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Abstract—Smart sensor systems play a decisive role in the con-
dition assessment of concrete sewer pipes going through microbial
corrosion. Few Australian water utilities adopt a predictive
analytic model for estimating the corrosion. They require sensor
inputs like sewer air temperature data for corrosion prediction.
A sensor system was developed to monitor the daily variation
of sewer air temperature inside the harsh sewer environmental
conditions. However, a diagnostic tool to evaluate the streaming
sensor data is vital for reliable monitoring. In this context,
this paper proposes a temporal forecasting driven approach for
anomaly detection in sewer air temperature sensor system. Sev-
eral temporal forecasting models were comprehensively evaluated
and chosen Facebook’s Prophet method based forecasting to
develop an anomaly detection approach. The proposed approach
was evaluated with sewer air temperature sensor data and the
results indicate a reasonable anomaly detection performance.

Index Terms—Anomaly detection, arima model, bagged model,
concrete corrosion, ets model, facebook prophet, forecasting,
sewer pipe, tbats model, temperature sensor, time series model.

I. INTRODUCTION

Sensor monitoring inside sewer pipes is challenging due
to the harsh environmental conditions caused by the high
concentration of gaseous hydrogen sulphide and high humidity
levels. Such environmental conditions favours microbial activ-
ity on the surface of the concrete sewer pipe. The microbes
are responsible for producing sulphuric acid on the concrete
surface and largely influence concrete corrosion [1], [2]. The
water utilities spend millions of dollars each year to repair and
rehabilitate the pipes affected by concrete corrosion [3], [4].
If the water utilities fail to address the corrosion problem, it
can result in sewer infrastructure breakdown [5].

Smart sensor technologies can play an important role in the
condition assessment of concrete sewer pipes. Unfortunately,
there are no sensors available to non-invasively measure the
concrete corrosion inside the sewer pipe. Traditionally, the
sewer operators travel inside the sewer pipe and take core
samples to estimate corrosion through laboratory analysis.
This practise can cause occupational health hazards to the
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operators traversing inside the harsh sewer pipe environmental
conditions. A smart sensing suite has been reported recently to
estimate the thickness of the corroded layer inside the sewer
pipe. This sensing technique employs ground penetrating radar
[6] or electrical resistivity based sensor measurements [7], [8]
or capacitance sensor [9] to identify the location of the rebar.
Then, a pulsed eddy current sensing technology is used to
estimate the distance to rebar from the surface of the concrete
[10]. Once the location and distance to rebar are known, an
optimal location is identified to take corrosion measurements
through a drilling based sensor technology [11]. Even this
smart sensing technology is invasive and needs human-based
inspection inside the sewer pipe. With recent advancements
in predictive analytics, researchers in collaboration with Aus-
tralian water utilities have developed a sensor data-driven
model for predicting the corrosion across the sewer pipe [12].
Those models primarily incorporate air temperature, relative
humidity, and hydrogen sulphide concentration of sewer air as
data inputs to the model [13]. Also, the model takes surface
temperature sensor measurements [14], [15] and surface mois-
ture sensor measurements [16], [17] as additional inputs to
reduce prediction uncertainty. This predictive analytics based
corrosion estimation needs long-term sensor inputs. However,
sensors can produce random anomaly or a continuous stream
of anomalies in sewer environmental conditions [18], [19].
Hence, it is important to have a diagnostic tool to automatically
detect anomalies in sensors such as sewer air temperature
sensor, which provides crucial data inputs to the models
predicting corrosion.

Time series or temporal forecasting models are widely used
to develop anomaly detection approaches. Those approaches
highly rely on the accuracy of the forecast data to statistically
detect an individual anomaly or a group of anomalies. The
Autoregressive Integrated Moving Average (ARIMA) model
is one such advanced model used for anomaly detection
[20], [21]. This model integrates the Autoregressive model
with the Moving Average model [22]. The seasonality of the
ARIMA model can be tuned for optimal forecasting, which
is popularly known as Seasonal Autoregressive Integrated
Moving Average (SARIMA) model [23]. The optimization



parameters of the SARIMA model can be automatically cho-
sen by using Hyndman and Khandakar algorithm [24]. This
is known as Auto.Arima model, which automatically fits the
seasonal parameters and performs temporal forecasting. Other
models such as Exponential Smoothing State Space (ETS)
model [25], Bagged Model [26] and the TBATS model [27]
can forecast the uni-variate data coming from the sewer air
temperature sensor system. Recently, Facebook has developed
a Prophet method for forecasting based on additive modeling
approach [28]. All the aforementioned model’s forecasting
performance will be evaluated for developing an anomaly
detection framework.

