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Abstract—RANSAC (random sample consensus) has been 
widely used as a benchmark algorithm for model fitting in the 
presence of outliers for more than thirty years. It is robust for 
outlier removal and rough model fitting, but neither reliable nor 
efficient enough for many applications where precision and time 
is critical. Many other algorithms have been proposed for the 
improvement of RANSAC. However, no much effort has been 
done to systematically tackle its limitations on model fitting 
repeatability, quality indication, iteration termination, and 
multi model fitting.  

A new paradigm, named as SASAC (statistical analysis for 
sample consensus), is introduced in this paper to relinquish the 
limitations of RANSAC above. Unlike RANSAC that does not 
consider sampling noise, which is true in most sampling cases, a 
term named as σ rate is defined in SASAC. It is used both as an 
indicator for the quality of model fitting, and as a criterion for 
terminating iterative model searching. Iterative least square is 
advisably integrated in SASAC for optimal model estimation, 
and a strategy is proposed to handle multi model situation.  

Experiment results for linear and quadratic function model 
fitting demonstrate that SASAC can significantly improve the 
quality and reliability of model fitting and largely reduce the 
number of iterations for model searching. Using the σ rate as an 
indicator for the quality of model fitting can effectively avoid 
wrongly estimated model. In addition, SASAC works very well 
to multi model dataset and can provide reliable estimations to all 
the models. SASAC can be combined with RANSAC and its 
variants to dramatically improve their performance. 
 
Keywords- model fitting; RANSAC; reliability; multi model; 
sample consensus; statistical analysis 
 

I. INTRODUCTION 

RANSAC (random sampling and consensus) is a robust 
regression algorithm well applicable to data contaminated by 
a large fraction of outliers [2]. It is based on the assumption 
that a subset of data uncontaminated with outlier will construct 
a correct model. It can be summarized as a hypothesize-and- 
verify framework: a subset of samples for model fitting is 
randomly selected from the given dataset and used to fit a 
model hypothesis, which is then evaluated by computing the 
distance of all the other samples to this model and constructing 
an inlier subset with a threshold. This hypothesize-and-verify 
loop is repeated until the number of iterations reaches a 
predefined success rate for finding a model constructed with 
an uncontaminated subset [1].  
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Many algorithms have been developed as the variants of 
RANSAC [3-14]. MLESAC (maximum likelihood estimation 
sample consensus) by Torr and Zisserman [8] adopts the same 
sampling strategy as RANSAC to generate putative solutions, 
but chooses the solution to maximize the likelihood rather than 
just the number of inliers. Chum and Matas proposed locally 
optimized RANSAC (LO-RANSAC) and optimal randomized 
RANSAC to improve the hypothesis generation step, using 
just the inlier set of the best current model [3,11,16]. Nister 
proposed preemptive RANSAC for real-time application. A 
fixed number of hypotheses are generated with half of them 
eliminated each iteration, thus the iteration is terminated in a 
fixed time [4]. Capel developed a statistical bail-out test for 
RANSAC that permits the scoring process be terminated early 
and saves computation cost [10]. Wang and Luo introduced 
PURSAC (purposive) to avoid random searching in RANSAC 
using discriminative information from a dataset and analysing 
the noise-model relationship [12]. Uncertainty RANSAC  
incorporates uncertainty of samples as outliers for reducing the 
number of iterations [13]. A deterministic RANSAC approach 
also is introduced to estimates the probability of a match to be 
correct [14] . 

All these methods developed on the basis of RANSAC, 
however, share some common weaknesses. As the quality of 
model fitting cannot be assessed properly, the condition for 
terminating the iterative model searching lacks a reliable 
criterion. Their modelling solution is imprecision and may far 
from the optimal one unless using huge number of iterations. 
Generally they are unable to handle multi model situation. This 
is mainly due to that most of them are focusing on speeding up 
model searching but not on these weaknesses.  

