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ABSTRACT
The problem of computing (α , β)-core in a bipartite graph for given
α and β is a fundamental problem in bipartite graph analysis and can
be used in many applications such as online group recommendation,
fraudsters detection, etc. Existing solution to computing (α , β)-core
needs to traverse the entire bipartite graph once. Considering the
real bipartite graph can be very large and the requests to compute
(α , β)-core can be issued frequently in real applications, the existing
solution is too expensive to compute the (α , β )-core. In this paper,
we present an efficient algorithm based on a novel index such that
the algorithm runs in linear time regarding the result size (thus, the
algorithm is optimal since it needs at least linear time to output the
result). We prove that the index only requires O (m) space wherem
is the number of edges in the bipartite graph. Moreover, we devise
an efficient algorithm with time complexity O (δ · m) for index
construction where δ is bounded by

√
m and is much smaller than

√
m in practice. We also discuss efficient algorithms to maintain

the index when the bipartite graph is dynamically updated and
parallel implementation of the index construction algorithm. The
experimental results on real and synthetic graphs (more than 1
billion edges) demonstrate that our algorithms achieve up to 5
orders of magnitude speedup for computing (α , β)-core and up to 3
orders of magnitude speedup for index construction, respectively,
compared with existing techniques.
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1 INTRODUCTION
Many real-world relationships across various entities can be mod-
elled as bipartite graphs, such as customer-product networks [40],
∗Corresponding author.

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW 2019, May 13–17, 2019, San Francisco, USA
© 2019 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-6674-8/19/05.
https://doi.org/10.1145/3308558.3313522

u2 u3 u4 u5 u6 u7 u8u1

Se7en The Godfather WALL�EAvengersStar Wars The Matrix X-ManLeon

Sci-FiCrime

(2,3)-core(3,2)-core

v1 v2 v3 v4 v5 v6 v7 v8

Figure 1: Part of a customer-movie network

user-page networks [8], gene co-expression networks [21], collabo-
ration networks [24], etc. With the proliferation of bipartite graph
applications, research efforts have been devoted to many funda-
mental problems in managing and analyzing bipartite graph data.
Among them, the problem of computing (α , β)-core of a bipartite
graph for given α and β has been recently studied in [10, 11]. For-
mally, a bipartite graph G = (U ,V ,E) is a graph with the nodes
divided into two separate sets, U and V , such that every edge con-
nects one node in U to another node in V . Given G = (U ,V ,E)
and two integers α and β , the (α , β)-core of G consists of two node
setsU ′ ⊆ U (G ) and V ′ ⊆ V (G ) such that the subgraph induced by
U ′ ∪V ′ is the maximal subgraph of G in which all the nodes inU ′
have degree at least α and all the nodes inV ′ have degree at least β

Applications. Computing (α , β)-cores has many real applications.

(1) Online group recommendation. Group recommendation aims
at recommending products to a group of users who may or may
not share similar tastes, e.g., recommending movies for friends to
watch together [4, 9, 15, 49]. Fault-tolerant group recommendation
is proposed to deal with missing values in incomplete data and
has shown its effectiveness in group recommendation [18, 31, 33].
A key step in fault-tolerant group recommendation is to compute
fault-tolerant subspace clusters for each user in the group. For a
given useruq , a subspace cluster is a set ofuq ’s similar users, which
is exploited by collaborative filtering [30] to compute the relevance
of products to uq . Recently, to accelerate the computation of fault-
tolerant subspace clustering, [11] has shown that (α , β)-core is an
efficient way of computing fault-tolerant subspace clustering. For a
user uq and user-specific parameters α and β , all the users in the
(α , β)-core are treated as uq ’s fault-tolerant subspace cluster. Since
the α and β values can vary greatly based on users’ preference and
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the degree of tolerance for missing values [11], efficiently comput-
ing (α , β)-core is a critical procedure for online fault-tolerant group
recommendation.

Example 1.1: Figure 1 shows part of the customer-movie network
in the IMDB (https://www.imdb.com/) where each node inU rep-
resents a user, each node in V represents a movie and each edge
indicates the customer has a preference for the movie. Assume that
u3 and u7 are given as a group and the user-specific α and β for
u3 and u7 are (3, 2) and (2, 3), respectively. Fault-tolerant group
recommendation method first computes (3, 2)-core and (2, 3)-core,
and uses {u2,u3,u4,u5,u6} and {u4,u5,u6,u7,u8} as fault-tolerant
subspace clusters for u3 and u7, respectively. Then it conducts col-
laborative filtering based on the subspace clusters to calculate movie
preference. In this case, Sci-Fi movies would be recommended to
the group as both u3 and u7 have preference for Sci-Fi movies. 2

(2) Fraudsters detection. In social networks, such as Facebook and
Twitter, users and pages form a user-page bipartite graph in which
the edge indicates a user likes a page. To promote certain pages,
fraudsters use a larger number of fake accounts to inflate the Like
counts for these pages; this results in a large number (β) of users
liking a few (α ) pages. (α , β)-core with small α and large β can
facilitate the detection of such fraudsters [2, 8]. Similar fraud sce-
nario also occurs in E-Commence/Online-Shopping, for example,
fraudsters may improve the ranking of certain items by adding
items to fake accounts’ shopping lists.

(3) A key step to other problems in bipartite graphs.Computing (α , β)-
core can also serve as a key step to solve other important graph
problems, such as biclique computation [23, 52] and quasi-biclique
computation [25, 28].

Motivations. In the literature, an online algorithm [11] is proposed
for the computation of (α , β)-core. However, it has to traverse the
entire graph to compute the (α , β)-core for given α and β . This
makes it impractical to real scenarios, especially while taking into
consideration that real bipartite graphs nowadays can be very large
and the requests for computing (α , β)-core can be issued frequently.
For example, the consumer-product networks of Amazon or Al-
ibaba often reach billion-scale [27, 41]; in the application of online
group recommendation, there can be millions of groups issuing
recommendation requests at the peak time [12, 27, 49]. To recom-
mend products to these groups, we need to compute (α , β)-core
with different α and β for each user in every group. Therefore,
numerous underlying computations of (α , β)-cores with different
combinations of α and β have to be processed in realtime (typically
within half a second [27]). However, it is shown in our experiments
that, even in Orkut dataset with 327 million edges, existing method
spends 236 seconds to compute (α , β)-core for a group of ten users.
For fraud detection case, we also need to do lots of (α , β)-core com-
putations to union results together because fraudsters may hide
behind different combinations of α and β values [2, 8] and we don’t
want to miss out the suspicious people. Motivated by this, in this
paper, we aim to devise an index-based optimal algorithm (linear
time with respect to the result size) to compute the (α , β)-core for
given α and β .

