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Abstract: This paper proposes a three-dimensional wave-domain1

acoustic contrast control method to reproduce a multizone sound field2

using a circular loudspeaker array. In this method, sound field analy-3

sis is based on spherical harmonic decomposition, and the loudspeaker4

weights are obtained by maximizing the acoustic energy contrast be-5

tween the predefined bright zone and dark zone. Simulation results6

show that the proposed method provides good multizone separation7

performance over a large spatial region and requires lower-order spher-8

ical harmonics, resulting in a much lower number of microphones re-9

quired to measure the acoustic transfer functions.10

c© 2019 Acoustical Society of America.

a)Author to whom correspondence should be addressed.
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1. Introduction11

Multizone sound field reproduction aims to generate individual sound fields within different12

spatial zones by a loudspeaker array. Acoustic contrast control (ACC) is a common method13

for achieving multizone sound control by maximizing the contrast of the acoustic energy14

between the target zones1. The conventional ACC method is implemented at a set of discrete15

sampling points over the entire region of interest. This method requires numerous sampling16

points to measure the acoustic transfer functions (ATFs) when broadband reproduction over17

large target zones is desired.18

Recently, the wave-domain method, which optimizes a sound field over a region by19

controlling the expansion coefficients, has attracted increasing attention in the research of20

sound field control2,3. In our previous work, we introduced a wave-domain acoustic con-21

trast control (WDACC) method based on circular harmonic expansion to manipulate a22

two-dimensional (2D) multizone sound field4. Using the same number of microphones, the23

WDACC method outperforms the conventional ACC method in terms of acoustic contrast24

and array gain over the 2D regions.25

In this paper, we extend the idea of WDACC to three-dimensional (3D) multizone26

sound field control, with improved control in the vertical direction at the sound zones. In27

this method, spherical harmonic decomposition is used to represent the 3D sound field and28

formulate the acoustic energy over the region of interest. Instead of a spherical array, a29

circular loudspeaker array in the horizontal plane is employed to reproduce the 3D multi-30

zone sound field because a circular array is preferred in practical realization and can be used31
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for application scenarios, e.g., smart speakers. The simulation results show that compared32

with conventional ACC method, the proposed method has better acoustic contrast perfor-33

mance at high frequencies in both free-field and reverberation conditions. Furthermore, this34

method achieves good multizone effects with lower truncation orders, indicating a significant35

reduction in the number of microphones required to measure the ATFs. The remainder of36

this paper is organized as follows. Section 2 presents a spherical harmonic description of the37

first-order loudspeakers and the acoustic potential energy density. Section 3 provides the38

mathematical formulation of the three-dimensional WDACC method. Simulation results are39

presented in Section 4. Conclusions are given in Section 5.40

2. Spherical harmonic description of 3D sound fields41

In this section, spherical harmonics are first introduced to describe an interior sound field.42

We also derive the spherical harmonic expansions of a monopole and a dipole as sound43

sources and further investigate the acoustic potential energy density in the 3D wave domain.44

The solution to the Helmholtz equation can be expressed in spherical coordinates45

r = (r, θ, φ), where r = ||r||, θ is the elevation angle, and φ is the azimuth angle. The46

internal sound pressure field for a source-free region of space is5
47

p(r, k) =
∞∑
n=0

n∑
m=−n

amn (k)jn(kr)Y m
n (θ, φ), (1)

where k = 2πf/c is the wavenumber, f is the frequency, c is the speed of sound in air, amn (k)48

is a set of sound field coefficients, jn(·) is the spherical Bessel function of integer order n,49
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and the spherical harmonic is defined as50

Y m
n (θ, φ) = Pmn (cos θ)eimφ, (2)

where n and m are the spherical harmonic degree and order, respectively,51

Pmn (cos θ) =

√
(2n+ 1)

4π

(n−m)!