For most model fitting tasks, two types of measurement 
errors should be considered: small errors (noise) and blunders 
(outliers) [15]. RANSAC and its variants mainly handle the 
outliers but dismiss the sampling noise. Our research in this 
paper considers both outliers and noise with statistical analysis 
for sample consensus (SASAC), which is able to tackle all the 
weaknesses listed above. As sampling noise follows normal 
distribution in general, an σ rate is defined as an indicator of 
model fitting quality. It is also used in SASAC to speedup 
model searching by timely terminating the process. Iterative 
least square is integrated into a modelling searching scheme 
for efficient and reliable model estimation [17]. A general 
approach for multi model fitting is also proposed. SASAC can 
be combined with RANSAC and its variants, and dramatically 
improve the performance of original algorithms. 
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The rest of the paper is organized as follows: Section II 
reviews the principle of RANSAC with statistical analysis. 
Section III introduces the scheme of SASAC, and describes its 
performance for single model fitting. Section IV explains the 
approach in SASAC for multi model fitting. Experiments with 
different outlier rate, different inlier threshold for linear and 
quadratic functions are presented in Section V, to demonstrate 
the effectiveness and robustness of the proposed algorithm. 
Conclusion and discussions appear in the last section. 

II. STATISTICAL ANALYSIS OF RANSAC 

RANSAC is a successful algorithm in model fitting with 
outlier contaminated data. It follows a simple assumption: a 
small set of data without outlier will construct a correct model 
with most inliers, and it can be found from some randomly 
selected hypotheses [2]. RANSAC has four major steps: 1) 
randomly select a subset of samples from all the samples to fit 
a model hypothesis; 2) compute the distance of all other 
samples to this model; 3) construct an inliers set with a 
predetermined inlier threshold; 4) compare the number of 
inliers to the highest one so far and store the better one. The 
steps 1) to 4) are repeated until a preset number of iterations 
are reached. Then the model with the maximum number of 
inliers is selected and its inliers are used for model estimation. 
Thus RANSAC is a stochastic algorithm without deterministic 
guarantees of finding the global maximum of a likelihood [8]. 

Assuming all the samples have same outlier ratio ε, and 
ignoring the impact of sampling noise, RANSAC follows a 
random sampling paradigm. Fundamentally it is a stochastic 
algorithm without deterministic guarantees of finding the 
global maximum of the likelihood. A success rate p is the 
level of confidence of finding a consensus subset, which is a 
function of ε, the number of iterations to be conducted N and 
the number of samples in a subset s [2]. The success rate here 
in (1) simply means that a subset of samples selected by 
RANSAC are all from inliers. As observed, RANSAC is a 
probabilistic method and is nondeterministic as it just selects 
the best fit in N iterations that are randomly selected and are 
different on each run.  

𝑁 = log	(1−𝒑)
log	(1−(1−𝜺)-)					         (1) 

For the sake of robustness, in practical implementations N 
is usually multiplied by a factor of ten, which increases very 
much computational costs Error! Reference source not 
found.. Without prior knowledge of ε in general, it is estimated 
adaptively during the iteration in RANSAC.  

Bearing the natural principle of RANSAC, the lower part 
of the Equation (1) is fixed by ε of a dataset (usually unknown) 
and the number of samples in a subset s (decided by the model 
to fit). If one wants to get high success rate (p) of selecting a 
subset of samples all from inliers, the number of iterations (N) 
will increase exponentially.  

In practice, however, sampling always has noise and it 
should follow normal distribution as Equation (2). The density 
of the normal distribution ρ is decided by the mean μ and 
standard deviation σ.  The analysis of sampling noise against 
model hypotheses in PURSAC  shows that even if a consensus 
subset all from the inliers, due to the sampling noise and 
degenerate configurations, the model hypothesis may be 

different and far from the optimal one [12]. A semi-purposive 
subset selection is proposed in PURSAC to reduce the effect 
of measurement noise for model fitting.  

ρ(x) = 1
√2π	𝜎

	𝑒5
(678)9

9:9 																							           (2) 

The searching result of RANSAC is a model hypothesis 
with the most number of inliers among all the hypotheses tried 
in the iterations conducted. This result is unreliable to reach 
optimal sample consensus, even if the number of iterations is 
more than the N calculated with the Equation (1). A proper 
indicator is needed to tell the quality of a model fitting with 
RANSAC. 

