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ABSTRACT
Driving has become a collaborative activity and a form of human-autonomy teaming
(HAT) with the addition of autonomy to the advanced driver assistance system
(ADAS), which makes situational decisions and sensible actions (e.g., autopilot and
collision avoidance). However, it has been identified that in many fatal road accidents
involving collaborative driving, over-reliance on the ADAS becomes the primary
factor. To overcome this issue, the underlying situation awareness (SA) concept
is investigated to identify an appropriate SA model for collaborative driving that
could impact the intelligent agent’s design in an HAT context. The formalization of
existing SA model characteristics is defined and compared with those in collaborative
driving. As a result, existing SA models are inadequate for explaining collaborative
driving. Therefore, a new supportive SA (SSA) model is proposed. Based on the
nature of this new model, applying transparency during SA development of the
ADAS is suggested as a mechanism to comprehend ADAS behaviours. The proposed
SA model is a significant expansion of multiple-agent SA models, and a transparent-
based system can be a future direction of ADAS development to calibrate drivers’
trust.

KEYWORDS
situation awareness; situation awareness model; supportive situation awareness
model; collaborative driving; human-autonomy teaming

1. Introduction

Factors associated with drivers’ situational awareness have been investigated by many
researchers to provide useful features in advanced driver assistance systems (ADAS)
with respect to safety problems. Situation awareness (SA) is defined as a state of
knowledge needed to understand what is happening, which involves a human’s cogni-
tive ability to temporarily capture, update, integrate, prioritize and manipulate infor-
mation from surrounding events that could require significant demands from a human’s
working memory (Johannsdottir and Herdman 2010). In the meantime, the dynamic
states of SA held by human is reffered to as situational awareness in this study. The
advancement of intelligent systems enables SA to be maintained not only by a human
but also by a non-human agent (Stanton et al. 2017, 2006). The on-board ADAS in
modern vehicles can be an example of such an intelligent system holding its own situ-

CONTACT Rinta Kridalukmana. Email: rinta.kridalukmana@student.uts.edu.au



ational awareness. Not only does the ADAS provide cognitive support for drivers, but
it also has been granted more access to perform driving tasks, including taking over
manual control as a backup in case of emergency. Thus, such an intelligent system
in ADAS is transforming into an autonomous agent having a high level of autonomy
(Endsley 2017). Using this perspective, driving becomes a multiple-agent-based activ-
ity involving two SA processes (from the driver and ADAS), which can be described
as collaborative driving.

Previously, conventional driving has been a single-agent-based activity involving
only one SA process from a driver to decide and control vehicle manoeuvres; there-
fore, this type of driving was modelled by Matthews et al. (2001) using an individual
SA model. With such a model, the role of technological supports such as the ADAS in
conjunction with drivers’ situational awareness is limited to minimizing the secondary
task effects and supporting drivers decision-making process by generating useful situ-
ational information or alerts, even though they might have to re-examine notifications
delivered by the ADAS. Nevertheless, the individual SA model fails to explain that
recent ADAS technologies have control abilities over vehicles based on its own arti-
ficial situation awareness (ASA). Therefore, it is necessary to use multiple-agent SA
models to describe collaborative driving. In collaborative driving, human-autonomy
teaming (HAT) is established, in which technologies can work together with humans
as a teammate, not merely as automation tools (McNeese et al. 2018). Similar to a
teammate, the ADAS has the ability to back the driver up, especially when the driver
experiences SA development failures. For example, when high collision risk and inat-
tentive driving are recognized, the ADAS can execute emergency actions to reduce
speed or stop the vehicle as in a collision avoidance system. Additionally, the ADAS
can reduce the driver’s workload by temporarily replacing his/her driving tasks (as in
autopilot features).

However, such collaborative driving raises other SA problems, leading to a mental
model where a driver over-relies on the ADAS (Banks et al. 2018). With such a mental
model, drivers tend to spend less time paying attention to the road, indicating that
they are willing to take more risks while driving (i.e., they are more engaged in sec-
ondary tasks) (Körber et al. 2018). In other words, drivers become more vulnerable
to distractions. Such over-reliance problems can also be viewed as fundamental coor-
dination ability issues in HAT because humans fail to comprehend their non-human
teammate behaviours (Freiman et al. 2018). As a result, many fatal road accidents
involving collaborative driving occur because of this mental model. To address this
problem, this study aims to examine the underlying SA concept so that a suitable SA
model can be identified for collaborative driving. It is believed that the abilities of a
non-human agent in the HAT context are designed based on the SA models represent-
ing the nature of the relationship among team members’ goals, the environment, and
SA requirements to form their SA.

The existence of shared and non-shared goals can be an example factor affecting an
intelligent system’s abilities for collaborative works. For instance, Demir et al. (2017)
noticed that in HAT, where each member has non-shared goals, providing push no-
tification/information abilities in a non-human agent will have a better impact on
coordination performance than providing information crawling mechanisms for its hu-
man teammate. When there are both shared and non-shared goals, sharing knowledge
ability is developed for the overlapping responsibilities that distributes information
to each member as a point of coordination (Endsley 1995). Additionally, a simplified
form of graphical display on the shared knowledge can also be helpful to enhance
coordination (Chen et al. 2018). In the HAT context, such shared knowledge can be
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propagated as an input into the non-human agent.
The SA concept involving multiple agents in current studies can be grouped into

three models including the team SA model Endsley (1995), mutual SA model (Shu and
Furuta 2005), and shared SA model (Endsley 1995; Saner et al. 2009). This study for-
malizes the relationship characteristics of the goals, environment, and SA requirements
of each existing SA model and compares them with those under collaborative driving.
As a result, current SA models are insufficient to cater to team members’ relation
characteristics in collaborative driving mainly because they all have non-shared goals,
which means that these current models reflect the horizontal coordination hierarchy.

In collaborative driving, the ADAS has a subset of driver goals reflecting the vertical
coordination hierarchy and, therefore, a supportive SA (SSA) model is proposed. For
this new model, providing transparency features of the non-human agent’s decision-
making process is recommended to improve HAT coordination (Chen et al. 2018).
Transparency in this context refers to mechanisms used to provide understanding and
supervision of the agent’s behaviours, including the predictability of immediate future
actions (Endsley 2017). Furthermore, the SSA methodology is also presented as an
effort to enhance collaborative performance in SSA-based HAT by answering three
critical questions as follows:

(1) How are SA requirements identified for the SA development of involved team
members?