Challenges. To achieve our goal, we adopt an index-based ap-
proach. Straightforwardly, if we store the (α , β)-cores for all possi-
ble α and β combination, we can obtain the (α , β)-core in optimal
time for given α and β . Nevertheless, this approach will takeO (n3)
space to store all results where n is the number of nodes in a bi-
partite graph. Obviously, this is prohibitive for a very large graph.
Below, we present the challenges to be overcome in this paper.
• Challenge 1: Optimal (α , β)-core computation vs Space Efficiency.
Considering that even one particular (α , β)-core for a given (α ,
β) may have O (n) size and there could be O (n2) different combi-
nations of α and β values, it is a challenge to develop a compact
index such that we can compute (α , β)-core for given α and β in
optimal time.
• Challenge 2: Efficient index construction. The proposed index is
built upon the results of core decomposition on bipartite graphs.
Note that core decomposition on unipartite (general) graphs [7]
requires O (m) time, simply extending this strategy to bipartite
graphs with two disjoint node sets will lead toO (dmax ·m) time
(details in Section 4.1), where dmax is the maximum degree of
nodes andm is the number of edges in G. dmax could be very
large in real graphs (e.g., dmax>107 in Web Trackers dataset),
such method is impractical for large graphs. Hence, it is a chal-
lenge to devise an efficient algorithm to construct the index.

Contributions. In this paper, we overcome the above challenges
and make the following contributions:

(1) The first space-efficient index-based work to compute (α , β)-core .
In this paper, we propose a non-trivial space-efficient index struc-
ture, BiCore-Index, with the size bounded by O (m). To the best
of our knowledge, this is the first linear space index structure to
support the optimal computation of (α , β)-core in bipartite graphs.

(2) Efficient algorithms to construct the index.We carefully consider
the computation sharing between two node sets of the bipartite
graph when conducting the core decomposition and devise an
efficient algorithm to construct the BiCore-Index. We show that
the time complexity of our proposed algorithm is O (δ ·m), where
δ is the maximum value such that the (δ ,δ )-core in G is nonempty
and is bounded by

√
m. In our experiments, it is shown that δ is

much smaller than
√
m in practice.

(3) Efficient incremental maintenance algorithm for dynamic graphs
and parallel implementation of index construction algorithm. In many
applications, graphs are frequently updated. Therefore, we develop
an efficient incremental algorithm to maintain BiCore-Index for
dynamic graphs by reducing unnecessary recomputation in the
procedure of updating BiCore-Index. Moreover, we also discuss the
parallel implementation of our index construction algorithm.

(4) Extensive performance studies on real datasets from various do-
mains.We conduct extensive performance studies on ten real graphs
and two synthetic graphs. The experimental results demonstrate
the efficiency of our proposed algorithms.

Outline. Section 2 gives the problem definition and the existing
solution. Section 3 introduces our proposed index, BiCore-Index,
and the optimal algorithm to compute (α , β)-core for arbitrary α
and β . Section 4 presents algorithms to construct BiCore-Index.
Section 5 presents an efficient algorithm to maintain BiCore-Index
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in dynamic graphs and discusses parallel implementation of the
index construction algorithm. Section 6 evaluates our algorithms
using extensive experiments. Section 7 reviews the related work
and Section 8 concludes the paper.

2 PRELIMINARIES
A bipartite graphG = (U ,V ,E) is a graph consisting of two disjoint
sets of nodesU andV such that every edge from E ⊆ U ×V connects
one node ofU and one node ofV . We useU (G ) andV (G ) to denote
the two disjoint node sets of G and E (G ) to represent the edge
set of G. We denote the number of nodes inU (G ) and V (G ) as nU
and nV , the total number of nodes as n and the number of edges
in E (G ) as m. The degree of a node u ∈ U (G ) ∪ V (G ), denoted
by deg(u,G ), is the number of neighbors of u in G. We also use
dmaxU (G ) (dmaxV (G )) to denote the maximum degree among all
the nodes in U (G ) (V (G )), i.e., dmaxU (G ) = max{deg(u,G ) |u ∈
U (G )} (dmaxV (G ) = max{deg(v,G ) |v ∈ V (G )}). For simplicity, we
omitG in the notations if the context is self-evident. For a bipartite
graphG and two node setsU ′ ⊆ U (G ) andV ′ ⊆ V (G ), the bipartite
subgraph induced byU ′ and V ′ is the subgraph G ′ of G such that
U (G ′) = U ′, V (G ′) = V ′ and E (G ′) = E (G ) ∩ (U ′ ×V ′).

Definition 2.1: ((α , β )-core) Given a bipartite graph G and two
integers α and β , the (α , β)-core of G, denoted by Cα,β , consists of
two node sets U ⊆ U (G ) and V ⊆ V (G ) such that the bipartite
subgraph g induced by U ∪ V is the maximal subgraph of G in
which all the nodes inU have degree at least α and all the nodes
in V have degree at least β , i.e., ∀u ∈ U , deg(u, g) ≥ α ∧ ∀v ∈
V, deg(v, g) ≥ β . 2

Problem Statement. In this paper, we study the problem of ef-
ficient computation of (α , β)-core for given α and β . For ease of
presentation, we refer a request of computing the (α , β)-core for
given α and β as an (α , β)-core query and denote it asQα,β . Our ob-
ject is to design a time-optimal algorithm for processing (α , β)-core
queries on large bipartite graphs.

Existing Solution. Given an (α , β)-core query Qα,β , the state-of-
the-art algorithm to compute Cα,β is proposed in [11]. Intuitively, it
computes Cα,β by iteratively removing nodes inU (G ) with degree
less than α and nodes in V (G ) with degree less than β until no
more nodes can be removed. The above algorithm adopts an online
paradigm to process (α , β)-core queries. For a query Qα,β , its time
complexity to compute Cα,β isO (m) in theworst case. Nevertheless,
the graphs are typically very large in real applications (e.g., there
are 327 million edges in Orkut dataset). Therefore, this algorithm
cannot satisfy the real-time requirements for (α , β)-core queries
since it needs to traverse the whole graph for a Qα,β .

3 SPACE-EFFICIENT INDEX AND
TIME-OPTIMAL QUERY PROCESSING

In this section, we organize all the (α , β)-cores into a linear space in-
dex structure, through which an (α , β)-core query can be answered
in optimal time. We first introduce a naive index structure. After
analyzing the problems in the naive index structure, we present our
linear space index structure, BiCore-Index. Based on BiCore-Index,

v1

u1 u2 u3 u4 u5 u6

v2 v3 v4 v5 v6 v7

Figure 2: A bipartite graph G

we propose an optimal query processing algorithm. At last, we
analyze the space complexity of BiCore-Index.

