because it is specifically
designed to address partial coupling and is not well-suited to
approximately coupled datasets.

Table 5 lists the TCSs for the four methods on the brain
MRI dataset with missing value sampling ratios of SR(%)
= [x, 0] and x = [10, 20, 30, 40, 50, 60, 70]. The bold results
denote the best scores. Here, CTF-AC shows a significant
advantage over MTF. Although there was no significant
difference between the completion accuracy for CTF-AC
and CP-WOPT with small missing value ratios, CTF-AC’s
completion accuracy on the first image improved in com-
parison as the ratio increased because it borrows auxiliary
information from the second image. Hence, CTF-AC’s TCS
was superior to CP-WOPT with a high missing value ratio.
Figure 11 shows the completion accuracy of the first MRI
image for all methods when SR (%) = [60, 0].
4.3.3. Discussion. Figures 12(a) and 12(b) show the comple-
tion accuracy comparison plots for each method on the two
simulated multi-source datasets; one with balanced missing
value ratios (SR(%) = [50, 50]), the other with imbalanced
ratios (SR(%) = [5, 95]). With a balanced ratio, the number
of observable and missing values in the tensors is roughly
equivalent, while with imbalanced ratios, there is great
disparity.

From Figure 12, we see that the TSCs for the weighted
model, CTF-AC, and the traditional model, MTF, are similar
with balanced observable andmissing values. However, as the
disparity increases, the disadvantages of traditional models
becomes very obvious. Figure 12(a) shows an even higher
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Figure 11: MRI data of the brain at SR(%) = [60, 0], the completion effect of all methods on the first image.
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Figure 12: The TCSs for the three methods on Cases 1 and 2 with balanced and unbalanced missing values.

Table 5: The TSCs for all four methods on MRI brain scans with different ratios of missing values.

SR(%) CTF-AC CTF-PSF MTF CP-WOPT
[10 0] 0.3427 0.3729 0.3631 0.3408
[20 0] 0.3325 0.3642 0.3596 0.3345
[30 0] 0.3379 0.3779 0.3694 0.3390
[40 0] 0.3413 0.3808 0.3712 0.3436
[50 0] 0.3446 0.3874 0.3797 0.3464
[60 0] 0.3525 0.3971 0.3921 0.3572
[70 0] 0.3641 0.4132 0.4095 0.3783
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Table 6: The TCSs for all methods on the brain MRI dataset at SR(%) = [x, 10] and x = [10, 30, 50, 70].
SR(%) CTF-AC CTF-PSF MTF CP-WOPT

TCS1 TCS2 TCS1 TCS2 TCS1 TCS2 TCS1 TCS2
[10 10] 0.3341 0.3229 0.3690 0.3580 0.3595 0.3452 0.3341 0.3228
[30 10] 0.3363 0.3196 0.3723 0.3557 0.3629 0.3387 0.3375 0.3197
[50 10] 0.3499 0.3262 0.3850 0.3506 0.3769 0.3381 0.3553 0.3245
[70 10] 0.3608 0.3205 0.4091 0.3395 0.4087 0.3334 0.3765 0.3267

Training Data 1 CTF-AC, TCS1=0.3499 CTF-PSF, TCS1=0.3850 MTF, TCS1=0.3769 CP-WOPT, TCS1=0.3553

Training Data 2 CTF-AC, TCS2=0.3262 CTF-PSF, TCS2=0.3506 MTF, TCS2=0.3381 CP-WOPT, TCS2=0.3245

Figure 13: MRI data of the brain at SR(%) = [50, 10], the completion effect of all methods on the first image and second image.

TCS for CP-WOPT, while the completion accuracy for CTF-
AC with tensors that contain a great many missing values
remains high. To further investigate the impact of missing
values with each method, we sampled the MRI dataset with
missing value ratios of SR(%) = [x, 10] and x = [10, 30, 50, 70]
and list the results in Table 6. With a balanced ratio (SR(%)
= [10, 10]), CTF-AC still performed better than the other
methods, including CTF-PSF.Therefore, using amodel that is
completely shared or partially shared based on factormatrices
may introduce some errors. Overall, these experimental
results prove the validity and accuracy of the CTF-ACmodel.

Figure 13 shows the completion accuracy of CTF-AC,
CTF-PSF, MTF, and CP-WOPT on the two images with an
imbalanced ratio of SR (%) = [50, 10]. Unlike traditional joint
decomposition methods (such as MTF), CTF-AC adds error
weights to the objective function and sets a discriminant
factor for both datasets. The discriminant factor reflects the
correlations in the data to fit each tensor. Therefore, CTF-AC
provides better completion accuracy than MTF with greater
levels of missing values.

5. Conclusions

Jointly analyzing data frommultiple sources has the potential
to extract underlying data structures to enhance knowledge
discovery. However, in data fusion, traditional coupled ten-
sor factorization has been unable to deal with the diverse
relationships found between multi-source datasets, such as
approximate or partial couplings. Existing techniques are
only appropriate for modeling exact couplings. Therefore, to

address this challenge, we propose two improved coupled
tensor factorization methods: one for approximately cou-
pled datasets, CTF-AC, and the other for partially coupled
datasets, CTF-PSF. CTF-AC is also suitable for multisource
datasets with no dimension couplings if the data is highly
correlated. CTF-PSF is an extension of CTF-AC, based on the
CMTF-OPT algorithm, which factorizes datasets with both
shared and unshared components by combining individual
and coupled decompositions. Through numerical experi-
ments, we demonstrate that the tensor completion accuracy
of the proposed methods outperforms traditional coupled
tensor factorization methods on datasets with approximate
and partial couplings. However, there are some disadvantages
to the proposedmethods. These are highlighted because they
provide opportunities for future research.

In future, our work will pursue several research direc-
tions: (i) overcoming CTF-AC’s increase in computational
costs as a result of calculating the factor matrix constraint
term in the objective function. We intend to rewrite this
calculation into a parallel algorithm to improve overall oper-
ational efficiency. (ii) CTF-PSF is based on a predetermined
number of shared components and it does not consider the
weights of those shared and unshared components. There-
fore, in future work, we will strive to make our framework
more accurate and robust by adding more constraints.

Data Availability
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