(2) What if the team members experience SA development problems?
(3) How is the information necessary to monitor the SA development of a non-human

agent determined during its decision-making process?

The rest of this paper is structured as follows: Section 2 presents background and
related works, which is followed by an introduction of the proposed SSA model in
Section 3. In Sections 4 and 5, the application of the SSA model and conclusions with
some future works are presented, respectively.

2. Background and Related Works

2.1. Collaborative Driving, Automation, and Artificial SA

The advanced technologies of modern vehicles currently allow different driving mode
options: manual driving with situational information support, partial automation, or
full automation (driverless). Based on the United States National Highway Traffic
Safety Administration (NHTSA), the degree of automation in driving has been for-
mally categorized into five levels, where level 0 represents manual driving and level 4
represents a fully driverless car that requires nothing from its occupants except in case
of emergency and setting up a destination (Casner et al. 2016). NHTSA’s level 1 refers
to a function-specific automation operation in a car, such as a cruise-control system,
to keep the vehicle running at a target speed. Furthermore, the vehicle’s automated
systems at level 2 and above allow non-involvement from the driver during loop control
of driving tasks.

Generally, there are four aspects that can be automated from a task: monitoring
or acquiring information, generating options to achieve goals, choosing an option to
execute, and implementing actions with or without operator consent (Endsley 1999;
Endsley and Jones 2011). Therefore, Stanton et al. (2006) argued that SA can be held
by either human or non-human agents. Regarding a human agent, SA is about under-
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standing what is happening (Jones 2014) which is described by Endsley (1995) using
three-level stages of perception (SA level 1), comprehension (SA level 2), and projec-
tion (SA level 3). Regarding a non-human agent, the ability to provide mechanisms to
project future actions based on prior knowledge, perception and projection is referred
to as ASA (McAree and Chen 2013). The availability of driving modes at the NHTSA
level 2 or above indicates that the ADAS in modern vehicles has some degree of SA.

From a driving perspective, SA is composed of multiple clusters of knowledge (see
Figure 1), which consist of goal-driven knowledge, global driving environment and
object interaction knowledge, spatial orientation knowledge, and vehicle status knowl-
edge (Ma and Kaber 2005; Matthews et al. 2001; Pew 1994). In collaborative driving,
knowledge about the ADAS as a vehicle’s intelligent system is also required to avoid
poor mental models when using such technology. Mental models are useful for guiding
drivers’ constant adaptations, which are required to maintain and regulate the driving
situation status within the boundaries of tolerable and safe changes during the dy-
namic process of driving activities Bellet et al. (2009). Mental models provide human
mechanisms to produce prototypical situations or the status of aided-system models
during the perception process Endsley et al. (1997) to develop SA, which includes the
descriptions of the purpose and function of aided systems and the way that the sys-
tem knowledge is retrieved from long-term memory during interaction when necessary
Endsley (2000).

Figure 1. SA-related knowledge on driving

2.2. SA Model: Single Agent vs Multiple Agents

To form SA, an agent (either a human or non-human agent) must first acquire SA
elements (see Figure 2). SA elements are referred to as necessary, observable variables
of objects used for inferring the current status and predicting the immediate future
status of situations within an agent’s goal-related environment. For example, a driver
needs to pay attention to road signs when operating a vehicle. In this case, road signs
can be an example of SA elements in a driving environment. Sometimes, agents need
to combine several SA elements to comprehend the status of situations within the
intended environment to project future actions. SA elements and their combinations,
which are needed at every level of an agent’s SA development mechanism, can then be
referred to as SA requirements. The SA model is then used to explain the relationship
of the agent’s goals, goal-related environment and SA requirements.

As only one agent is involved to achieve goals in the problem domain, Figure 2 is
referred to as a single agent or individual SA model. Conventional driving can be an
example of an activity that can be described with an individual SA model, in which a
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Figure 2. SA model: Relationship among goals, the environment, and SA requirements to form SA

driver is the agent. Fastenmeier and Gstalter (2007) described that, basically, driving
has three main goals: navigating, controlling, and continuous monitoring. In this case,
the driver is responsible for the entire driving goal and, therefore, the model produces
the driver’s responsibilities in the goal-related environment. As a consequence, all
SA requirements for driving environments are intended for the driver. Moreover, all
decisions that respond to given situations within the driving environment are only
made by the driver. In other cases, it is possible that multiple agents work together with
various relationships among their goals, environment, and SA requirements. However,
the single agent SA model is the basis that forms SA for the involved agents.

Generally, the multiple-agent SA model is based on the perspective that the hierar-
chy of goals in a problem domain is distributed to more than one agent. Goals produce
tasks and the environment of the responsibilities for each agent. For multiple agents,
there are three variants of the SA model in the literature, which can be a team SA
model, mutual SA model, or shared SA model. In a team SA model, each team member
has his/her own SA requirements that are independent from each other because they
have to deal with completely different environments within their responsibilities, as
do their SA requirements (Endsley 1995). In a mutual SA model, the shared goals are
described as a collaborative goal so that each member shares a common environment
but produces different SA requirements for the team members, and each member needs
to share what they know about the environment in a cooperative manner to achieve
an understanding of the common environment (Shu and Furuta 2005). In a shared
SA model, it is possible that at some points in time, team members share an envi-
ronment because their goals overlap with each other and generate task redundancy.
As a consequence, this model generates the same SA for the shared SA requirements
(Endsley 1995; Saner et al. 2009). Such a shared understanding of a situation can also
be referred to as point of coordination (Salas et al. 1995).

The multiple-agent SA model might appear in many problem domains, such as mil-
itary domains. For example, 4 soldiers in an army’s special force are sent to a district’s
battlefield. These soldiers are split up, in which one soldier goes to the west (soldier
A), east (soldier B), south (soldier C), and north (soldier D), and they are responsible
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for analysing the enemy’s strengths and weaknesses in those areas. In this case, each
agent carries his/her own goals and addresses a different environment because they
have different responsibilities. As they have completely different environments, the SA
requirements for each agent are also independent of each other. This example, then,
represents a team SA model.