RANSAC requires some pre-know information about a 
dataset for setting its parameters, such as the outlier ratio ε and 
the inlier threshold τ to select inliers. However, in practice this 
information is generally not available, and wrongly estimated 
parameters in RANSAC will either reach unreliable model 
estimation or increase the computation cost unnecessarily.  

Let us investigate the line fitting example in the original 
RANSAC paper [2]. As showing the Figure 1, two types of 
measurement errors (noise and outlier) exist in the sample 
points. By randomly selecting a subset of samples (two points 
for line fitting) and counting inliers with a proper threshold τ, 
RANSAC can find a line model with the highest number of 
inliers after a certain number of iterations. However, this line 
model is unlikely to be one close to the correct one, and can be 
very different in another attempt, unless the number of 
interactions is so large that can cover all the possibilities of 
selecting subset of samples. This nature fact of RANSAC 
makes the model fitting inaccurate and unrepeatable. Due to 
measurement noise, model hypotheses selected by RANSAC 
with limited number of iterations usually cannot fit a model 
precisely, as illustrated in Figure 1. It is safe to conclude that 
RANSAC is only effective in removing measurement outliers 
but is inadequate of handling measurement noise.  

 
Figure 1.  Line fitting example. RANSAC and its varents MLESAC and 

PURSAC find their optimal models after a number of interations, which are 
dervise and far from the real line model, while SASAC is able to find a 

much better result that is very close to the real model. 

III. SASAC SCHEME 

The limitations of RANSAC mentioned above are handled 
in this paper by in-depth statistical analysis. When a dataset 
has both noised inliers and outliers, the inliers roughly follow 
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normal distribution, and the outliers are generally distributed 
as white noise. Figure 2 shows an example of the distance 
distribution of all the sample points to a line.  

 
Figure 2.  Inliers’ normal distribution and outliers as white noise 

It is found that only the noised inliers of sample consensus 
will follow normal distribution. This property is used to define 
an σ rate with Equation (3), and to develop iterative model 
fitting algorithm SASAC for efficient, precise and reliable 
model estimation.  

σ	rate = 𝑁𝑖𝑛−𝑁𝑖𝑛2/2
𝑁𝑖𝑛

																								           (3) 

where	NDE	and NDEF is the number of inliers with a preset 
inlier threshold τ and a double sized threshold respectively. 
The σ rate in the two cases in the Figure 2 is so different that 
it can be used to distinguish model fitting results easily. The 
samples around the red rectangles follow normal distribution 
for correct model fitting. The corresponding σ rate value is 
positive, generally greater than a high threshold and must 
greater than a low threshold. The orange rectangles are around 
white noise peak, which could also be picked by RANSAC. Its 
corresponding σ rate can either be positive or negative, and 
must less than the high threshold and generally lesser than the 
low threshold. In this way the σ rate value can be used to assess 
the quality of model fitting. 

 A model with σ rate greater than the high threshold must 
be a correct one, while the one with σ rate lesser than the low 
threshold must be an incorrect one. Only when the σ rate value 
falls between the two thresholds, additional processing is 
needed to distinguish a model fitting results. The value of two 
σ rate thresholds is largely determined by the pattern of real 
samples distribution and its relationship to the inlier threshold, 
which will be investigated by purposely designed experiments 
in the Section V.B. 

A. SASAC strategies 
Unlike RANSAC is barely attempt to find a model with 

most inliers among a number of test model hypotheses, which 
may or may not close to the globe optimal model, the proposed 
SASAC consists of a set of steps to overcome the mentioned 
limitations of RANSAC: 

Step 1) no matter how much is the outlier ratio ε of a 
dataset, just run RANSAC or its variants for small number 
iterations (ten or so). The model with the maximum number of 
inliers is selected as an initial estimation; 

Step 2) the selected inliers are used for model estimation 
with iterative least square. The iteration in it stops when the 
number of inliers no longer increase, which means either an 
optimal model consensus or just a white noise peak; 

Step 3) evaluate the quality of model fitting with σ rate 
calculated by Equation (3), and compare it to two thresholds. 
If σ rate > high σ rate threshold, SASAC stops and the result 
provides an optimal model estimation.  