(n+m)!
Pm
n (cos θ) (3)

is the orthonormalized associated Legendre function6, and Pm
n (·) is the associated Legendre52

function. The spherical harmonics are orthogonal over both degree n and order m according53

to54 ∫∫
Ω

Y m
n (θ, φ)∗Y m′

n′ (θ, φ)dΩ = δnn′δmm′ , (4)

where dΩ = sin θdθdφ is the differential surface area on the unit sphere and δij is the55

Kronecker delta function.56

2.1 Monopole and dipole sources57

The acoustic pressure field generated by an ideal monopole located at rs = (rs, θs, φs) in the58

free field is given by7
59

pm(r, rs, k) =
eik||r−rs||

4π||r− rs||
=
∞∑
n=0

n∑
m=−n

jn(kr)Y m
n (θ, φ)hn(krs)Y

m
n (θs, φs)

∗, (5)

where hn(·) is the nth order spherical Hankel function of the first kind.60

An ideal dipole consists of two point sources opposite in phase and separated by an61

infinitesimal distance. A dipole located at rs and oriented in direction v creates a pressure5
62

pd(r, rs, k) =
∂pm(r, rs, k)

∂v
= −ik eik||r−rs||

4π||r− rs||
(1 +

i

k||r− rs||
) cosψ, (6)
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where ψ is the angle between r − rs and v. For a tangential dipole, the orientation v is63

the unit vector along the direction of increasing θs. To produce a broadband flat frequency64

response, the dipole sound field can be equalized by dividing by ik8. Given that ∂v = rs∂θs,65

the spherical harmonic expansion for an equalized tangential dipole response is derived as66

pd(r, rs, k) =
1

ikrs

∂pm(r, rs, k)

∂θs

= −sin θs
rs

∞∑
n=0

n∑
m=−n

jn(kr)Y m
n (θ, φ)hn(krs)Pmn (cos θs)

′
e−imφs ,

(7)

where Pmn (·)′
denotes the first-order derivative of the orthonormalized associated Legendre67

function. In the following text, the sound pressure generated by the sound source is described68

as the ATF between the target region and the loudspeaker.69

2.2 First-order loudspeaker on a plane70

A sound source composed of monopole and dipole components is known as a first-order71

loudspeaker8. The ATF of a first-order loudspeaker consists of a weighted sum of a monopole72

and an equalized tangential dipole,73

p(r, rs, k) = γpm(r, rs, k) + (1− γ)pd(r, rs, k) =
∞∑
n=0

n∑
m=−n

bmn (rs, k)jn(kr)Y m
n (θ, φ), (8)

where γ ∈ [0, 1] is the weighting factor, and

bmn (rs, k) = hn(krs)e
−imφs [γPmn (cos θs)− (1− γ)

sin θs
rs
Pmn (cos θs)

′
].

According to the recurrence relation for the associated Legendre functions9
74

(1− x2)
dPm

n (x)

dx
= −nxPm

n (x) + (n+m)Pm
n−1(x), (9)

6



Han et al.: JASA Express Letters

we can derive that the orthonormalized associated Legendre functions obey75

(1− x2)Pmn (x)
′
= −nxPmn (x) +

√
(2n+ 1)(n2 −m2)

2n− 1
Pmn−1(x). (10)

Note that in some special cases, it is impossible to reproduce a sound field of some76

orders using only monopoles or dipoles on a plane. For example, when θs = π/2, i.e.,77

cos θs = 0, the value of Pmn (0) is equal to zero when n+m is an odd integer, and Pmn (0)
′

= 078

when n+m is an even integer3. This effect is the reason why we utilize first-order loudspeakers79

to reproduce the 3D sound field.80

2.3 Acoustic potential energy density81

The acoustic potential energy density in the wave domain over a spherical region D =82

{(r, θ, φ) : r ∈ [0, R], θ ∈ [0, π], φ ∈ [0, 2π)} is defined as83

E =
1

VD

∫∫∫
D

|p(r, k)|2dV =
∞∑
n=0

n∑
m=−n

wn(k,R)|amn (k)|2, (11)

which is derived from the orthogonality property of the spherical harmonics in Eq. (4), where84

dV = r2 sin θdrdθdφ, wn(k,R) = 1
VD

∫ R
0
|jn(kr)|2r2dr is the coefficient weighting function,85

and VD = 4
3
πR3 is the volume of the spherical region D.8687

The energy contribution of each order of the spherical harmonics is controlled by the88

weighting functions. Figure 1 illustrates a waterfall plot of the power level of wn(k,R) in89

decibels (dB) varying with k and n for R set to 0.3 m. As shown in the figure, the weighting90

functions decrease rapidly after specific orders, indicating that only a part of the spherical91

harmonics contribute significant energy to the 3D sound field. Thus, the first summation92

in Eqs. (1), (8) and (11) can be truncated to N = dekR/2e terms within a given region of93
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Fig. 1. The power level of wn(k,R) versus k and n for a specific control region with radius R = 0.3

m. The black dots denote the truncated order N = dekR/2e.