In a different scenario, in which there is a hill located northwest of the district,
soldiers A and D are responsible for finding water sources and identifying places that
are suitable for the basecamp on that hill, respectively. In this case, preparing the
basecamp is the overlapping goal between agents A and D, and the hill becomes
the shared environment between these two agents. However, on that hill, soldiers A
and D have different sub-goals that are independent from each other, which produces
different SA requirements even though they have a shared environment from a shared
goal. Then, soldiers A and D collaboratively share their knowledge to obtain a good
understanding of the situation on the hill and determine a good spot for the basecamp.
Such a relationship among members is referred to as mutual SA. In contrast, when both
soldiers A and D are assigned to identify water resources and a suitable spot for the
basecamp together, this can be identified as shared SA model. In shared SA situations,
redundancy exists due to the shared goals and, therefore, it typically generates the
same SA.

In the HAT context, the mutual SA model can exist in the aviation field. An aircraft
feature called Emergency Autoland System (EAS) can be considered as a non-human
agent. When both the pilot and co-pilot are disabled, a passenger can activate the EAS,
and the EAS will contact the nearest airport listed in its database. After obtaining a
response, at this point, the mutual SA model is established between EAS and the air
traffic controller officer with the same goal, which is to land the aircraft safely. In this
regard, the officer’s task is to manage the air traffic for the landing process performed
by EAS. Then, the teaming between an automated unmanned aerial vehicle (UAV)
and an army troop can be an example of a shared SA model, in which both have the
intersection goal to collect information from a battlefield. Nevertheless, the troop also
has a different goal to obtain, i.e., custody, while the UAV must serve another troop.
In the meantime, an example of a team SA model is demonstrated by an autonomous
robot squad that is assigned to send supplies for a troop. In this regard, both the troop
and the robot squad have different goals.

The existence of non-shared goals indicates that an agent has a horizontal coordina-
tion hierarchy with other agents. In the meantime, in a vertical coordination hierarchy,
non-shared goals that belong to subordinate team members do not exist because this
hierarchy is used to represent the relationship between a parent goal and the sub-
set goals within the parent goal. While parent goals are usually owned by a superior
agent, subset goals belong to subordinates of the superior agent. Subordinates do not
have other goals and environments outside their superior’s responsibilities. Based on
this analogy, existing multi-agent SA models only cover the horizontal coordination
hierarchy and cannot be used for vertical coordination hierarchies. Therefore, in the
following sections, the new SA model is proposed and referred to as the SSA model.
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3. The Supportive Situation Awareness Model

3.1. Underlying Goal-driven SA Concept in Collaborative Driving

Collaborative driving in this study holds the assumption that the ADAS has driving
abilities for partially automated driving, in which a driver’s involvement is still neces-
sary in automatic mode (NHTSA level 3). In this section, the underlying SA concept
in collaborative driving is explained by first reviewing the goals of human drivers and
the ADAS as team members in the HAT context. By understanding team members
goals, their goal-related environment and SA requirements can be identified. There-
fore, this section presents two goal hierarchies associated with driving that consist of a
hierarchy for controlling manoeuvres and one for monitoring situations. It is believed
that these two goals could represent almost all aspects of the driving abilities of the
ADAS.

Figure 3. Goal hierarchy to control vehicle manoeuvres

In collaborative driving, only some driver’s goals in conjunction with controlling
vehicle’s manoeuvres (see Figure 3) are delegated to the ADAS so that it only has
limited control in performing driving manoeuvres. For example, the ADAS has no
overtake manoeuvre abilities. Such overtake manoeuvres require other manoeuvres,
such as lane changing. Even though the latest technologies of the ADAS enable lane
changing, this task must be performed after obtaining permission from the driver to
ensure the driver’s acknowledgement of this manoeuvre. With such procedures, the self-
performed overtaking of other vehicles by the ADAS would not be possible. The limited
capability of a vehicle’s sensory tools to sense what happens within environment is one
factor that has caused ADAS to lack SA. Hence, the goal hierarchy to control vehicle
manoeuvres is only partially delegated to ADAS. Thus, it can be inferred that when
controlling a vehicle’s manoeuvres, the ADAS has a subset of the drivers’ goals.

Another explanation showing that the ADAS possesses the subset of driver’s goals
can be seen in the goal hierarchy to monitor driving situations (see Figure 4). In a
collaborative driving context, the ADAS is embedded with the ability to detect object
movement at all surrounding sides of the vehicle and assess the risks of situations,
but it comes with a limited scope. For example, not all road signs and rules can be
scanned directly from roads or acquired from traffic information providers. Moreover,
not all objects’ states within the environment can be inferred by the ADAS, mainly
when predicting other road users’ movements. In addition to observing situations on
the road, collaborative driving also produces an additional goal to monitor one who is
currently active in controlling the vehicle, which can be either the driver or the ADAS
depending on the activated mode (i.e., manual or automatic driving mode). This goal
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Figure 4. Goal hierarchy to monitor driving situations

is applied for both the driver and ADAS mainly to back up their SA development
failures due to their weaknesses and limitations. Therefore, in all driving modes, both
agents are always actively involved. In this regard, both can take over control from
each other as a backup in case of such SA failures.

By having the driver’s goals subset, the ADAS also has a subset of the driver’s driv-
ing environments. Within this shared subset environment, the same concern is placed
on the SA elements, which then generates the same SA requirements for each agent.
In other words, the SA requirements of the system also follow a subset relationship.
However, as the ADAS is a non-human agent, it might have different mechanisms or
sub-goals compared to the driver in achieving its goals. For example, a driver may mon-
itor the ADAS behaviour from its manoeuvre outcomes or be alerted. In the meantime,
the ADAS uses different methods (i.e., observing the driver’s initiative), which can be
achieved through acquiring samples of eye gaze or hand-on-steering wheel recognition.
However, when assessing frontal collision risks, these methods do the same thing by
estimating the distance to the vehicle ahead even though they have different ways to
acquire the distance value due to their differences in sensing mechanisms. Therefore,
the sub-goals of the driver and ADAS within the delegated goals can overlap each
other.

3.2. The Concept of SSA Model

This section introduces the SSA model within the HAT context by generalizing the
underlying SA concept in collaborative driving. Therefore, the driver and ADAS are
described as a human agent (HA) and autonomy agent (AA), respectively. To better
understand the proposed SSA model, this study uses a two-agent-based relation that
consists of one HA and AA, in which the AA is inferior to the HA. Furthermore,
several related definitions are defined as follows:

(1) Agent. An agent is a party that has a mechanism to form SA based on deter-
mined goals, and it can be a human or non-human agent.

(2) Human Agent (HA). A human agent is the term used to represent an indi-
vidual as an agent.