A sewer air temperature sensor system consist of as an
active sensing element was developed and installed inside
the sewer pipe located at the Sydney city, Australia. The
sensor was deployed on 3rd November 2016. The readers are
suggested to refer [14] for more details on sensor deployment.
This paper proposes a temporal forecasting driven approach
for anomaly detection in sewer air temperature sensor system.
The main contributions of this paper are threefold. Firstly, we
investigated the temporal forecasting performance of differ-
ent time series models such as Facebook’s Prophet model,
Auto.Arima model, TBATS model, ETS model and Bagged
model for forecasting sewer air temperature sensor measure-
ments. Secondly, we statistically studied the forecasting perfor-
mance of time series models by forecasting only one day ahead
and updating the training data set for forecasting subsequent
day and thirdly, we developed an anomaly detection approach
using the temporal forecasting module and evaluated it using
the sewer air temperature sensor data.

This paper is structured as follows: Section II describes the
methodology for anomaly detection. Section III evaluates the
proposed approach and presents the results with discussion
and finally, Section IV concludes the paper by highlighting
the key outcomes and briefing the prospects.

II. PROPOSED APPROACH

This section presents the formulation of temporal fore-
casting driven approach for anomaly detection in sewer air
temperature system. Let AT , AT−1, AT−2, ... be the sewer air
temperature sensor measurements at one hour time intervals
T, T−1, T−2, ..... Facebook’s Prophet method is employed in
this work for forecasting sensor measurements. This method
accommodates three components. The first component is a
trend function represented as g(t), which is used to model
the non-periodic changes in the sensor measurements taken
at equally spaced time intervals. The second component is
seasonality, which is used to represent the periodic variations
in sewer air temperature data. The seasonality component is
denoted as s(t). Finally, the third component h(t) is used to
represent the potential irregular schedules for sensor moni-
toring. The forecast value of Facebook’s Prophet method is
denoted as y(t) and it is given by equation (1):

y(t) = g(t) + s(t) + h(t) + εt (1)

where εt represents the changes that are not modeled by g(t),
s(t) and h(t). In this work, we consider the sensor monitoring
is continuous and there are no schedules for halting sensor
measurements. Therefore, we use h(t) = 0. Then, equation
(1) is simplified to equation (2):

y(t) = g(t) + s(t) + εt (2)

The sewer air temperature data trend is captured by using
the logistic growth model, which is accommodated in g(t) and
it can be mathematically expressed as:

g(t) =
C

1 + exp(−k(t−m))
(3)

where C is the carrying capacity, k is the rate of growth and
m is the offset parameter. The seasonality for the y(t) is given
by equation (4):
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)
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(
2πnt

P

))
(4)

where P is the daily period of the time series sensor data, an
and bn are the seasonal constants to compute seasonality, n
is the seasonal parameter, t is the instantaneous time. Once
Facebook’s Prophet model is trained, it forecasts for one day.
It means that y(t) has 24 forecast values. The forecasted
y(t) is compared with the sensor measurements AT . A lower
diagnostic bound LDt and upper diagnostic bound UDt is
used for detecting anomaly. The LDt and UDt are defined
in equation (5) and (6) respectively.

LDt = y(t)− 1 (5)

UDt = y(t) + 1 (6)

Each sensor measurement value will be evaluated. If the
sensor data AT satisfies (7), then it is treated as good data. In
the scenario where the AT is outside the diagnostic bounds,
it is considered as an anomaly.

LDt ≤ AT ≤ UDt (7)

Upon the detection of an anomaly, it is flagged and replaced
with the respective forecast value coming from y(t). Then,
the replaced value along with the good data values for that
respective day will be pushed into the stack of training data to
forecast for the subsequent day. This process is repeated each
day.