Step 4) Otherwise repeat the iteration from Step 1) to Step 
3) with an increased number of iterations in Step 1), until the 
σ rate reaches the high threshold or stops increasing anymore 
and exceeds the low threshold. 

Step 5) conduct multi model fitting if needed by removing 
all the inliers of previous model and searching for next model. 
As the inliers of other models should present as outliers or 
noise to the present model, and removal of them should not 
affect current model estimation.  

As only a very small number of iterations are conducted in 
the Step 1) initially, it is no need to know outlier ratio ε, which 
is used to decide the number of iterations in RANSAC and 
most of its variants. If an initially selected model similar to the 
correct one, which may be constructed by a subset with inliers 
and outliers, its inliers tend to follow the normal distribution. 
The following steps in SASAC are able to find the optimal 
model using iterative least square and to calculate σ rate as a 
confident indicator. 

RANSAC and its variants repeatedly performs two simple 
steps: hypothesis generation and evaluation, and select the 
best hypothesis from all the tries. They miss the process of 
searching for the globe optimal model, without an indicator 
for the quality of model fitting. By statistical analysis sample 
consensus, SASAC provides an effective strategy to verify 
model fitting quality and to search for the globe optimal.  

B. SASAC for single model fitting 
The performance of SASAC is evaluated and compared to 

three other methods by conducting a Monte Carlo test. A 
dataset with 70% outlines is tested for 1,000 runs for each 
algorithm. Table I shows line fitting tests results for SASAC 
combining with RANSAC, MLESAC and PURSAC 
respectively. The σ rate in Table I is calculated by the 
Equation (3), and the similarity of line fitting against the real 
model is calculated by the Equation (4). 
 
Line	similarity	rate	φ = 𝐷1

	𝐷1+∑ 𝛿𝑦2
𝑖=1

																								           (4) 

where D1 is the distance between the two endpoints of the 
real line model. The item ∑ 𝛿𝑦F

STU  is the sum of the vertical 
distance between corresponding endpoints of the two lines. 
The line similarity rate φ	ranges from 1 (exactly same) to 0 
(totally different). As long as the real line model is not a 
vertical line, Equation (4) can properly indicate two lines’ 
similarity. 

TABLE I.  MONTE CARLO TEST RESULTS FOR LINE FITTING  

Average/STD RANSAC MLESAC PURSAC 

σ  rate   
 

Without SASAC 0.89/0.52 0.82/0.55 1.00/0.49 

With SASAC 1.56/0.17 1.55/0.18 1.57/0.17 

Similarity 
rate 𝛗 

Without SASAC 0.86/0.08 0.86/0.08 0.88/0.07 

With SASAC 0.97/0.05 0.97/0.04 0.97/0.03 
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Average/STD RANSAC MLESAC PURSAC 

RANSAC Iteration N 19.99/8.75 20.01/8.26 18.95/8.23 

SASAC Iteration n 4.47/2.04 3.91/2.16 3.81/1.72 
 

The results in the Table 1 show that the SASAC has much 
higher line similarity rate than that of other algorithms, and its 
standard deviation (STD) is much smaller than the others’ one. 
These demonstrate that SASAC can achieve precise model 
fitting with high reliability. The test results show σ rate has 
high correlation with the line similarity rate, which proves that 
it is a reliable indicator for the quality of model fitting.  

Same test has been conducted for quadratic function model 
fitting, which needs three points for model hypotheses. The 
similarity rate for this function is the ratio of common inliers 
of the real model and the final model against the number of the 
inliers of the real model. The dataset for quadratic function 
model fitting has 8,000 points totally the outlier ratio is about 
77%. Table II is the Monte Carlo test results for quadratic 
function model fitting. The test results show that the strategies 
proposed in SASAC work very well not only for line fitting 
but also for quadratic function model fitting. It is noticed that 
SASAC shows more advantage in curve fitting than line fitting, 
in term of efficiency. This indicates that SASAC can provide 
more benefit in complicated model fitting. Its performance 
could be further improved if a better strategy for the globe 
optimal model estimation could be applied.  