(3) Autonomy Agent (AA). An autonomy agent is the term used to represent
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an intelligent system or technology as a non-human agent with a high level of
autonomy, which is authorized to make decisions and perform actions based on
its artificial SA.

(4) Goal. A goal is something to achieve within a domain of problems.
(5) Tasks. Tasks are a set of activities to achieve determined goals.
(6) Environment. Starting in this section, a goal-related environment is referred to

as the environment only, which has goal-related objects that are either physical
or abstract, by which human or non-human agents are surrounded depending on
their responsibilities in a domain of problems.

(7) Supreme agent (SPR). A supreme agent is an HA with goals to be achieved
and some of these goals are distributed as a subset goal to his/her subordinate
agent.

(8) Subordinate agent (SBA). The subordinate agent is an AA that acts as the
subordinate of the SPR and has a subset goal of the SPR.

(9) Situation. A situation can be described as a state of the environment, which is
a set of state values of the involved SA elements.

An agent’s goals in a domain of problems are critical for identifying the SA elements
in an environment so that the status of the surrounding situation’s associated goals
can be measured or predicted. To achieve these goals, an agent might receive support
from another agent, as reflected in the relation between the SPR and SBA, which have
vertical coordination hierarchies. As a subordinate and a non-human agent, the SBA
owns some hierarchal goals of the SPR even though the SBA could have different sub-
goals due to different mechanisms in, i.e., acquiring information from the environment
or monitoring of teammates. However, these sub-goals are still under the SPR’s goal
hierarchy as the parent goal. Therefore, the SBA views the subset environment of the
SPR. Within this subset environment, the SBA has the same SA requirements as the
SPR for the same sub-goals, but it is not the same if different sub-goals exist. Such a
relationship among goals, the environment, and SA requirements is referred to as the
SSA model.

3.3. Formalization of the SSA Models

To highlight the distinction between existing SA models and the proposed SSA model,
formalizing the relation among the two agents goals, environments, and SA require-
ments is presented in Table 1, in which the involved agents are HA and AA, respec-
tively. In the SSA model, AA represents the SBA and is a subordinate of HA, which
represents the SPR. Regarding the goals relations, in the team SA model, HA and
AA have independent goals from each other and, therefore, the intersection of goals
between HA (GHA) and AA (GAA) results in an empty set. In contrast, in the mutual
and shared SA model, GHA intersecting GAA produces a non-empty set, but GHA
and GAA are not equal to GHA intersecting GAA, which reflects the existence of
non-shared goals in GHA and GAA. In the meantime, GHA intersecting GAA in SSA
generates GAA, reflecting GAA as the subset form of GHA. Moreover, the environ-
ments of HA (EHA) and AA (EAA) also have the same intersection characteristics as
their intersecting goals.

Within intersecting goals (i.e., shared goals), sub-goals may exist for HA (SGHA)
and AA (SGAA), except in the team SA model, which has no intersecting goal. In
mutual SA, the joint function between SGHA and SGAA produces overall shared goals,
but their intersection results in an empty set. This result means that SGHA and SGAA
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are different sets of sub-goals. However, in the shared SA, SGHA and SGAA are equal
to each other and to shared goals. In the meantime, SGHA and SGAA in SSA may
be partially different as AA can have additional sub-goals (ASGAA) in addition to
having a delegated goal hierarchy from SPR. ASGAA might not exist in the SPR goals
hierarchy, yet its existence is to support the delegated goals. As a consequence, the
intersection of the SA requirements of HA (SRHA) and AA (SRAA) for the team and
mutual SA is not an empty set.

Table 1. Formalization of Existing Multiple-Agent SA Models and SSA Models Describing the Relation
Among an Agent’s Goals, Environment, and SA Requirements in a Two-Agent-Based System

Description Team SA Mutual SA Shared SA Supportive SA

Involved Agent:
Agent 1 (HA) and
Agent 2 (AA)

HA and AA HA and AA HA and AA HA and AA (AA
is SBA of HA)

Relation between
Agent 1’s goals
(GHA) and Agent
2’s goals (GAA)

GHA ∩ GAA =
∅

GHA ∩ GAA 6=
∅, where GHA,
GAA 6= GHA ∩
GAA

GHA ∩ GAA 6=
∅, where GHA,
GAA 6= GHA ∩
GAA

GHA ∩ GAA =
GAA

Relation between
the Environments
(E) of HA (EHA)
and EAA

EHA ∩ EAA =
∅

EHA ∩ EAA 6=
∅, where EHA,
EAA 6= EHA ∩
EAA

EHA ∩ EAA 6=
∅, where EHA,
EAA 6= EHA ∩
EAA

EHA ∩ EAA =
EAA

Sub-goals (SG)
and additional
sub-goals (ASG)
within intersecting
goals (shared
goals)

∅ SGHA ∪ SGAA
= GHA ∩ GAA,
where SGHA ∩
SGAA = ∅

SGHA = SGAA
= GHA ∩ GAA

SGHA ∩ SGAA
= SGAA
\ASGAA, where
SGAA ∪
ASGAA = GAA

SA requirements
(SR) of HA and
AA for shared
goals

∅ SRHA ∩ SRAA
= ∅

SRHA = SRAA SRHA ∩ SRAA
6= ∅

SSA, then, is expressed by 9 tuples to provide its formal description, SSA = {SPR,
SBA, GSPR, SPRE, GSBA, GSBA’, SBAE, SRD, and SRA} where SPR represents
a supreme agent and SBA represents a subordinate agent. Furthermore, SPRE and
SBAE represent the environments of SPR and SBA, respectively. The necessary SA
elements from the environment depend on the agent’s goals in a domain of problems.
Therefore, within the environment, each agent has goals to be achieved. Regarding
SPR, E → SPRE = {o1, o2, ..., on}, where E denotes the hierarchy of identified goals
that belong to SPR within SPRE and o represents a set of objects (SA elements)
within the SPRE. Then, let GSPR:

GSPR =

n⋃
i=1

GSPR(i) = GSPR0 ∪
n⋃

i=1

{gspr(i)
1 , ..., gspr

(i)
ji }

represents the structure of the identified goals of the SPR, where GSPR(i) represents

a set of goals at level i and gspr
(i)
ji represents the j -th goal at level i (see Figure 5) (Ma

et al. 2010). Next, let GSPR0 = SPR indicate that SPR owns the goals. To describe
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the parent-child relationship between two goals, we use gsprj/i to denote the j -th sub-
goal of the goal gspri. The notation gsprj(gsprji/j, ..., gsprjm/j) is used to show that a
goal gsprj is supported by a set of sub-goals gsprji/j, ..., gsprjm/j , and gsprji ≺ gsprj
is used to indicate that gsprji/j is a sub-goal of gsprj .