interest10. It is sufficient to use (N + 1)2 of the spherical harmonics to represent a sound94

field within a radius R of interest.95

3. 3D wave-domain acoustic contrast control96

Consider a circular loudspeaker array of L first-order sources located at rs,l, l = 1 · · ·L. By97

combining Eqs. (1) and (8), the coefficients of the sound fields reproduced by the loudspeaker98

array and the ATFs of the first-order loudspeakers are related to the source weights by99

amn (k) =
L∑
l=1

bmn (rs,l, k)ql(k), (12)

where ql(k) is the source weight of the lth loudspeaker. By truncating the sound field to100

(N + 1)2 terms in Eqs. (1) and (8), this relationship can be rewritten into matrix form as101

a(k) = B(k)q(k), (13)
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where a(k) = [a0
0(k), · · · , a−NN (k), · · · , aNN(k)]T is the spherical harmonic coefficient vector of

the sound field, q(k) = [q1(k), · · · , qL(k)]T is the weight vector of the loudspeaker array, and

B(k) =



b0
0(rs,1, k) b0

0(rs,2, k) . . . b0
0(rs,L, k)

...
...

. . .
...

bNN(rs,1, k) bNN(rs,2, k) . . . bNN(rs,L, k)


is the matrix of the spherical harmonic coefficients of the ATFs between the loudspeaker102

array and the control zone. For convenience, k is no longer marked in the following text.103

The acoustic potential energy density can also be written in the following matrix form104

by truncating the order of the spherical harmonics as105

E = aHWa = qHBHWBq = qHRq, (14)

where W = diag{w0(k,R), w1(k,R), w1(k,R), w1(k,R), · · · , wN(k,R)} is a diagonal coeffi-106

cient weighting matrix, (·)H represents the Hermitian transpose, and R = BHWB denotes107

the wave-domain correlation matrix. It should be noted that R and R are different physical108

quantities.109

Next, let there be two disjoint control zones under 3D conditions. Assume that the110

desired bright zone is a spherical area with radius Rb and that the dark zone is another111

spherical area with radius Rd. According to Eq. (14), we can define the acoustic potential112

energy density over the bright zone and the dark zone, Eb and Ed, respectively. Therefore,113

the reproduced sound field over the regions of interest can be optimized by maximizing the114
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ratio of the contrast among the control zones as115

max
q

C =
Eb
Ed

=
qHBH

b WbBbq

qHBH
d WdBdq

=
qHRbq

qHRdq
, (15)

where C denotes the acoustic contrast between the bright zone and the dark zone, and the116

level of this contrast in decibels is defined as 10 log10C. The solution to Eq. (15) is given117

by1
118

q = Φ{(Rd + δI)−1Rb}, (16)

where Φ{·} represents the eigenvector corresponding to the maximum eigenvalue, I is an119

identity matrix, and δ > 0 is the Tikhonov regularization parameter.120

It is noteworthy that all the spherical harmonic coefficients are with respect to the121

coordinate system whose origin is at the center of the control region, instead of at the122

center of the loudspeaker array. This feature makes the proposed method able to avoid the123

Bessel zeros problem in sound reproduction, meaning that a single-ring circular array can be124

exploited to produce a 3D sound field, while other methods usually use a multiple cocentered125

array layout to overcome the Bessel zeros problem3.126

In practical applications, it is generally necessary to precalibrate the ATFs using127

microphone arrays. For the 2D case, at least 2N +1 microphones are needed, and for the 3D128

case, the number of microphones required increases to (N + 1)2, usually more in practice,129

which increases substantially as kR increases10. However, Fig. 1 indicates that such a high130

truncation order is not needed to represent the acoustic energy at high frequencies. Several131

simulation results are given in the following section to demonstrate this finding.132
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4. Results and discussions133

In the following examples, the speed of sound c = 344 m/s and is assumed to be uniform.134

We use an equiangular circular array of radius R = 0.1 m with 6 first-order loudspeakers to135

implement the simulation. Considering the size of a listener’s head, the radii of the spherical136

bright zone and dark zone are Rb = Rd = 0.3 m, and a larger area case where Rb = Rd = 0.5137

m is also included as a comparison. Both free-field and reverberant conditions are considered.138

The center of the loudspeaker array is defined as the coordinate origin, and the centers of the139

bright zone and the dark zone are located at (1,−1, 1) m and (−1,−1, 0.5) m, respectively.140