TABLE II.  MONTE CARLO TEST RESULTS FOR CURVE FITTING 

Average/STD RANSAC MLESAC PURSAC 

σ  rate   
 

Without SASAC 0.68/0.39 0.77/0.58 0.60/0.84 

With SASAC 1.68/0.17 1.70/0.16 1.84/0.09 

Similarity 
rate 𝛗 

Without SASAC 0.41/0.10 0.43/0.14 0.42/0.24 

With SASAC 0.86/0.14 0.82/0.18 0.92/0.03 

RANSAC Iteration N 38.00/10.33 36.00/9.66 40.00/14.14 

SASAC Iteration n 8.80/4.71 9.60/3.03 9.70/5.76 
 

Figure 3 shows the test results of quadratic function model 
fitting for ten runs. The green curves are the initial models 
estimated by PURSAC, and the red ones are by SASAC based 
on these initial models.  

 
Figure 3.  Curve fitting with PURSAC and SASAC 

The green curves in the figure are diverse and far from the 
true model, indicating that models estimated by RANSAC 
with limited number of iterations are generally neither precise 
nor reliable. The red curves are much more constant and close 
to the real model presented by the black curve. The test results 
proves that SACAC can save computation cost by reducing the 
number of iterations needed for RANSAC and its variants to 
get an initial model fitting, and improve the quality of model 
fitting at the same time by applying the strategies for optimal 
model estimation.  

The key idea behind SASAC is to quantitively measure the 
quality of a model fitting and to optimize the model searching 
procedure with the measurement. SASAC counts both outliers 
and measurement noise that are naturally exist in real dataset, 
and uses the statistical property of them to evaluate model 
fitting result and to accelerate the process. It is worth to 
mention that the principle of SASAC is based on the statistical 
analysis of samples for model fitting, and it works very well 
for large dataset. 

IV. SASAC FOR MULTI MODEL FITTING 

It is a challenging task for RANSAC and its variants if a 
dataset has multi models and it is expected to find all the 
models in the dataset. The last step in the SASAC algorithm is 
designed to conduct multi model search. This section 
introduces how SASAC works for multi model fitting and 
applies it to both line fitting and quadratic function model 
fitting. 

For a dataset with multi models, each model should have 
certain number of inliers. As the inliers of other models in the 
dataset present as outliers or noise to current model, removal 
of them should not affect current model estimation. Based on 
this fact, applying SASAC to the dataset will find one of the 
models. The model has more number of inliers has the highest 
potential to be found first. Then all the inliers of the model are 
removed from the dataset and the process for searching other 
models is conducted. This process continues until all the 
models have been found.   
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A. Multi model line fitting 
First let us apply SASAC for multi model line fitting. A 

dataset with two line models is generated. Among totally 1,000 
points, there are about 200 inliers for each of the line, which 
means the outlier rate for each line is 80%. Figure 4 shows the 
multi-model fitting result with RANSAC and SASAC for ten 
runs. The red and green points in the figure indicate the inliers 
for two different line models respectively. It is obvious the red 
lines estimated by SASAC are much more constant and closer 
to the real model than the blue lines estimated by RANSAC.  

Table III is the Monte Carlo test results of multi-line model 
fitting for 1,000 runs. The results clearly show that SASAC 
has much better performance than RANSAC and its variants. 
The similarity rate of SASAC is very close to 1, which means 
a perfect model fitting. The STD of the SASAC data is also 
much better than that of RANSAC and its variants, indicating 
that the results for SASAC is much more precise, consistent 
and reliable.  