Figure 5. An example of the goal hierarchy

Furthermore, GSBA → SBAE = {o1, o2, ..., on}, where GSBA represents the
hierarchy of delegated goals from the SPR that belong to the SBA within SBAE and
o represents a set of objects within SBA’s environment. GSBA also has the same
structure as GSPR, therefore let GSBA:

GSBA =

n⋃
i=1

GSBA(i) = GSBA0 ∪
n⋃

i=1

{gsba(i)
1 , ..., gsba

(i)
ji }

in which GSBA0 = SBA indicates that the goal hierarchy belongs to the SBA. Fur-
thermore, GSBA’ represents an additional sub-goal hierarchy of GSBA.

The SA requirements for the SPR and SBA agents are represented by SRD and
SRA, respectively, and denoted as follows: SRD = (GSPR × T), SRA = ((GSBA +
GSBA’)) × O), where SRA ∩ SRD 6= ∅. Then, T = ((L1 ∪ L2 ∪ L3) × {q1, ...,
qx}). In this regard, T and O represent a set of SA requirements (q) for three levels
of SA (L1, L2, L3) for SPR and SBA, respectively, and x represents the number of
requirements.

3.4. SSA Methodology

In this SSA methodology section, the three research questions to enhance SSA-based
HAT performance are covered. However, before answering the questions, the SSA
methodology needs to first develop the SPR and SBA’s goals hierarchy by taking
advantage of the hierarchical task analysis (HTA) method. The goals hierarchy, then,
is modelled by using a use case diagram. After the goal hierarchy is set, the SSA
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methodology goes into the second step, which answers the first two questions about
how to identify SA requirements to support team members’ SA development and what
if the team members experience SA development problems. In this second step, the
extended goal-directed task analysis tool is used, given the goal hierarchy from previous
step as the input. In the final step, this paper proposes a time-constraints-driven
transparency framework to address the third question about determining transparency
requirements to monitor SA development of an AA, so that its state and behaviour
can be comprehended by the human teammate.

3.4.1. Modelling Goals of the SPR and SBA

Soliman and Mathna (2009) explained that SA is a principal cognitive construct asso-
ciated with multitasking situations in which individuals should manage physical and
cognitive workloads across tasks that often conflict among task demands and goals.
Therefore, to obtain good SA requirements, mapping the goal hierarchy is important.
Hence, to develop the goals hierarchy, this paper applies the HTA method, which in-
fers the goals hierarchy from the functions hierarchy. In this context, a function can
be described as a set of the agent’s tasks in a system that serves a particular goal
when performing teamwork with humans. Stanton NA (2006) explained that the main
principle of HTA is to describe goals for functions such that each function is described
in terms of its goals. Moreover, HTA is a means to break down sub-functions in a hi-
erarchy, and as a consequence, these sub-functions are described in term of sub-goals.

Figure 6. Example of use case diagrams

In software development, one technique that can be used to model the relation
between functions is a use case diagram (see Figure 6), which was introduced by
Jacobson (1993). In this technique, a use case that represents a function could have
three types of relationships: a generalized relationship (GR), a normal relationship
(NR) and an extended relationship (ER) (Chanda et al. 2009). A GR is intended to
relate functions and their sub-functions. An NR between two use cases means that the
behaviour of a use case is explicitly incorporated by another use case incorporating it
(Shen and Liu 2003). When the behaviour is extended to another use case in the case
of a special event, it can be described as an ER. Furthermore, an agent performing
functions or sub-functions in a use case diagram is referred to as an actor, which can
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be either a human or non-human agent. A line is used to connect actors to functions
or sub-functions.

Figure 7. Relationships between goals and sub-goals in driving with a use case diagram

When developing an HAT scenario in the SSA context, it is critical for a system
designer of SBA to develop SPR’s goal hierarchy such that it can cover SPR’s overall
responsibilities and functions. This is important to determine into which level the
goal hierarchy will be detailed. After that, the system designer will specify which
goals/sub-goals will be supported by SBA. As an example, we develop a use case
diagram to model a driver’s goal hierarchy (see Figure 7). Referring to the proposed
SSA model, Figure 7 shows how the formal description is applied to characterize the
relationship between SPR’s goals and SBA’s goals which follows equation GHA ∩
GAA = GAA. First, a driver should decide a route with an intended destination
and use his knowledge to make such a decision. Once the route is set, the driver
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determines the vehicle’s manoeuvres following the specified route. In other words,
determining a vehicle’s manoeuvres is triggered by the driver’s decision on the route
given a destination, which can be described as an ER. When the driver does not have
a complete understanding about which route to take to the destination, obtaining
directions from road signs can be conducted. Additionally, when the driver knows
several route options, the most efficient route can be selected.

To determine the vehicle’s manoeuvres, a driver must incorporate some sub-goals,
such as using their knowledge, controlling manoeuvres, and monitoring driving situa-
tions. A driver’s knowledge in this context is one that is associated with how to make a
proper response given a driving situation. To stay in a lane is the basic manoeuvres in
driving and, therefore, it is incorporated in the goal to control a vehicle’s manoeuvres.
In the meantime, other goals, such as safe overtaking, lane changing, turning, and
monitoring vehicle states, are optional depending on many factors, such as the chosen
route or traffic situations. Hence, they have an ER with their parent goal. Another
sub-goal of controlling the vehicle’s manoeuvres is to control the vehicle’s operations,
which incorporates steering, adjusting the vehicle’s speed, and adjusting the vehicle’s
gears, but it has an ER with a braking function.

Furthermore, to delegate the SPR goals into the SBA, other actors can be added
to use a case diagram that acts as the SBA. In our case of collaborative driving, the
new actor for the SBA is the ADAS. After that, among the driving goal hierarchy
that has been identified for the SPR, the actors could be delegated partially to the
SBA. This step can be done in the diagram simply by connecting the actor symbol
representing the SBA to the intended use case logics by using a line. However, it should
be noted that in Figure 7, the SPR is connected to only one use case logic which can
be considered the root goal (to determine vehicle manoeuvres). In the model, when a
line is drawn to connect an actor to a goal, it means that this actor is also responsible
for its sub-goals. As a consequence, the model in Figure 7 indicates that the SPR holds
responsibilities for all goals/sub-goals in the hierarchy. Meanwhile, SBR is linked to
only six sub-goals: control vehicle, stay in the lane, turn, change lane, scan for traffic
signs/rules, detect object in vehicle path, and monitor vehicle states. This means that
the boundary of SBR’s responsibilities is limited to these six sub-goals along with their
sub-ordinate goals.