3.1 BiCore-Index

A Naive Index Structure. To support optimal (α , β)-core query
processing, a naive index is as follows: we pre-compute (α , β)-cores
for all the possible α and β and store them in the index. Then, for
all possible combination of α and β , we record the location of the
corresponding (α , β)-core in the index through two level pointer
tables. Given a query Qα,β , we can compute Cα,β in optimal time
by visiting the nodes stored in the location referred by the (α , β )
value. We show the naive index in the following example.

Example 3.1: Considering the graphG in Figure 2, the naive index
of G is shown in Figure 3. For ease of presentation, we only show
the nodes inU (G ) in Figure 3 and the nodes inV (G ) can be indexed
similarly. In the index, all the pre-computed (α , β)-cores are stored
and shown in the bottom bucket of Figure 3. For instance, (1, 3)-
core is {{u1, . . .u6}, {v3,v4,v5}}, thus, u1, . . . ,u6 are stored in the
grey bucket in Figure 3. Since both the maximum possible α value
(dmaxU ) and β value (dmaxV ) ofG are 5, the first-level pointer table
(FPT) contains 5 pointers and each sub-table contains 5 pointers.
Suppose the given query isQ1,3, we can compute C1,3 by following
bold arrows and obtain C1,3.U = {u1, . . . ,u6}. 2

This naive index can achieve optimal query processing time,
however, it requires O (n3) space. Clearly, it is prohibitive for large
graphs. In order to make the index-based approach practical, we
aim to further reduce the space of the index without sacrificing the
optimal query processing property.

Observing the naive index in Figure 3, we can find the following
two problems exist, which leads to its huge space consumption.
The first one is that a node may be stored multiple time in the
index. For example, when α = 1, u1 is stored five times in the index,
namely, in C1,1,C1,2, C1,3, C1,4 and C1,5. The same problem also
exists on other nodes and other α values. The second one is that
empty entries are also kept in the index. For example, there exist
no C5,3, C5,4 and C5,5 in G . These entries should be managed to be
removed while not affecting the optimal time complexity.

BiCore-Index Structure. We aim to reduce the space consump-
tion of the naive index by addressing the two problems discussed
above. Given a bipartite graph G, the (α , β)-cores in G has the fol-
lowing monotonic containment relationship:

Lemma 3.1: Given a bipartite graph G, Cα,β is contained in Cα ′,β ′
if β ′ ≤ β and α ′ ≤ α .

Based on Lemma 3.1, for a node u ∈ U (G ) and a specific α , if
we know the (α , β)-core with maximum β value containing u, we
can infer that u is also contained in any (α , β)-core ofG where β ′ is
smaller than the maximum β value. For example, when α = 1, since
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Figure 3: Naive Index

u1 is contained in C1,5, we know u5 is also contained in C1,1,C1,2,
C1,3 and C1,4. In other word, storing u1 at C1,1,C1,2, C1,3 and C1,4
is redundant regarding (α , β)-core query processing and we only
need to store it at C1,5 (marked with circle in Figure 3). Therefore, to
address the redundant nodes storage problem in the naive index, for
a specific α , we remove the nodes u ∈ U (G ) from the (α , β)-cores
that contain u but does not have the maximum β value.

For the empty entry problem, besides the existing empty entries
in the index, the node removal procedure introduced above leads to
new empty entries. For example, in Figure 3, after the node removal,
C1,1.U is empty. To address this problem, the naive index structure
for nodes in V (G ).

Following the above idea, we give the formal definition of our
index. Before that, to characterize the (α , β)-core with the maximum
β (α ) value that contains a node regarding a specific α (β), we define:

Definition 3.1:
(1) βmax,α (u). Given a bipartite graph G and an integer α , for

each node u ∈ U (G ) ∪ V (G ), βmax,α (u) is the maximum
value of β such that u is contained in the corresponding
Cα,β . If no such β , βmax,α (u) = 0.

(2) αmax,β (u). Given a bipartite graph G and an integer β , for
each node u ∈ U (G ) ∪ V (G ), αmax,β (u) is the maximum
value of α such that u is contained in the corresponding
Cα,β . If no such α , αmax,β (u) = 0.

2

Our index, BiCore-Index, denoted by I, is a three-level tree struc-
ture with two parts for nodes in U (G ) and V (G ), respectively,
denoted by IU and IV . As IV is symmetrical to IU , we focus on
IU here.
• Node Blocks (NB). The third level of IU , named the node blocks,
is a double linked list. Each block in the list is associated with a
(α , β ) value and contains the nodes u ∈ U (G ) with βmax,α (u) =
β .
• First-level Pointer Table (FPT). The first level of IU is an array with
dmaxU elements. Each element contains a pointer to an array in
the second level. We use IU [α] to represent the α-th element.
• Second-level Pointer Table (SPT). The second level of IU consists
of dmaxU arrays (sub-table). The α-th array is pointed by IU [α].
The length of the α-th array equals to the maximum β value
among the node blocks pointed by this array. We use IU [α][β]
to denote the β-th element of the α-th array in SPT. The pointer
in IU [α][β] points to the first node block associated with (α , β ′)
where β ′ ≥ β .

Example 3.2: Figure 4 shows the BiCore-Index of G. In NB, u1 is
in node block (1, 5) since βmax,1 (u1) = 5. In FPT, since dmaxU = 5,

Algorithm 1 QueryOPT

Input: I of G and Qα ,β
Output: Cα ,β of G
1: Cα ,β ← ∅;
2: if IU .FPT.size() < α or IU [α ].size() < β then
3: return ∅;
4: nb← node block pointed by IU [α ][β ];
5: while the first element of the associated value of nb = α do
6: for each u ∈ nb do
7: Cα ,β .U ← Cα ,β .U ∪ u ;
8: nb← next node block in IU .NB;
9: Compute Cα ,β .V similarly
10: return Cα ,β ;

the array of FPT contains 5 pointers pointing to the corresponding
array in SPT. Different from the naive index, the length of the arrays
is not unique. For example, the length of the second array is 3. This
is because for α = 2, the (2, β ) node block with maximum β value
kept in NB is node block (2, 3). The pointer in the 1st element of
the 1st array in SPT points to node block (1, 3) as node block (1, 1)
and (1, 2) do not exist in NB. A key point needed to note here is
that a node block in IU and a node block in IVmay share the same
associated (α , β ) value, but their meanings are different. For example,
v1 is contained in node block (1, 5) in IVmeans v1 is contained in
(5, 1)-core while u1 is contained in node block (1, 5) in IUmeans
u1 is contained in (1, 5)-core. 2

3.2 Optimal Query Processing
With BiCore-Index, for a query Qα,β , we compute Cα,β by retriev-
ing Cα,β .U through IU and Cα,β .V through IV . The algorithm,
QueryOPT, is shown in Algorithm 1.