Figure 4.  Multi line fitting with SASAC 

TABLE III. MONTE CARLO TEST RESULTS FOR MULTI-LINE FITTING 

Average/STD RANSAC MLESAC PURSAC 

σ rate 
Without SASAC 1.79/1.16 1.86/1.10 1.85/1.22 

With SASAC 3.13/0.12 3.12/0.12 3.14/0.06 

Similarity 
rate 𝛗 

Without SASAC 0.80/0.17 0.80/0.16 0.82/0.15 

With SASAC 0.98/0.03 0.98/0.02 0.99/0.02 

RANSAC Iteration N 12.56/4.77 12.81/4.92 16.02/8.23 

SASAC Iteration n 3.30/1.72 3.44/1.68 3.69/2.46 

B. Multi model curve fitting
A dataset with two quadratic function models is generated

for multi model fitting experiment. The dataset contains 8,000 
points and the outlier ratio for each model is about 80%. 
SASAC with multi models searching function is applied for 
model fitting. Table IV is the Monte Carlo test results of multi 
curve model fitting. Both the σ rate and similarity rate φ for 
SASAC are larger and more consistent comparing to than that 
of RANSAC.  

TABLE IV. MONTE CARLO TEST RESULTS FOR MULTI-CURVE FITTING 

Average/STD RANSAC MLESAC PURSAC 

σ rate 
Without SASAC 1.44/0.86 1.34/0.81 1.00/0.97 

With SASAC 2.29/0.27 2.28/0.30 2.16/0.41 

Similarity 
rate 𝛗 

Without SASAC 0.55/0.16 0.51/0.16 0.42/0.18 

With SASAC 0.95/0.07 0.93/0.12 0.87/0.20 

RANSAC Iteration N 40.00/13.76 54.00/23.93 46.00/13.92 

SASAC Iteration n 9.50/2.74 9.20/3.89 9.35/4.48 

Figure 5 is ten runs test results of multi model curve fitting 
with RANSAC and SASAC. The two black curves in the 
figure are the real models; green and red curves indicate the 
models estimated by MLESAC and SASAC respectively. It is 
obvious the red curves are much more constant and close to 
the real model than the blue curves. 

Figure 5.  Multi curve fitting with SASAC 

The multi model fitting strategy in SASAC Step 5) works 
very well for both multi line fitting and multi curve fitting. As 
the experiment results shown in Table I, II, III and IV, SASAC 
can achieve precise and reliable multi model fitting as good as 
single model fitting for both line and curve. This magnificent 
performance is accomplished with a very small number of 
iterations, which means a very low computation cost that is 
critical for many real-time applications.   

More comprehensive experiments are introduced in the 
next section aiming to evaluate the performance of SASAC 
with different datasets, and to investigate its characteristics 
with different parameter setting. 

V. EXPERIMENTAL RESULTS

Several experiments have been conducted for evaluating 
the property and performance of the proposed SASAC 
algorithm from different aspects. The Subsection A introduces 
test results for a set of datasets with different outlier rate, and 
gives the evaluation about the performance of SASAC and 
corresponding computation cost. Then in the Subsection B the 
setting of different inlier threshold τ and this impact to the 
performance of SASAC is analysed with purposely designed 
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experiments. The Subsection C focuses on tests with different 
multi-model datasets.  

A. Computation cost for different outlier rate 
The number of iterations calculated by Equation (1) gives 

the relation between the outlier ratio ε and required number of 
iterations N for a given success rate p and the number of 
samples in a subset s for RANSAC. The N calculated here is 
just the number of iterations required for RANSAC to have a 
chance that all the samples in a subset s are liners with success 
rate as p. However, due to measurement noise, a model 
generated with an all inliers’ subset may be quite different 
with the real model. In addition, even if the success rate p is 
set to 99.9% it may be still not good enough to need the 
requirement of many applications. 

Table V lists calculation results for N using Equation (1) 
with different s and ε, and a p fixed at 99.9%. The data in the 
table shows that N is increased drastically as the outlier ratio 
ε increased, especially when s is four or more.  

TABLE V.  NUMBER OF ITERATIONS CALCULATED BY EQUATION (1)  

ε \ N \ s   2 3 4 5 
 0.1 4 5 6 7 
0.2 6 9 13 17 
0.3 10 16 25 37 
0.4 15 28 49 85 
0.5 24 51 107 217 
0.6 39 104 266 671 
0.7 73 252 849 2839 
0.8 169 860 4,313 21,583 
0.9 687 6,904 69,074 690,772 

 

By applying SACAS, however, the relation between N and 
ε does not follow Equation (1) anymore. N in each run is much 
less than the one calculated in Table V, and mainly depends 
on the quality of initial model fitting result, which is decided 
by the initial estimation in the SASAC Step 1). Table VI is 100 
runs’ Monte Carlo test results using SASAC and RANSAC 
combination for line fitting with different outlier ratio ε 
ranged from10% to 90%.   