III. EXPERIMENTAL RESULTS

A. Performance Evaluation of Temporal Forecasting Models

This section evaluates the forecasting performance of time
series models by comparing the forecasts of Facebook’s
Prophet method with the forecasts of other time series models
such as Auto.Arima model, TBATS model, ETS model, and
Bagged model. To evaluate the forecasting performance of



each model, the Root Mean Square Error (RMSE) and Mean
Absolute Error (MAE) were used as the statistical metrics.
The RMSE and MAE were calculated for the forecasted data
of each model by using (8) and (9) respectively.

MAE =
1

n

t=n∑
t=1

|Fd − Sd| (8)

RMSE =

√√√√ 1

n

t=n∑
t=1

(Fd − Sd)2 (9)

where the Fd is the data from different time series forecasting
models, Sd is the sewer air temperature sensor data, t is the
instantaneous time and n is the total number of forecast values.

Each model was trained using the sewer air temperature
sensor data from 4th November 2016 to 17th November 2016.
The training data contains 336 sensor measurement values.
Figure 1 shows the training data plot. By using the two weeks
training data, each model forecasted sensor measurements
for one week from 18th November 2016 to 24th November
2016. Figure 2 shows the forecasted data of each model,
where it can be observed that the forecasts of Facebook’s
Prophet method are closer to actual sewer air temperature
sensor data and also follows similar temporal trends. Table
I tabulates the computed MAE and RMSE values for each
model based on one week forecasted data, where it can be
observed that the Facebook’s Prophet method has the lowest
value of MAE and RMSE among the five different temporal
forecasting models. This shows that the temporal forecasting
performance of Facebook’s Prophet method is better than the
other compared models.

Further, from Fig. 2, it can be noticed that each model’s
forecasts were closer to the sensor data on 18th November
2016 than the forecast values of subsequent days. To analyse
this trend comprehensively, MAE and RMSE were computed
by comparing the sensor data of each day with the forecast
values. Table II tabulates the computed MAE for each day
and Table III tabulates the computed each day RMSE values.
From Table II and Table III, it can be observed that Facebook’s

Fig. 1. Training data for the temporal forecasting models.

Fig. 2. Temporal forecasts of sensor data from different models.

TABLE I
PERFORMANCE EVALUATION OF TEMPORAL FORECASTING MODELS

Forecasting Models Statistical Error Metrics

MAE (◦C) RMSE (◦C)

Facebook’s Prophet 0.13 0.16

Auto.Arima Model 0.42 0.47

TBATS Model 0.61 0.69

ETS Model 0.69 0.78

Bagged Model 0.73 0.82

Prophet method has the lowest MAE and RMSE values for all
the days. However, the MAE and RMSE values of subsequent
days were increased from Day 1. This pattern was observed
for all other models. Therefore, from Table II and Table III, it
can be concluded that the MAE and RMSE increase when the
number of forecasting days increases. This can be attributed to
the training data used for forecasting. Therefore, Facebook’s
Prophet method is more suitable for forecasting short-term
(daily) sewer air temperature sensor data than forecasting long-
term (weekly).

TABLE II
USING MAE FOR EVALUATION OF EACH DAY TEMPORAL FORECASTS

Forecasting Models MAE (◦C)

Day
1

Day
2

Day
3

Day
4

Day
5

Day
6

Day
7

Facebook’s Prophet 0.04 0.14 0.15 0.13 0.17 0.16 0.14

Auto.Arima Model 0.06 0.28 0.38 0.45 0.59 0.67 0.52

TBATS Model 0.06 0.35 0.52 0.64 0.84 0.98 0.89

ETS Model 0.06 0.37 0.56 0.72 0.95 1.11 1.05

Bagged Model 0.09 0.42 0.61 0.77 0.99 1.16 1.10



TABLE III
USING RMSE FOR EVALUATION OF EACH DAY TEMPORAL FORECASTS

Forecasting Models RMSE (◦C)