For example, the use case logic representing to control manoeuvres has six sub-
ordinate goals, yet only five of them were delegated to the SBR (control vehicle, stay
in the lane, turn, and change lane, monitor vehicle state); the overtake function was
not included. Therefore, regarding control manoeuvres, five lines were drawn to con-
nect the SBR as an actor to those five use case logics delegated to the SBR. However,
by connecting the SBR to a use case logic representing control vehicle, the SBR au-
tomatically assigned all sub-ordinate goals under it (safely brake, steer, adjust speed,
and adjust gear).

Moreover, other sub-goals reflecting additional sub-goals can be added to support
the parent functions. As presented in Figure 8, when trying to obtain an efficient
route to the destinations, a driver could obtain additional support from the ADAS.
Previously, a driver relied only on his/her own knowledge regarding the most efficient
route to the destination. Then, the ADAS can perform a set of sub-goals to acquire
the travel time, current traffic condition, and travel distance for each route. The most
efficient route information can be generated for drivers to help them determine the
desired route to the destination. These additional sub-goals refer to the formal de-
scriptor written in Table 1 defining that SGHA ∩ SGAA = SGAA \ASGAA, where
SGAA ∪ ASGAA = GAA. In this regard, the additional sub-goals of SBA represented
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Figure 8. Goals to determine a route with the involvement of the ADAS (SBA)

by ASGAA may not exist as sub-goals of SPR (denoted by SGHA) because the human
does not have such capabilities. However, ASGAA exists as a part of SBA’s sub-goals
(SGAA).

3.4.2. Identify SA Requirements and SA Failure Handlers

The goals modelled in the previous step provide us a boundary within an environment
and, therefore, only environment variables within this boundary can be considered
as SA elements, thus requirements to form SA. As described in Table 1, SSA-based
HAT considers that SBA’s SA requirements at a certain level of the goal hierarchy
will be the same as SPR’s. Nevertheless, SBA can have additional sub-goals along
with SA requirements for these sub-goals. As SA requirements are very critical in
the SA development process, how to identify SA requirements of team members is
posted as the first research question in this paper. To address this question, we can
take advantage of an analytical tool called the goal-directed task analysis (GDTA) by
Endsley (2001). In Figure 9, the GDTA format is presented and based on this format,
it can be seen that GDTA requires the goals hierarchy as the input for the analysis
process.

Figure 9. Goal-directed task analysis format (Endsley 2001)

The GDTA processes establish the link between human cognition and human action
by first focusing on the required information rather than on how the information can
be collected, and second, by integrating the information to comprehend and project
the situation to develop SA. Additionally, the results of the GDTA process include
necessary information to acquire benefits from technological supports, such as the
status of current situations, hazardous situation alerts, suggestions, or performance
feedback. However, it should be noted that in the SSA-based HAT context, a team-
mate can also be considered as an environment variable. In this regard, GDTA is not
sufficient to analyse the two factors related to the possible SA failures of team members
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Table 2. eGDTA on Keeping the Vehicle in the Lane and Detecting Objects in the Vehicle Path
Parent
Goals

Sub-Goals SA Level 1 SA Level 2 SA Level 3

Control Manoeuvres
Stay in the lane Road lines, vehicle’s

position in the lane
Vehicle’s position
status between lines

Possible SA failures:Possible SA failures:
SPR: Inattentive
driving
SBA: Difficult to
detect road lines

SPR: Unconsciously
driving the vehi-
cle outside of the
lane, vehicle is
over the line for a
long time because
of pre-overtaking
manoeuvres and
over-reliance on the
SBA when perform-
ing this function
SBA: Violations due
to data availability
problems

Failure handlers: Failure handlers:
H1: Sending inatten-
tive driving alerts
H2: Informing the
driver that the lines
are unreadable

H1: SBA sends inat-
tentive driving and
lane departure warn-
ings
H2: Notify driver to
interfere the vehicle’s
control

Detect an object in front
Detect object in the
vehicle path

Objects in front in
the vehicle path, dis-
tance, vehicle speed,
knowledge about safe
margin

Safe margin level
with the vehicle
ahead

Possible SA failures:Possible SA failures:
SPR: Inattentive
driving, observation
failure
SBA: Observation
failures due to
curvature of the road

SPR: Fails to main-
tain safe margin at
a given speed, over-
reliance on the SBA
to maintain the safe
margin without col-
lision risk, habitual
problem of driving
the vehicle near the
vehicle ahead
SBA: data availabil-
ity problems

Failure handlers: Failure handlers:
H1: SBA sends inat-
tentive driving alerts
H2: Sends inattentive
driving alerts, noti-
fies driver to inter-
fere with the vehicle’s
control

H1: SBA sends alerts,
executes emergency
brakes
H2: Sends inattentive
driving alerts, noti-
fies driver to inter-
fere with the vehicle’s
control
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and SA failure handlers to mitigate the effects of the team members’ SA development
problems. Mitigating such effects is the problem of the concern posted in the second
research question.

Therefore, the extended-GDTA (eGDTA) technique is applied in this paper to ad-
dress the first two research questions. This technique will cover how to identify SA
requirements, possible SA failures, and possible SA failure handlers of all involved
agents at all SA levels. In our case of the collaborative driving context, SA failure
handlers consist of two parts: H1 and H2. In H1, it is assumed that the driver as the
SPR is in charge of vehicle control; therefore, failure handlers are provided by the SBA
to help a driver in his/her SA failures. In H2, it is assumed that the SBA is controlling
the vehicle and the SA failure handlers will focus on how the driver would retreat back
into the control loop to handle the situations.

Based on the developed model illustrated in Figure 7, this section provides two ex-
amples of how eGDTA is used on two goals comprising keeping the vehicle in the lane
and detecting objects in the vehicle path. In Table 2, it can be seen that for the first
example, road lines and the vehicle’s position in the lane become critical elements dur-
ing SA level 1 development. However, at this level, the situational awareness failures
of the SPR and SBA are mostly caused by inattentive driving and difficulties in de-
tecting road lines, respectively. Therefore, sending inattentive driving and unreadable
line warnings to the driver are suggested as the failure handlers for such problems.