The results show that precise model estimation can always 
be achieved by SASAC, without any parameters adjustment 
for a large range of outlier ratio, using a much smaller number 
of iterations than the one in Table V. As the outlier ratio 
increasing, the required similarity rate of RANSAC estimated 
initial model is decreasing with a small increase of number of 
iterations N. At the same time, the number of iterations needed 
for SASAC n is increasing for precise model fitting. This fact 
indicates that when the outlier ratio increasing, SASAC still 
can achieve precise model estimation using an initial model 
estimated by RANSAC or its variants with a lower similarity 
rate φ. The cost is the slightly increase of n and N, the number 
of iterations for SASAC and RANSAC.    

It can be concluded from the results in Table VI that 
SASAC can provide precise and reliable model estimation for 
the whole range of outlier ratio; and the required number of 
iterations for SASAC to achieve this is much less than other 
model fitting algorithms’ requirement. Comparing with 
RANSAC and other algorithms proposed previously, SASAC 

can achieve much better model fitting estimation with much 
smaller number of iterations. SASAC has a big improvement 
in model estimation at precision, reliability and efficiency, 
which are critical for most applications. 

TABLE VI.  MONTE CARLO TEST FOR DIFFERENT OUTLIER RATIO 

Outlier 
ratio ε   

Average φ/N (RANSAC) and φ/n (SASAC) 
Line fitting (s=2) Curve fitting (s=3) 

SASAC RANSAC SASAC RANSAC 
10% 1.00/3.39 0.96/4.57 0.94/4.80 0.59/6.50 
20% 1.00/4.26 0.95/6.38 0.94/5.50 0.65/6.60 
30% 1.00/4.46 0.95/10.10 0.94/5.80 0.60/7.00 
40% 1.00/4.39 0.93/10.20 0.93/5.70 0.53/7.80 
50% 1.00/4.80 0.93/11.30 0.91/6.10 0.45/11.00 
60% 1.00/5.87 0.92/12.00 0.89/6.80 0.40/11.50 
70% 1.00/6.05 0.91/13.50 0.91/8.53 0.47/25.31 

80% 0.99/7.54 0.89/17.60 0.89/7.06 0.43/64.00 

90% 0.97/8.67 0.87/39.40 0.88/ 5.10 0.40/ 123.0 

 

B. Different inlier threshold  
The inlier threshold τ selected in RANSAC, SACAS and 

other similar model fitting algorithms is a statistical parameter 
that reflects the distribution pattern of a model’s inliers, and is 
basically decided by the measurement noise. The experiment 
designed in this subsection aims to investigate how sensitive 
each algorithm’s performance against the selection of their 
inlier threshold. 

A dataset with fixed sample distribution and outlier ratio is 
used in the experiment. The inliers follow normal distribution 
with a known STD. As shown in Table VII, the performance 
of RANSAC and SASAC is examined by selecting the inlier 
threshold as a quarter, half, 1, 2, 4 and 8 times of the inliers’ 
STD. The results in the table are presented as the average/STD 
of a multi-run Monte Carlo test for line fitting. 

TABLE VII.  TEST RESULTS FOR DIFFERENT IINLIER THRESHOLD 

τ 
RANSAC SASAC  

N 𝛗 n σ rate 𝛗 
STD/4 34.60/11.41 0.90/0.20 9.64/6.19 1.26/0.19 0.93/0.21 
STD/2 17.00/5.95 0.94/0.04 6.06/3.07 1.73/0.06 1.00/0.00 
1xSTD 13.60/5.03 0.91/0.08 5.25/2.81 2.19/0.02 1.00/0.00 
2xSTD 11.30/3.38 0.88/0.11 4.13/2.01 2.66/0.01 1.00/0.00 
4xSTD 10.50/2.19 0.85/0.15 4.17/2.05 2.94/0.03 0.98/0.01 
8xSTD 10.20/1.41 0.81/0.17 4.13/1.80 2.47/0.02 0.92/0.02 
 

The results in Table VII indicate that the similarity rate φ 
for both RANSAC and SASAC are not much sensitive to the 
inlier threshold τ selection. Both can reach a reasonable high 
similarity rate in a large range of τ. For SASAC, its φ declines 
only when τ ≤ STD/4 or τ ≥ 8xSTD.  