Day
1

Day
2

Day
3

Day
4

Day
5

Day
6

Day
7

Facebook’s Prophet 0.05 0.17 0.17 0.15 0.18 0.19 0.17

Auto.Arima Model 0.07 0.31 0.40 0.45 0.59 0.68 0.53

TBATS Model 0.08 0.37 0.53 0.65 0.84 0.98 0.89

ETS Model 0.07 0.39 0.58 0.72 0.95 1.12 1.06

Bagged Model 0.11 0.44 0.62 0.77 0.99 1.17 1.10

B. Temporal Forecasting Performance Evaluation with Daily
Feedback

This section evaluates the temporal forecasting performance
of each model by forecasting one day. Each model was trained
using the sewer air temperature sensor data from 4th November
2016 to 17th November 2016. By using the training data set,
each model forecasted sensor measurements for one day. It is
assumed in this experimentation that the sensor data of the
forecasted day is anomaly free and the sensor measurements
of the forecasted day are pushed into the stack of training data
set for forecasting the next day. This forecasting process was
iterated for one week. Figure 3 shows the forecasts for each
model, where it can be observed that all the models follow
the same trend as the actual sewer air temperature sensor data.
To analyse statistically, MAE and RMSE were computed for
one week and tabulated in Table IV, where it can be noticed
that the forecasts of Facebook’s Prophet method have lowest
MAE and RMSE when compared with the other temporal
forecasting models. However, there is no significant variation
in MAE and RMSE between the models. By comparing the
statistical metrics tabulated in Table I and Table IV, the
temporal forecasting performances of all the models were
improved significantly. This is due to the methodology adopted
for forecasting sewer air temperature sensor data by one day
and updating the training data set with previous day sensor
measurements to have an efficient forecasting process.

TABLE IV
PERFORMANCE EVALUATION OF TEMPORAL FORECASTING MODELS

WITH DAILY FEEDBACK

Forecasting Models Statistical Error Metrics

MAE (◦C) RMSE (◦C)

Facebook’s Prophet 0.09 0.12

Auto.Arima Model 0.11 0.14

TBATS Model 0.12 0.15

ETS Model 0.11 0.15

Bagged Model 0.12 0.16

The computed forecast data using the methodology adopted
in this experimentation were compared with the sensor data for

Fig. 3. Temporal forecasts of sensor data from different models after daily
sensor inputs.

TABLE V
USING MAE FOR EVALUATION OF EACH DAY TEMPORAL FORECASTS

WITH DAILY FEEDBACK

Forecasting Models MAE (◦C)

Day
1

Day
2

Day
3

Day
4

Day
5

Day
6

Day
7

Facebook’s Prophet 0.04 0.13 0.11 0.16 0.08 0.06 0.08

Auto.Arima Model 0.06 0.16 0.05 0.17 0.11 0.07 0.11

TBATS Model 0.06 0.19 0.15 0.17 0.10 0.05 0.10

ETS Model 0.06 0.20 0.16 0.06 0.11 0.10 0.11

Bagged Model 0.09 0.25 0.10 0.06 0.09 0.19 0.08

each day. Table V and Table VI tabulate the computed MAE
and RMSE respectively. From Table V, it can be observed
that Facebook’s Prophet method has the lowest MAE values
for most of the days. For a few days, other models have lower
MAE values. The difference in MAE between those models
and Facebook’s Prophet method is very less. Facebook’s
Prophet method is the only one to have MAE less than 0.17◦C
for all the seven days. From Table VI, it can be observed that
Facebook’s Prophet method has the lowest RMSE values for
most of the days. On certain days, other models performed
better forecasting. However, the difference in RMSE between
those models and Facebook’s Prophet method is very less. It is
to be noted that Facebook’s Prophet method is the only model
to have RMSE less than 0.19◦C for all the seven days when
compared with other models. Therefore, based on the tem-
poral forecasting performance evaluation, Facebook’s Prophet
method was chosen to formulate a temporal forecasting driven
approach for anomaly detection in the sewer air temperature
sensor system.