Regarding SA level 2 development, it would be very helpful, particularly for the
SBA, if the vehicle’s position status between the lines can be obtained, as such infor-
mation is the core input to ensure that the vehicle stays in path. It often occurs that a
driver unconsciously drives the vehicle out of the lane. Moreover, the driver sometimes
makes an overtaking preparation by taking the vehicle over the road line, but he/she
forgets to go back to a safe position between the lines when the overtaking manoeu-
vre is cancelled. Such unconscious problems, then, can be considered as SA failures
at the comprehension level in addition to SPR’s over-reliance mental model problem.
Sending inattentive driving alerts and lane departure warnings and notifying drivers
to interfere with the vehicle’s control can be an option for H1 and H2, respectively, to
overcome such SA level 2 failures.

The second example for eGDTA is depicted from the goals related to detecting
objects in the vehicle path. For the SBA, the core module to perform this function
is its ability to recognize objects. Once the object can be recognized, the distance to
this object can be measured. After that, by combining the distance information with
the knowledge about the safe margin and current vehicle speed, the safe margin level
can be calculated to help the SPR and SBA in the SA level 2 development process. As
presented in Table 2, SA level 1 failures related to the given goal mostly come from
inattentive driving and observation failures. In the meantime, some examples of SA
level 2 failures are a driver who often fails to maintain a safe margin at a given speed,
the driver’s habit to drive very close behind the vehicle ahead, and over-reliance on
SBA to keep the safe margin. In this regard, inattentive driving alerts, loop control
requests, and emergency braking procedures are the critical handlers associated with
the goal of detecting objects in a vehicle path.

3.4.3. Identify Transparency Requirements

In the SSA-based HAT context, understanding the SBA’s behaviours can be considered
as one critical factor to enhance collaboration performance and improve the SPR trust
on SBA. In this regard, it is necessary to make SBA’s states and behaviours transparent
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during its decision-making process. The mechanism to make the non-human agent
transparent is widely known by the term of transparency. However, as posted in the
third research question, the kind of information regarding transparency to help SPR
comprehend SBA becomes one problem that needs to be determined.

Previously, Chen et al. (2018) proposed the situation-awareness-based transparency
(SAT) framework to deal with transparency requirements. There are three levels of
transparency in the SAT framework. The first level is associated with the SBA’s goals,
which include its current status, action, and plans. Related information at this level
includes goal selection, progress, performance, and environment/teammate, such as
a driver’s distraction status and the status of collision risk with the vehicle ahead.
At the next level, transparency information is related to the SBA’s reasoning process
and any environmental constraint information (e.g., delivering a notification to the
driver when it fails to recognize the traffic light state). Finally, level 3 is about the
SBA’s projection of future outcomes, including the likelihood of success or failure and
performance.

Nevertheless, there is a critical factor in providing transparency information due
to the human ability to absorb information, particularly in a short time length. In
fact, in a case such as driving, situations can have various time intervals, so that for a
certain situation with a short duration, it becomes difficult to absorb all information
in SAT level 1. Therefore, as an effort to answer the third research question, this paper
introduced the time-constraint-driven transparency (TCDT) framework that considers
time constraints in determining transparency requirements.

As presented in Figure 10, the TCDT framework has two axes in which the x -axis
represents the priority of transparency themes that needs to be conveyed against given
time constraints represented by y-axis. The framework divides transparency themes
into four groups: explanation and performance; plans, decision, and coordination; in-
tention; and outcome prediction. In the meantime, blue lines indicate the visibility
of each transparency theme on each time constraint group. When a situation has a
strong time constraint, i.e., entering traffic light situations, four transparency themes
are suggested, including the non-human agent’s decision-projection (DP), likelihood
of task failure (LoF), perception status of surrounding focal objects (FOS), and task
intention (TI). These four transparency themes are also recommended to be visible at
all times as the default themes.

In the case of traffic light situations, the example information that belongs to DP
is ’stopping’ and ’keep moving’ depending on the detected traffic light state (i.e., red,
green). In this regard, traffic light states can be considered as the example of FOS.
When SBA fails to recognize the traffic light state, there is a possibility for the SBA
to react properly based on the lead vehicle ahead, particularly when the actual state
is red. With no vehicle ahead detected within the range, the SBA by design will make
the keep going manoeuvre when the TL state remains unknown and a potential road
incident exists in such a situation, i.e., violating a red light and colliding with other
vehicles. Such a decision design can be considered as a trade-off between safety and
other road users convenience because if the SBA were to stop every time the traffic
light state is unrecognized, it will cause problems to other drivers. Therefore, it is
necessary to deliver LoF and TI to the driver to mitigate the effect of the design
trade-off.

Furthermore, when the human has more spare time because the situations have
medium or low time constraints, other transparency themes can be delivered to help
comprehending the non-human agent. In TCDT framework, transparency themes for
medium constraints include perception of non-focal surrounding objects (EP), agent’s
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Figure 10. Time-constraint-driven transparency framework

plans and their updates (UP), decision options/recommendations (RC), and confirma-
tions (CF). Then, for low time constraints, transparency themes are focused on process
states (PS), reasoning states (RS), and any miscellaneous information (MI). The low
time constraint group is intended to provide the detailed explanation about the agent’s
activities in conjunction with current states recognition of objects/situations through
PS and RS. When an agent has a complex system consisting of numerous recognition
processes, it would be a challenge to provide absorbable information given such com-
plexities. In the meantime, MI is used to convey any other problems such as hardware
failures or other abnormal behaviours. Additionally, it can be any information such as
weather.

3.5. SSA Evaluation

SA measurement is one way to evaluate SA, in which over 30 different methods are
available in the current literature and can be grouped into six categories: freeze probe,
real-time probe, observer rating, self-rating (SART), process indices, and performance
measurement (Salmon et al. 2009). The combination of observer rating and perfor-
mance measurement becomes a preferred option to evaluate SSA. By using the per-
formance measurement, the SPR and SBA can be measured from their recognition of
factors such as hazardous situations and collision risks (Gugerty 2011). Particularly, as
the SBA has the subset environment of the SPR, ideally, both agents should demon-
strate equal SA on this environment. For this purpose, the observers can provide useful
help to measure the SA performance of both SPR and SBA.