Algorithm. For a givenQα,β , if the (α , β)-core is empty,QueryOPT
immediately returns ∅ as the result since either IU [α] or IU [α][β]
is empty (line 2-3). If the (α , β)-core is not empty, it first retrieves
Cα,β .U and computes the node block nb referred by the pointer
in IU [α][β] (line 4). After that, it iteratively processes the node
block in IU .NB until the first element of the associated value of
nb is not the given α (line 5 and 8). All the nodes in visited nb are
added into Cα,β .U (line 6-7). The nodes in Cα,β .V are retrieved
similarly and Cα,β is returned at the end (line 9-10).

Example 3.3: Figure 4 illustrates the procedure of QueryOPT to
compute C1,3. Processing steps are shown in bold arrows and the
visited elements aremarked in grey. To compute C1,3.U ,QueryOPT
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Figure 4: BiCore-Index and procedure ofQueryOPT for Q1,3

follows the pointer kept in the 1st element in IU .FPT and the 3rd
element of the 1st array in IU .SPT and obtains u5 in the node
block (1, 3). It continues to visit node block (1, 5) and stops at node
block (2, 1) since the first element of (2, 1) is larger than 1. Thus,
C1,3.U = {u1,u2,u3,u4,u5,u6}. Similarly, QueryOPT follows the
pointer kept in the 3rd element in IV .FPT and the 1st element of
the 3rd array in IV .SPT and obtains C1,3.V = {v3,v4,v5}. 2

Theorem3.1:Given aQα,β posed on a bipartite graphG ,QueryOPT
computes Cα,β in O ( |Cα,β .U| + |Cα,β .V|).
Proof: For a given α , each u ∈ U (G ) appears at most once in the
node blocks pointed by the pointers in α-th array in SPT. Therefore,
no duplicate node is added in Cα,β .U in line 7. Similarly, no dupli-
cate node is added in Cα,β .V in line 9. Since all the nodes visited
inQueryOPT are exactly the nodes we need to retrieve,QueryOPT
computes Cα,β in O ( |Cα,β .U| + |Cα,β .V|) time. 2

3.3 Space Complexity of BiCore-Index
In this section, we prove the linear space complexity of BiCore-
Index. We first show that the size of SPT can be bounded by O (m)
in Lemma 3.2. Then, we prove that the space complexity of BiCore-
Index is O (m) in Theorem 3.2.

Lemma3.2:Given a bipartite graphG , the space of its SPT is bounded
by O (m).

Proof: Let u1,u2,u3, . . . ,unU be any given sequence of u ∈ U (G ).
Starting from an empty graph with only V (G ), we add nodes in
U (G ) with their incident edges to the graph one by one following
the sequence until we finally getG. Suppose that ui is just added
to the graph. As ui cannot be contained in any (α , β)-core whose
α > deg(ui ,G ), ui only influences the length of the k-th arrays
in SPT with 1 ≤ k ≤ deg(ui ,G ). Because the length of the α-
th array increases at most one after the insertion of ui , the size
of SPT increases at most deg(ui ,G ). Thus, the space of SPT in
IU is bounded by O (

∑
u ∈U (G ) deg(u,G )) = O (m). Similarly, it can

be shown that the space of SPT in IV is also bounded by O (m).
Therefore, the space of SPT is bounded by O (m). 2

Theorem 3.2: Given a bipartite graph G, the space of its BiCore-
Index is bounded by O (m).
Proof: Since both dmaxU (G ) and dmaxV (G ) is smaller thanm, the
size of FPT can be bounded byO (m). For each nodeu ∈ U (G )∪V (G ),
the number of node blocks containing u is deg(u). Hence, the space

ofNB isO (
∑
u ∈U (G )∪V (G ) deg(u,G )) = O (m). Based on Lemma 3.2,

the space of BiCore-Index can be bounded by O (m). 2

4 INDEX CONSTRUCTION ALGORITHM
In this section, we introduce how to construct BiCore-Index effi-
ciently. Based on the structure ofBiCore-Index, if we know βmax,α (u)
for each node u ∈ U (G ) regarding all possible α and αmax,β (v )
for each node v ∈ V (G ) regarding all possible β (in consistence
with the literature on unipartite graphs, we call the procedure as
core decomposition as well), the construction of BiCore-Index is
straightforward and can be finished in O (m) time as shown in Sec-
tion 4.3. Therefore, we first present techniques to conduct the core
decomposition.

4.1 A Basic Core Decomposition Algorithm
Inspired by the algorithm in [11], considering a node u ∈ U (G )
and a specific α , if u ∈ Cα,β .U and u < Cα,β+1.U , we know
βmax,α (u) = β . Moreover, for a specific α , Cα,β+1 is contained in
Cα,β . Therefore, for a specific α , if we compute all the possible
(α , β)-cores in increasing order of β by iteratively removing nodes
inU (G ) with degree less than α and nodes inV (G ) with degree less
than β , we can obtain βmax,α (u) for all nodes u ∈ U (G ) regarding
the specific α . Following this way, we can compute βmax,α (u) for
all u ∈ U (G ) by iterating all possible α values of G in a bottom-up
manner. αmax,β (v ) can be computed similarly.

Algorithm. The basic algorithm, BasicDecom, is shown in Algo-
rithm 2. BasicDecom first computes βmax,α (u) for nodes in u ∈
U (G ). Since themaximum value ofα for all nodes inU (G ) is dmaxU ,
it iterates α between 1 and dmaxU and computes βmax,α (u) for
u ∈ U (G ) regarding the specific α by invoking computeβmax (line
1-2). Similarly, αmax,β (v ) for v ∈ V (G ) are computed in line 3-4.

Procedure computeβmax computes βmax,α (u) for all the nodes
in u ∈ U (G ) for a given α . It first removes the nodes and their
incident edges in G ′ whose degree is less than α (line 7-8). Then, it
processes the nodes inU (G ) in increasing of β (line 10). Whenever
a node v with deg(v,G ′) ≤ β is removed (line 11), if there exists
a node u with deg(u,G ′) < α in G ′, we know that u ∈ Cα,β but
u < Cα,β+1, which means βmax,α (u) regarding α is β (line 14). Pro-
cedure computeαmax follows a similar framework as computeβmax
to compute αmax,β (v ) forv ∈ V (G ) regarding a given β (line 16-17).