C. Performance Evaluation of the Temporal Forecasting
Driven Approach for Anomaly Detection

This section evaluates the developed temporal forecast-
ing driven approach using Facebook’s Prophet method for



TABLE VI
USING RMSE FOR EVALUATION OF EACH DAY TEMPORAL FORECASTS

WITH DAILY FEEDBACK

Forecasting Models RMSE (◦C)

Day
1

Day
2

Day
3

Day
4

Day
5

Day
6

Day
7

Facebook’s Prophet 0.05 0.15 0.13 0.18 0.10 0.08 0.10

Auto.Arima Model 0.07 0.20 0.07 0.20 0.11 0.09 0.11

TBATS Model 0.08 0.22 0.19 0.19 0.11 0.06 0.11

ETS Model 0.07 0.24 0.20 0.08 0.12 0.12 0.12

Bagged Model 0.11 0.29 0.11 0.08 0.10 0.20 0.10

anomaly detection of sewer air temperature sensor measure-
ments. The anomaly detection approach was trained by using
the sewer air temperature sensor data from 4th November
2016 to 17th November 2016. During the laboratory test-
ing of the sewer air temperature sensor system, the sensor
worked abruptly and produced a stream of anomalies. In this
experimentation, we have manually injected those anomalies
produced at the time of lab testing along with the anomalies
produced by the sensor during the field testing inside the sewer
pipe.

Figure 4 shows the evaluation of the proposed approach for
anomaly detection. The first plot of Fig. 4 shows the sewer
air temperature sensor data with anomalies. There were a total
of 25 anomalies. The second plot shows the forecasted data
with diagnostic bounds. The upper diagnostic bound is +1◦C
of the forecasted data where the lower diagnostic bound is -
1◦C of the forecasted data. The third plot shows the corrected
sensor data, i.e., when the proposed approach has detected
the sensor anomaly, the anomaly is corrected by using the
respective forecast data. Then, the corrected data will be a
part of the training data set for forecasting next day sensor
measurements.

The proposed model forecasts the sewer air temperature data
for 18th November 2016. The model compares the forecasted
data with the sewer air temperature sensor measurements and
checks whether the sensor data is within the diagnostic bounds.
If the sensor data is within the diagnostic bounds, then the
sensor measurement is treated as good data. Otherwise, if
the sensor data is not within the diagnostic bounds, then the
sensor measurement is treated as an anomaly. The detected
anomaly is corrected with the respective forecasted data. Then,
all the 24 data points are stacked into the training data set
to perform forecasting for 19th November 2016. This process
continues as long as the sensor measurements are available.
The proposed anomaly detection approach has detected 23 out
of 25 anomalies, which shows a reasonable performance of the
proposed approach.

IV. CONCLUSION AND FUTURE WORK

This paper proposes a temporal forecasting driven approach
using Facebook’s Prophet method for anomaly detection in

Fig. 4. Evaluation of the proposed anomaly detection approach.

sewer air temperature sensor system. The key contributions of
this paper are summarized as follows:

• The temporal forecasts of Facebook’s Prophet method
for one week of sewer air temperature data have MAE
of 0.13◦C and 0.16◦C RMSE. This method has the
highest prediction accuracy when compared with other
models. Also, it was observed that the prediction accu-
racy decreases slightly when the number of forecasting
days increases. Therefore, Facebook’s Prophet method
is suggested for forecasting short-term (daily) sewer air
temperature sensor data.

• The temporal forecasting performance of all the models
improved when they forecasted only one day ahead.
Facebook’s Prophet method has 0.13◦C MAE and 0.16◦C
RMSE, which was the lowest among all the compared
models. Hence, Facebook’s prophet method was chosen
to develop the anomaly detection approach by forecasting
only one day ahead.

• Anomaly detection approach for sewer air temperature
sensor system was developed and evaluated by using the
data sourced from the sewer pipe. The evaluation results
indicate the reasonable performance of the proposed
approach as it detected 23 out of 25 anomalies.

The sewer air temperature sensor is a part of a multi-sensor



suite. The other sensors include a surface temperature sensor
and a surface moisture sensor. In the future, we intend to
develop an algorithm leveraging Facebook’s Prophet method
for detecting anomaly streaming from the multi-sensor suite
monitoring inside harsh sewer environmental conditions.
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