The selection of γ should depend on the form of the sound field being controlled according141

to the source directivities. For example, for vertical sound zones, the dipole component142

should increase, and for horizontal sound zones, the opposite. In our simulation, we choose143

γ = 0.2. The room size is 15 × 8 × 5 m3, and the reflection coefficients (rp) are 0.6 and144

0.8, respectively. The ATFs in the reverberant room are generated by the image source145

method11. The system setup is illustrated in Fig. 2. To evaluate the acoustic contrast146

performance over a spatial region, we choose 100 random observation points inside each of147

the control zones. Multiplicative error of the ATFs is introduced and follows a Gaussian148

distribution with standard deviations of 3 dB.149150

We compared WDACC with traditional ACC method in terms of average acoustic151

contrast over the control region. As mentioned in Sec. 4, the truncation order of the spherical152

harmonics does not need to be very high. Considering the spherical microphone array in the153

market12, the truncation order is limited to 5 and 3, respectively, i.e., N = min(dekR/2e, 5)154
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Fig. 2. (Color online) Geometry of the simulation setup. The pentagram denotes the center of the

loudspeaker array, and the two black dots are the centers of the control regions. The solid and the

dashed lines show the outlines of the room.

and N = min(dekR/2e, 3), while an equiangular open sphere array with around 1.5(N + 1)2
155

microphones is employed to measure the ATFs for ACC method. The broadband perfor-156

mance evaluation with varying regularization parameters is considered. δ is varied from157

10−7 to 10−2 at 26 logarithmically spaced values for each frequency over a range of 100 to158

4000 Hz. The regularization parameters corresponding to the best average acoustic contrast159

performance are selected.160

Figures 3(a) and 3(b) show the average acoustic contrast levels as functions of the161

frequency using the proposed WDACC and the conventional ACC method with different sizes162

of control regions in the free field. As can be seen, when the control regions become larger,163

both methods degrade at high frequencies. The performances with reduced measurements is164

close to the full measurement case. The two methods have very similar contrast performance165

at low frequencies, but WDACC is better at high frequencies, although the superiority is166

vague. In the free field, measurements around the interest regions are sufficient to make the167
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(a) Free field, Rb = Rd = 0.3 m
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(b) Free field, Rb = Rd = 0.5 m
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(c) Reverberant room, rp = 0.6
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(d) Reverberant room, rp = 0.8

Fig. 3. (Color online) Best average acoustic contrast level at each frequency.

loudspeaker array emit a sound beam to the bright zone. Therefore, the outperformance of168

the wave-domain method cannot be demonstrated in this simple situation.169

The reverberant cases with Rb = Rd = 0.3 m are shown in Figs. 3(c) and 3(d), sug-170

gesting the advantage of WDACC at high frequencies. As the reflection coefficient increases171

from 0.6 to 0.8, the contrast performances of both methods decrease rapidly and the ad-172

vantage of WDACC becomes more significant. The reduction of spherical harmonics from173

5 to 3 does not deteriorate the performance of WDACC in the reverberant environment,174

but less measurement reduces the high frequency performance of ACC method. This is be-175

cause the strong reverberation makes the sound field very complicated. A finite number of176
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spherical harmonics can approximately represent the sound field over a large spatial region,177

and multizone sound can be manipulated by controlling the coefficients captured by a small178

number of microphones. Since the ACC method only maximizes the contrast between the179

multiple points, microphones around the control zones are inadequate when reflection and180

reverberation complicate the sound field inside the target region, and more microphones are181

essential over large areas at high frequencies.182

5. Conclusions183

This paper presents a three-dimensional multizone sound field reproduction method with a184

circular array of first-order loudspeakers, and this method employs the spherical harmonic185

decomposition-based WDACC approach. The proposed method avoids the Bessel zeros186

problem in the wave domain for sound reproduction and facilitates three-dimensional sound187

field control with a single-layer circular array. The free-field and reverberant simulation188

provide the performance evaluation with respect to the average acoustic contrast over the189

regions of interest. The results demonstrate that compared with normal ACC method, the190

proposed WDACC achieves better contrast performance over control regions with well-chosen191

regularization parameters. Moreover, truncating the spherical harmonics at a lower order192

such as 5 or 3 instead of dekR/2e can accomplish the multizone goal. Thus, much fewer193

microphones can be used to reproduce multizone sound in the wave domain.194
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