Example 4.1:Considering the graph in Figure 2, Figure 5 shows the
procedure of BasicDecom to conduct the core decomposition. Since

1134



Algorithm 2 BasicDecom

Input: G = (U ∪V , E )
Output: βmax,α (u ) for u ∈ U (G ), αmax,β (v ) for v ∈ V (G )
1: for α = 1 to dmaxU do
2: computeβmax(G, α );
3: for β = 1 to dmaxV do
4: computeαmax(G, β );

5: procedure computeβmax(G, α )
6: G′ ← G ;
7: while ∃u ∈ U (G′) : deg(u, G′) < α do
8: remove u and its incident edges from G′;
9: while G′ , ∅ do
10: β ← minv∈V (G′) deg(v, G′);
11: while ∃v ∈ V (G′) : deg(v, G′) ≤ β do
12: remove v and its incident edges from G′;
13: while ∃u ∈ U (G′) : deg(u, G′) < α do
14: βmax,α (u ) ← β ;
15: remove u and its incident edges from G′;

16: procedure computeαmax(G, β )
17: line 6-15 by interchanging u with v , U with V , α with β ;

βmax,α (u1) αmax,β (v4)Iteration 1 2 3 4 5 1 2 3 4 5
1 (α = 1) 5 0 0 0 0 0 0 0 0 0
2 (α = 2) 5 3 0 0 0 0 0 0 0 0
3 (α = 3) 5 3 2 0 0 0 0 0 0 0
4 (α = 4) 5 3 2 2 0 0 0 0 0 0
5 (α = 5) 5 3 2 2 2 0 0 0 0 0
6 (β = 1) 5 3 2 2 2 5 0 0 0 0
7 (β = 2) 5 3 2 2 2 5 5 0 0 0
8 (β = 3) 5 3 2 2 2 5 5 2 0 0
9 (β = 4) 5 3 2 2 2 5 5 2 1 0
10(β = 5) 5 3 2 2 2 5 5 2 1 1

Figure 5: Decomposition procedure of Algorithm 2

the decomposition involves all the nodes and large number of values,
we only show the procedure for two representative nodes, u1 and
v4, for brevity. In iteration 1, BasicDecom invokes computeβmax
with α = 1 and finds that u1 is removed when β = 5. Thus, it
updates βmax,1 (u1) as 5. BasicDecom finishes computation in 10
iterations as both dmaxU and dmaxV are 5. 2

Theorem4.1:Given a bipartite graphG , Algorithm 2 runs inO (dmax·
m) time, where dmax = max{dmaxU , dmaxV }.
Proof: The removal of nodev in line 12 and node u in line 8 and 15
can be done in O (deg(v,G ′)) and O (deg(u,G ′)) time with the effi-
cient data structure proposed in [22]. Since each node is removed
once, the time complex of computeβmax is bounded byO (m). Simi-
larly, the running time computeαmax is also O (m). Thus, the time
complexity of BasicDecom is O (dmax ·m). 2

4.2 A Computation-sharing Core
Decomposition Algorithm

Algorithm 3 processes the nodes inU (G ) and V (G ) independently
and has to conduct O (dmax) iterations to complete the core de-
composition. However, dmax can be very large in real graphs [6],
which makes Algorithm 2 impractical. In this section, we reduce
the number of iterations to 2δ , where δ is the maximum value

Algorithm 3 ComShrDecom

Input: G = (U ∪V , E )
Output: βmax,α (u ) for u ∈ U (G ), αmax,β (v ) for v ∈ V (G )
1: δ ← the maximum value such that Cδ ,δ , ∅
2: for α = 1 to δ do
3: computeβmax(G, k );
4: for β = 1 to δ do
5: computeαmax(G, β );

6: procedure computeβ+max(G, α )
7: line 6-8 of Algorithm 2;
8: while G′ , ∅ do
9: β ← minv∈V (G′) deg(v, G′);
10: while ∃v ∈ V (G′) : deg(v, G′) ≤ β do
11: remove v and its incident edges from G′;
12: for i = 1 to β do
13: if αmax,i (v ) < α then
14: αmax,i (v ) ← α ;
15: while ∃u ∈ U (G′) : deg(u, G′) < α do
16: βmax,α (u ) ← β ;
17: remove u and its incident edges from G′;

18: procedure computeα+max(G, β )
19: line 8-19 by interchanging u with v , U with V , α with β ;

such that Cδ,δ is nonempty and is bounded by
√
m, by exploring

computation-sharing opportunities during processing the nodes in
U (G ) and V (G ).

In Algorithm 2, when finishing processing a specific α , we actu-
ally have computed all the Cα ′,β with α ′ ≤ α in G . Meanwhile, for
a node v ∈ V (G ) and a given β , αmax,β (v ) is the maximum value
of α such that v is contained in the corresponding Cα,β . Therefore,
we can also obtain αmax,β (v ) ≤ α for v ∈ V (G ) when finishing
processing a specific α in Algorithm 2. Similarly, we can obtain
βmax,α (u) ≤ β foru ∈ U (G ) after processing a specific β . Moreover,
let δ be the maximum value such that the corresponding Cδ,δ is
nonempty, we have:

Lemma 4.1: Given a bipartite graphG , αmax,β (v ) ≤ δ , for all β > δ
and v ∈ V (G ); βmax,α (v ) ≤ δ , for all α > δ and u ∈ U (G ).

Proof: Suppose that there exists some v ∈ V (G ) and β > δ such
that αmax,β (v ) > δ , based on the definition of αmax,β (v ), Cδ+1,δ+1
must be nonempty, which contradicts the definition of δ . Thus,
αmax,β (v ) ≤ δ , for all β > δ and v ∈ V (G ). Similarly, the second
part is correct. 2

Based on Lemma 4.1, if we iterate α from 1 to δ in Algorithm 2,
besides computing βmax,α (u) for each α ≤ δ and each u ∈ U (G )
in line 14, we can actually also obtain αmax,β (v ) for each β > δ
and each v ∈ V (G ). Similarly, if we iterate β from 1 to δ , we can
obtain not only αmax,β (v ) for each β ≤ δ and each v ∈ V (G ) but
also βmax,α (u) for each α > δ and each u ∈ U (G ).