4. Application of the SSA Model

This section presents a real-world application of the SSA model to highlight the im-
plementation of the SA failure handlers and the transparency of the SBA’s situational
awareness development. For this case study, goals associated with detecting objects in
a vehicle path (see Table 2) are used and, then, the related situations are illustrated
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in Figure 11. In such situations, the necessary information for SA level 1 development
includes the relative speed, position, and acceleration of both the host and lead ve-
hicles, which can then be used to acquire the relative distance between the host and
lead vehicles. After a relative distance value is generated, it is combined with the host
vehicle speed to calculate the time to collision (TTC) value and classify the frontal col-
lision risk (FCR). A membership function presented in Figure 12 serves as an example
of how to determine the level of the FCR using the TTC value and an ∝-cut. Every
TTC value that has the degree of membership above the ∝-cut will be considered
as a safe margin. Otherwise, it will be an unsafe margin and, therefore, the FCR is
high. In recent autopilot features, drivers can also set up the desired TTC value (in x
seconds), in which the driver considers this value as a convenient time to return back
to the control loop safely.

Figure 11. Front situations within the vehicle path

Figure 12. Membership function of the FCR using the TTC Value

Due to its limitation, the ADAS might have problems recognizing TTC risk with
lead vehicles when dealing with environmental constraints, such as the curvature roads.
For example, in Figure 13a, a leading vehicle in such a road is recognized as a vehicle
in different lanes. Additionally, Figure 13b shows how a curved road causes limited
sight, which makes the autopilot features fail to recognize a lead vehicle that stops
because of a red traffic light. As a consequence, the autopilot does not reduce the
host vehicle’s speed. Furthermore, another environmental constraint associated with
the frontal situation is traffic light state recognition, which may be due to traffic
light types and placement. In this regard, unsupported road infrastructure, which was
designed before autopilot technology existed, creates an unfriendly environment for
such technologies.

Based on the frontal situation problems above, two examples of cognitive support
and SA failure handlers in manual mode are sending an alert to the driver and execut-
ing emergency brake procedures. Commonly, the emergency brake procedures will be
executed when hazardous TTC values, inattentive driving, and no braking input from
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(a) Lead vehicle recognition problems. (b) Traffic light recognition issues.

Figure 13. Curvature problems.

drivers are recognized. Such mechanisms, therefore, become a way for the ADAS to
observe the driver’s behaviour and measure its outcome. In the meantime, the SA de-
velopment of the ADAS can be observed by providing a transparency mechanism. To
illustrate the implementation of transparency in the ADAS, this study models the SA
development by providing several decision points associated with selected situations,
which can be seen in Table 3.

Table 3. Decision Points due to the Behaviour of the ADAS in Responding to the Frontal Situation

Decision Points Description
D1 Is there a vehicle in front?
D2 Is the current road trajectory curved?
D3 Is the vehicle ahead within the host vehicle’s

path?
D4 Is the TTC value of the lead vehicle above that

of the user’s setting?
D5 Are there any traffic lights ahead?
D6 Can the traffic light state be recognized?

Using a set of sensors and learning machines, the answer for each decision point can
be inferred. For example, the data captured by an in-vehicle camera can be learned
to support D1, D3, D5, and D6. Additionally, GPS and distance sensors can supply
the inputs for D2 and D4, respectively. With these decision points, a decision tree
can be modelled producing 21 different states and 40 path pieces (see Figure 14). As
the decision points reflect the states of SA development of the ADAS, transparency
information can be generated at the critical path connecting these decision points.

For example, the P14 scenario in the decision tree represents a state in which a
vehicle is detected ahead (path 1) while the road trajectory is straight (path 4). As
a consequence, the ADAS has a very high confidence level on its recognition result
to answer the decision point D3 (path 10). Then, the P14 scenario also illustrates
that the host vehicle is also under traffic light situations (path 37), and it is assumed
that traffic light states can be recognized (path 39). Based on this scenario, several
situational transparency information items can be generated. Starting at path 1, the
vehicle’s information panel can display frontal situations presenting the host vehicle
position between two road lines and the position of the detected vehicle ahead, either
within or outside of the host vehicle’s path. Furthermore, given the traffic light detected
at path 37, an icon representing a traffic light pops up (i.e., in grey only). Once the
traffic light state is detected, a different colour for the traffic light icon appears to
tell the driver that such a situation was well recognized. When the ADAS fails to
capture the traffic light state within a particular distance, as in the P15 scenario, an
alert can be sent to the driver to go back to the loop control. In this regard, such
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Figure 14. Decision tree regarding frontal situations

colour changes on the light icon represent the transparency of the traffic light state
recognition performance which helps comprehend overall situations.

As previously mentioned, a curved road may lead to the poor recognition of lead
vehicles. For such a situation (i.e., path 7 of the P3 scenario), transparency information
about the lead vehicle recognition performance given the road trajectory type can be
generated either in a textual or visual mode. This information can help the drivers
maintain their situational awareness and set a proper trust on the ADAS behaviour
and performance.

5. Conclusion

Collaborative driving can be considered as a form of HAT since autonomy has been
increasingly added to the ADAS. Rather than merely a type of automation, the ADAS
can also be viewed as a teammate providing, i.e., the backup when the driver experi-
ences SA development failures and an assistance to reduce the driving workload with
its collision avoidance and autopilot features respectively. However, in such collabora-
tive driving, another SA problem arises due to over-reliance mental models. This study
investigates the underlying SA concept of HAT in collaborative driving to overcome
such a mental model issue. As a result, several key contributions have been made that
consist of the formalization of existing multiple-agent SA models, a new SSA model to
cater to collaborative driving, and a methodology to enhance the SSA-based HAT per-
formance that considers mechanisms such as SA failure handlers and the transparency
to be applied during AA’s SA development. This paper also introduced TCDT frame-
work for transparency requirements. The new SSA model is significant for enriching
the existing underlying SA concept. Additionally, applying a transparent system can
be a future direction of ADAS development.

The new SSA model can exist in other domains, such as military and robotics.
Therefore, future research related to the SSA model can focus on enhancing team per-
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formance with multiple autonomy agents as subordinates, in which they have various
SA model relationships, such as team SA, mutual SA, and shared SA. Additionally, fu-
ture research can also be directed to develop an approach for transparency mechanisms
to extract information regarding AA states and behaviours.
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