It is noticed in the Table VII that when τ ≤ STD both N and 
n tend to be large, which means more computation cost, and 
the σ rate is relative small. When τ ≥ STD, n and σ rate tend to 
be insensitive to the change of τ; N and the required similarity 
rate φ of the initial model estimation tend to be small with τ 
increasing. This fact can be explained as a large τ results a 
large searching step in SASAC, it just needs rougher initial 
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model estimation. However, if τ ≥ 8xSTD, the similarity rate φ 
will decline and fail to achieve a precise model estimation. 

The facts mentioned above reflect the statistical property 
of normal distribution due to sampling noise, and the model 
searching strategy applied in the proposed SASAC algorithm. 
Considering both model fitting precision and corresponding 
computation cost, the best selection of τ is STD ≤ τ ≤ 4xSTD. In 
practical applications, sampling noise is usually measurable or 
can be estimated, thus the inlier threshold can be properly 
selected. 

C. Different multi model dataset  
A set of multi model datasets with different outlier ratio are 

generated to evaluate the performance of SASAC for multi 
model fitting. Table VIII is the test results for multi model 
datasets with different outlier ratio. SASAC is combined with 
RANSAC and for all the datasets the τ is set to around 2xSTD. 
The results are the average of 100 run and presented in 
average/STD. Similar to the results for single model dataset, 
SASAC can get very precise and reliable model estimation 
with a small number of iterations. 

TABLE VIII.  TEST RESULTS FOR DIFFERENT MULTI MODEL DATASET 

Outlier 
ratio ε 

SASAC 
Similarity rate  

SASAC  
σ rate 

RANSAC 
Iteration N 

SASAC 
Iteration n 

0.2 1.00/0.00 3.49/0.15 6.03/0.16 2.44/0.70 

0.4 0.99/0.00 3.43/0.20 10.25/1.57 2.38/1.05 

0.6 0.99/0.06 3.21/0.18 12.35/4.48 3.17/1.70 

0.8 0.97/0.03 2.51/0.16 19.90/11.03 3.10/1.65 

VI. CONCLUSION 
This paper introduces a precise and efficient model fitting 

algorithm named as SASAC, which is based on statistical 
analysis for sample consensus. As normal distribution of 
samples with noise is true in most cases, an indicator σ rate is 
defined. It is able to check the quality of a model fitting during 
the model searching process. As the core of SASAC, a search 
scheme based on σ rate and iterative least square is proposed 
for optimal model estimation. SASAC can use a rough model 
estimation from any algorithms to find a precise model fitting. 
It works very well for all the range of outlier ratio. It especially 
has more advantage for dataset with large outlier ratio in the 
way that the number of iterations increased is much smaller 
than that of other model fitting algorithms needed. This means 
precise and timely model estimation can always be achieved 
with SASAC no matter how heavily the data is contaminated. 
As the last step in SASAC, a general approach is proposed to 
handle multi model situation, which can provide reliable 
estimations to all the models. 

SASAC can be combined with RANSAC and its variants 
to dramatically improve their model fitting performance. 
Extensive experiment results for line fitting and curve fitting 
demonstrate that SASAC can significantly improve model 
fitting precision and reliability, and reduce computation cost at 
the same time. SASAC has an indicator about the quality of a 
model fitting result so as to avoid wrongly estimated model.  

Further investigation will be conducted to apply SASAC 
for feature based visual odometry. It is expected to improve 

the accuracy and robustness of outliers’ removal, resulting in 
a more precise and efficient model fitting solution.  
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