Algorithm. Following above idea, our computation-sharing algo-
rithm, ComShrDecom, is shown in Algorithm 3. In Algorithm 3,
ComShrDecom first computes δ of G. δ can be achieved based on
its definition by increasing δ step by step starting from 1 while
iteratively removing nodes from G whose degree is less than δ .
When G is empty, δ is obtained and it can be done in O (m) time.
Then, ComShrDecom iterates α and β from 1 to δ to compute
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βmax,α (u1) αmax,β (v4)Iteration 1 2 3 4 5 1 2 3 4 5
1 (α = 1) 5 0 0 0 0 1 1 1 1 1
2 (α = 2) 5 3 0 0 0 2 2 2 1 1
3 (β = 1) 5 3 1 1 1 5 2 2 1 1
4 (β = 2) 5 3 2 2 2 5 5 2 1 1

Figure 6: Decomposition procedure of Algorithm 3

βmax,α (u) for u ∈ U (G ) and αmax,β (v ) for v ∈ V (G ) by invoking
computeβ+max and computeα+max, respectively (line 2-5).

The main difference between procedure computeα+max and pro-
cedure computeαmax is that computeαmax updates βmax,α (u) and
αmax,β (v ) simultaneously based on the computation result of pre-
vious iterations. More specifically, when computeβ+max removes
a node v ∈ V (G ) and its incident edges from G ′ (line 11), for
each i from 1 to β , if αmax,i (v ) < α , it updates the corresponding
αmax,i (v ) as α (line 13-14). This is because when v is removed, v is
in a Cα,β , thus αmax,i (v ) is at least α . After computeβ+max finishes,
the αmax,β (v ) ≤ α for nodes v ∈ V (G ) are obtained. Procedure
computeα+max conducts the process symmetrically as computeβ+max.

Example 4.2: Figure 6 shows the procedure of ComShrDecom
to compute βmax,α (u1) and αmax,β (v4) . ComShrDecom first com-
putes δ = 2, thus it needs 4 iterations to finish the decomposi-
tion. Compared with BasicDecom, ComShrDecom updates both
βmax,α (u1) and αmax,β (v4) simultaneously in a single iteration. In
iteration 2, it invokes computeβ+max with α = 2 and finds that both
u1 and v4 are removed when β = 3. Thus ComShrDecom updates
βmax,2 (u1) to 3 and αmax,1 (v4), αmax,2 (v4), αmax,3 (v4) to 2. 2

Theorem 4.2: Given a bipartite graph G, the time complexity of
Algorithm 3 is O (δ ·m), where δ ≤ ⌈

√
m⌉.

Proof: The difference between computeβmax and computeβ+max
lies in line 12-14. Since the maximum possible value of β in line 12
can be no larger than deg(v,G ), the time complexity of line 12-14
isO (deg(v,G )). Hence, computeβ+max runs inO (m) time. Similarly,
computeα+max runs in O (m) time. Thus, Algorithm 3 also runs in
O (δ ·m).

Let д denote the subgraph induced by Cδ,δ . Based on the defini-
tion of (α , β)-core , there are at least δ nodes in д and the degree of
each node is at least δ . Thus, we have δ · δ ≤ E (д) ≤ m. Therefore,
δ ≤
√
m. 2

Remark. In fact, the number of iterations in Algorithm 3, which
equals to 2 ·δ , is within a constant factor of 2 to the optimal number
of iterations we can achieve. This is because essentially during
the decomposition process we need to compute each nonempty
(α , β)-core at least once. Hence, we should at least iterate α from 1
to δ or iterate β from 1 to δ to compute all the (α , β)-cores whose
α ≤ δ ∧ β ≤ δ . In other words, the lower bound of the number of
iterations required to conduct the decomposition is δ . Therefore,
the number of iterations in Algorithm 3 is within a constant factor
of 2 to the optimal number of iterations.

4.3 Index Construction Algorithm
After obtaining the core decomposition result, we can construct
BiCore-Index based on its structure directly. For IU , we first con-
structs IU .NB based on βmax,α (u) and sort all the node blocks with
their associated (α , β ) value. After that, we store the address of
the first node block (α , β ′) such that β ′ ≥ β in IU [α][β] and the

address of the α-th array in IU [α]. IV is constructed similarly. For
a given bipartite graph G and its core decomposition result, the
index can be constructed in O (m) time.

5 EXTENSIONS

Index Maintenance on Dynamic Graphs.When graphs are dy-
namically updated, a straightforward solution to maintain BiCore-
Index is reconstructing it from scratch, which is inefficient for large
graphs. In this section, we discuss the incremental algorithms for
maintaining BiCore-Index on dynamic graphs. We mainly focus on
edge insertion and deletion, because node insertion/deletion can
be treated as a sequence of edge insertions/deletions. For brevity,
we use G+/G− to represent the updated graph after (u,v ) is in-
serted/removed. Since the computation of βmax,α (u) and αmax,β (v )
is the most time-consuming part for maintaining BiCore-Index, we
concentrate on computing these values here.
Edge Insertion. Suppose that an edge (u,v ) is inserted, for an integer
α , let τα = min{βmax,α (u,G ), βmax,α (v,G )}. Because both u and v
have already been included in any Cα,β whose β < τα , these (α , β)-
cores will not change after the insertion. Thus, we only need to con-
sider those nodes u ′ whose βmax,α (u ′,G ) ≥ τα , i.e., nodes in Cα,τα .
Similarly, for an integer β , letτβ = min{αmax,β (u,G ),αmax,β (v,G )},
all the nodes u ′ whose αmax,β (u

′,G+) value will change after the
insertion of (u,v ) are contained in Cτβ ,β . Thus, we retrieve the
induced subgraph of Cα,τα (Cτβ ,β ) through the BiCore-Index and
compute βmax,α (u ′,G+) (αmax,β (u

′,G+)) for those nodes by using
computeβ+max (computeα+max).
Edge Removal. Similarly to edge insertion case, for an integer α , all
the nodes u ′ whose βmax,α (u ′,G ) will change after the removal of
(u,v ) must have βmax,α (u ′,G ) ≤ τα . This is because edge (u,v ) is
not included in any induced subgraph of Cα,β where β > τα . Simi-
larly, for an integer β , we know all the nodesu ′whoseαmax,β (u

′,G )

will change after the removal of (u,v ) must have αmax,β (u
′,G ) ≤

τβ . Thus, we retrieve Cα,τα (Cτβ ,β ) through the BiCore-Index and
compute βmax,α (u ′,G−) (αmax,β (u

′,G−)) for those nodes similarly
as edge insertion case.
Batch Update. When a sequence of edges are inserted/removed, we
first scan the sequence and remove all the operation pairs consisting
of insertion then removal (removal then insertion) of the same
edge as these operation pairs have no effect on the final result.
After that we rearrange the order such that all the inserted edges
come after removed edges. Thus, we can treat batch update as
first removing a set of edges then inserting another set of edges.
When a set of edges is inserted, our incremental algorithm can be
easily extended to handle such situation. For an integer α (β), we
set πα (πβ ) as the smallest βmax,α (u,G )(αmax,β (u,G )) where u is
incident to at least one inserted edge. Then, we use the method
in Edge Insertion to update BiCore-Index by replacing τα (τβ ) as
πα (πβ ). Similarly, when a set of edges is removed, we set πα (πβ )
as the largest βmax,α (u,G )(αmax,β (u,G )) where u is incident to at
least one removed edge. Then, we can use the method in Edge
Removal by replacing τα (τβ ) as πα (πβ ).

Parallel Index Construction.Algorithm 3 can be easily extended
to run in parallel. We first compute δ as line 1 in Algorithm 3. Then,
we run computeβ+max for each α from 1 to δ and computeα+max for
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each β from 1 to δ in parallel, i.e., each thread is in charge of a
continuous subrange of possible values of α or β . To avoid race
condition, we keep a copy of βmax,α (u,G ) and αmax,β (v,G ) for
each thread. At last, we set βmax,α (u,G ) and αmax,β (v,G ) as the
largest value among the results computed in all threads.

6 PERFORMANCE STUDIES
This section presents our experimental results. All experiments are
performed under a Linux operating system on a machine with an
Intel Xeon 3.4GHz CPU and 64GB RAM.

Dataset.Weevaluate the algorithms on ten real graphs and two syn-
thetic graphs. All the real graphs are downloaded from KONECT1.
For the synthetic graphs, we generate a power-law graph (PL) in
which edges are randomly added such that the degree distribution
follows a power-law distribution and a uniform-degree graph (UD)
in which all edges are added with the same probability. The details
of these graphs are shown in Table 1. Note that we remove isolated
nodes and duplicate edges in graphs and their sizes listed are based
on the processed graphs.

Algorithms. We implement and compare following algorithms:
• Baseline: the state-of-the-art existing solution proposed in [11]
(introduced in Section 2).
• QueryOPT: Our (α , β)-core query processing algorithm (Algo-
rithm 1).
• BasicDecom: Our proposed index construction algorithm based
on basic decomposition algorithm (Algorithm 2 + Index construc-
tion algorithm in Section 4.3).
• ComShrDecom: Our proposed index construction algorithm based
on computation-sharing decomposition algorithm (Algorithm 3
+ Index construction algorithm in Section 4.3).
• BiCore-Index-Ins: Our algorithm for handling edge insertion.
• BiCore-Index-Rem: Our algorithm for handling edge removal.
• BiCore-Index-Batch: Our algorithm for handling batch update.
• ParallelDecom: Our proposed algorithm for parallel index con-
struction.
All algorithms are implemented in C++, using gcc compiler at

-O3 optimization level. The time cost is measured as the amount
of wall-clock time elapsed during the program’s execution. All the
experiments are repeated 5 times and we report the average time.

6.1 Performance of Querying Processing
In this section, we evaluate the performance of our proposed (α , β)-
core query processing algorithmQueryOPT with the state-of-the-
art algorithm Baseline. The running time we report is based on
answering the query 10 times. We first test the algorithms on all
the twelve datasets with the same query Q10,10. Then, we report
the performance of the algorithms to process Qα,β when varying
α (β) regarding fixed β (α ).

Exp-1: Query performance ondifferent datasets. Figure 7 shows
the running time of two query processing algorithms to process
Q10,10. We only show the results on the six largest datasets due
to the similar trends. SinceQueryOPT is optimal, it is always the
fastest algorithm in all cases. For example, on DUI, the running

1http://konect.uni-koblenz.de/networks
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Figure 8: Query time for different α (β)

time ofQueryOPT is 0.04s, which achieves three order of magnitude
improvement compared with Baseline (86.8s).

Exp-2: Varyingα (β).The running time ofBaseline andQueryOPT
when varying α (β) is reported in Figure 8. We just show the results
on four real graphs due to the similar trends. As shown in Fig-
ure 8, QueryOPT is far more efficient than Baseline on all datasets
under every α (outperforms Baseline by 3-7 orders of magnitude).
This is becauseQueryOPT is a time-optimal algorithm. As α grows,
the time cost of Baseline is relatively stable since no matter what
α is, Baseline needs to visit the entire graph. The gap between
QueryOPT and Baseline increases as α grows. This is because
as α grows, the size of Cα,β decreases and the running time of
QueryOPT depends on the size of Cα,β while that of Baseline de-
pends on the size of input graph. The results when varying β is
similar to varying α .
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Table 1: Statistic for the graphs

Dataset Type |U | |V | |E | |G |(MB) |I | (MB) dmax
√
m δ

WC (Wikipedia-en) Text 1.85M 0.18M 3.80M 45.56 30.10 11,593 1,948 19
FG (Flickr) Social 0.40M 0.10M 8.55M 70.66 70.61 34,989 2,923 148

EP (Epinions) Rating 0.12M 0.76M 13.67M 113.63 117.27 162,169 3,697 152
DE (Wikipedia-de) Authorship 0.43M 3.20M 26.01M 231.50 220.13 278,998 5,100 156

RE (Reuters) Text 0.78M 0.28M 60.57M 481.52 532.30 345,056 7,782 192
TR (TREC) Text 0.56M 1.17M 83.63M 666.87 748.74 457,437 9,144 509

DUI (Delicious) Folksonomy 0.83M 33.78M 101.80M 1,065.71 799.81 29,240 10,089 184
LG (LiveJournal) Social 3.20M 10.69M 112.31M 985.93 931.60 1,053,676 10,597 109

WT (Web Trackers) Hyperlink 27.67M 12.76M 140.61M 1,414.34 1,492.43 11,571,952 11,858 438
OG (Orkut) Affiliation 2.78M 8.73M 327.04M 2,644.93 2,645.46 318,240 18,084 467

PL (Power Law) Power-law 5M 5M 1,012M 8,080.00 8,003.39 40,354 31,812 374
UD (Uniform Degree) Uniform-degree 5M 5M 1,067M 8,102.00 8,000.62 277 32,665 169
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Figure 9: Index construction time for different datasets

6.2 Performance of Index Construction
In this section, we report the size of BiCore-Index for the datasets
and evaluate the performance of two index algorithms BasicDecom
andComShrDecom. In this set of experiments, we set the maximum
running time for each test as 48 hours. If a test does not stop within
the time limit, we denote its processing time as INF.

Exp-3: Index size |I|. The BiCore-Index size |I| of all the datasets
is reported in Table 1. For ease of comparison, we also report the
graph size in Table 1. As shown in Table 1, the size of BiCore-Index
is linear to the size of its corresponding graph. For example, the size
of OG is 2, 644.93 MB while the size of its BiCore-Index is 2, 645.46
MB. The results are consistent with our theoretical analysis in
Section 3.3.

Exp-4: Index construction time for different datasets. In this
experiment, we evaluate the time cost for constructing BiCore-
Index on different datasets using BasicDecom and ComShrDecom.
The results are reported in Figure 9. ComShrDecom is faster than
BasicDecom on all datasets and on average achieves over 1000x im-
provement. For example, in EP, ComShrDecom spends 56 seconds
while BasicDecom spends 14,818 seconds.

Exp-5: Comparison of dmax,
√
m and δ . To better demonstrate

the efficiency of BasicDecom and ComShrDecom, we report dmax,
√
m and δ in Table 1 as these values directly relates to their run-

ning time. As shown in Table 1, δ is at least two order of magni-
tude smaller than dmax for all datasets, which explains the out-
standing performance of ComShrDecom. Furthermore, δ is much
smaller than

√
m on real and power-law graphs, which means

ComShrDecom hardly runs in worst case and is very efficient in
practice. The results confirm our analysis in Section 4 and are con-
sistent with the results in Exp-4.
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Figure 10: Scalability of index construction algorithms

Exp-6: Scalability of index construction. In this experiment, we
evaluate the scalability of BasicDecom and ComShrDecom. To test
the scalability, we vary the number of nodes and the number of
edges by randomly sampling nodes and edges respectively from
20% to 100% and keeping the induced subgraphs as the input graphs.
We only show the results on TR, WT, OG, and PL in Figure 10 since
trends are similar on all other datasets. As shown in Figure 10, when
varying the number of nodes, the running time for both algorithms
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stably increases.ComShrDecom has better performance in all cases
and outperforms BasicDecom over two orders of magnitude on
average. For example, on WT, the running time of ComShrDecom
increases from 35s to 2,953s while BasicDecom cannot terminate
within 48 hours for all cases of WT. Varying the number of edges
has a similar trend as varying the number of nodes. The results
verify that ComShrDecom has a good scalability in practice.

6.3 Dynamic Maintenance and Parallel
Construction

In this section, we test the performance of our index maintenance
algorithms.We take the algorithmwhich invokesComShrDecom to
construct BiCore-Index from scratch for each update as the baseline
solution. For the baseline solution, the running time is nearly the
same for edge insertion and removal, therefore, we just show one
result in the figures.

Exp-7: Index maintenance on different datasets. For BiCore-
Index-Ins and BiCore-Index-Rem, we randomly remove 5000 dis-
tinct existing edges from the graph and report the average process-
ing time for each edge removal. After that, we insert the removed
edges back into the graph one by one and report the average pro-
cessing time for each edge insertion. For BiCore-Index-Batch, we
randomly generate 5000 edges and each edge is randomly chosen
as insertion or removal. We report the processing time in Figure 11.
Generally, the average processing time of our proposed algorithms
is much smaller than the baseline solution. For example, on WT,
our proposed algorithms BiCore-Index-Ins and BiCore-Index-Rem
can handle edge insertion and removal in 31s and 35s respectively
while the baseline solution ComShrDecom requires 2,953s. This is
because our proposed algorithms are incremental algorithms and
save lots of unnecessary computation. Moreover, BiCore-Index-
Batch can handle batch update on WT and OG in 292s and 857s
respectively.

Exp-8: Parallel index construction. In this experiment, we im-
plement parallel index construction algorithm ParallelDecom using
C++11 thread class and test it with 12 cores in default. The run-
ning time of ParallelDecom on all datasets is reported in Figure 9.
ParallelDecom achieves one order magnitude improvement over
BasicDecom. For, example, inWT, the running time ofParallelDecom
is 317s while ComShrDecom costs 2953s. We also report perfor-
mance of ParallelDecom on TR, WT, OG, and PL with different
number of cores in Figure 12. The running time of ParallelDecom is
almost inversely proportional to the number of cores, which shows
that ParallelDecom is efficient in practice.

7 RELATEDWORK

Dense Subgraphs in Bipartite Graphs. (α , β)-core is first intro-
duced in [1]. [10] and [11] extend the linear k-core mining algo-
rithm to compute (α , β)-core. [19, 23] generalizes the k-clique on
unipartite graph to biclique on bipartite graphs. [32] proves that
finding the maximum edge biclique is NP-complete. [53] proposes
an efficient algorithm to enumerate all bicliques. [26, 39] relax the
definition of biclique to introduce quasi-biclique on bipartite graphs
and propose heuristic algorithms to enumerate all quasi-bicliques.

[37] defines a framework of bipartite subgraphs based on the butter-
fly motif (2,2-biclique) to model the dense regions in a hierarchical
structure. [34] proposes efficient algorithms for counting the but-
terfly motif.

Bipartite Graph Models. [16] shows that all complex networks
can be decomposed into underlying bipartite structures sharing
some important statistics. [17, 29] model bipartite graphs by as-
signing degree distribution to each node set separately. [20] uses a
Markov chain rewiring algorithm to generate bipartite graphs. Pref-
erential attachment process, which is popularly use in generating
scale free networks, is studied on bipartite graphs by [17].

Cohesive Subgraph Detection in Unipartite Graphs. Seidman
first introduces k-core in [38]. [7] gives an efficient linear-time
algorithm for core decomposition. Core decomposition is also stud-
ied in weighted graphs [14] and directed graphs [13]. Algorithms
for core number maintenance in dynamic graphs are proposed in
[35, 36, 54]. Application of k-core can be found in social networks
[14, 46], graph visualization[3, 51], protein interaction network
analysis [5, 42] and so on. Other cohesive subgraph models are
also studied recently, such as clique [43, 44, 48], k-edge connected
component [45, 47], and k-mutual-friend subgraph model [50].

8 CONCLUSION
In this paper, we study the problem of efficient (α , β)-core compu-
tation. We devise a compact index BiCore-Index whose size can be
bounded by O (m). Based on BiCore-Index, we propose an optimal
algorithm for (α , β)-core computation and investigate efficient algo-
rithms to construct the index. Moreover, we also discuss about how
to maintain the index in dynamic graphs and construct it with par-
allel algorithm. The experimental results demonstrate the efficiency
of our proposed algorithms.
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