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Abstract. We study lower bounds on the optimal error probability in classical coding over classical-
quantum channels at rates below the capacity, commonly termed quantum sphere-packing bounds. Winter
and Dalai have derived such bounds for classical-quantum channels; however, the exponents in their bounds
only coincide when the channel is classical. In this paper, we show that these two exponents admit a
variational representation and are related by the Golden-Thompson inequality, reaffirming that Dalai’s
expression is stronger in general classical-quantum channels. Second, we establish a finite blocklength
sphere-packing bound for classical-quantum channels, which significantly improves Dalai’s prefactor from
the order of subexponential to polynomial. Furthermore, the gap between the obtained error exponent for
constant composition codes and the best known classical random coding exponent vanishes in the order
of o(log n/n), indicating our sphere-packing bound is almost exact in the high rate regime. Finally, for
a special class of symmetric classical-quantum channels, we can completely characterize its optimal error
probability without the constant composition code assumption. The main technical contributions are two
converse Hoeffding bounds for quantum hypothesis testing and the saddle-point properties of error exponent
functions.

1. Introduction

Shannon’s noisy coding theorem [1] states that a message in an appropriately coded form can be reliably
transmitted through a discrete memoryless channel W, provided the coding rate R is below the channel
capacity CW. More precisely, the probability of decoding errors can be made arbitrarily small as the
coding blocklength grows. Later, Shannon himself pioneered the study of the exponential dependency of
the optimal error probability ǫ∗(n,R) for a blocklength n and transmission rate R [2]. He defined the
reliability function to be, for any fixed coding rate R < CW,

E(R) := lim sup
n→+∞

− 1

n
log ǫ∗(n,R).

The quantity E(R) then provides a measure of how rapidly the error probability approaches zero with
an increase in blocklength. This characterization of the reliability function is hence called the reliability
function analysis or the error exponent analysis.

For a classical channel, lower bounds for the reliability function can be established by random coding
arguments [3, 4, 5, 6]. However, upper bounds require different techniques since the code-dependent
bounds on the error probability need to be optimized over all codebooks. The first result—the sphere-
packing bound E(R) ≤ Esp(R)—was studied by Fano [4] and Shannon, Gallager, and Berlekamp [7], and
proved by the later paper. The sphere-packing exponent Esp(R) is defined as

Esp(R) := sup
s≥0

{
max
P

E0(s, P ) − sR

}
, (1)

where P is maximized over all probability distributions on the input alphabet, and E0(s, P ) is the auxiliary
function or Gallager’s function [5]. Unlike Shannon-Gallager-Berlekamp’s technique which relates channel
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coding to binary hypothesis testing, Haroutunian [8, 9] employed a combinatorial method and obtained
an upper bound for the reliability function in terms of the following expression

Ẽsp(R) := max
P

min
V

{D (V‖W|P ) : I(P,V) ≤ R} , (2)

where V is minimized over all channels with the same output alphabet as W, D(V‖W|P ) is the conditional
relative entropy between the dummy channel V and the true channel W, and I(P,V) is the mutual
information of the channel V (the detailed definitions are given in Section 2). It was then realized
that the two quantities in Eqs. (1) and (1) are equivalent: they are related by convex program duality
[8, 10, 11, 12]. Therefore, these two expressions, Eqs. (1) or (1), are both called sphere-packing exponents.

Error exponent analysis in classical-quantum (c-q) channels is more challenging because of the noncom-
mutative nature of quantum mechanics. Burnashev and Holevo [13] introduced a quantum version of the
auxiliary function [14, 15] and initialized the study of reliability functions in c-q channels. Winter [16] de-

rived a sphere-packing bound for c-q channels in the form of Ẽsp(R) in Eq. (1), generalizing Haroutunian’s
idea [8]. Dalai [17] employed Shannon-Gallager-Berlekamp’s approach [7] to establish a sphere-packing
bound with Gallager’s exponent in Eq. (1). In the follow-up work [18], Dalai and Winter pointed out that
these two exponents are not equal in c-q channels. In this work, we explicitly demonstrate a relationship
between the two quantities. Precisely, we show that they individually admit a variational representation
(Theorem 6 in Section 3):

Esp(R) = max
P

sup
0<α≤1

min
σ

{
1 − α

α

(
∑

x

P (x)Dα (Wx‖σ) −R

)}
; (3)

Ẽsp(R) = max
P

sup
0<α≤1

min
σ

{
1 − α

α

(
∑

x

P (x)D♭
α (Wx‖σ) −R

)}
, (4)

where σ is minimized over all density operators on some Hilbert space H; Wx is the channel output state
on H; Dα is the (Petz) α-Rényi divergence [19]; and D♭

α is the log-Euclidean α-Rényi divergence.

Since Dα ≤ D♭
α for all α ∈ (0, 1], as a simple consequence of the Golden-Thompson inequality [20, 21],

the exponent Esp(R) in Eq. (1) is stronger than Ẽsp(R) in Eq. (1), i.e.

E(R) ≤ Esp(R) ≤ Ẽsp(R).

These two exponents coincide for all R only when all the channel output states commute1 (i.e. for classical

channels). Thus, we call Esp(R) and Ẽsp(R) the strong sphere-packing exponent and the weak sphere-
packing exponent, respectively. The lower bounds for the optimal error probability in terms of these two
quantities are called the strong sphere-packing bound

ǫ∗ (n,R) ≥ f(n) exp {−n [Esp(R− g(n))]} , (5)

and the weak sphere-packing bound

ǫ∗ (n,R) ≥ f(n) exp
{
−n
[
Ẽsp(R− g(n))

]}
, (6)

where f(n) is the prefactor of the bound, and g(n) is a rate back-off term. We note that g(n) = 0 in our
main result, and hence we only study f(n) in the following discussion.

The strong sphere-packing bound obtained by Dalai [17] had a prefactor f(n) = e−O(
√
n), which is

loose for small blocklength n or in the situation where the transmission rate is close to channel capacity.
Furthermore, such bound only holds asymptotically, i.e. when n tends to infinity. The main contribution of
this paper is to establish a sphere-packing bound with a better prefactor f(n) = O(n−t) for some t > 1/2,
which not only holds for finite blocklength n but also notably improves Dalai’s bound [17] from the order
of subexponential to polynomial (Corollary 9). When restricting to constant composition codes, we can be

more explicit about the obtained prefactor, namely, f(n) = n− 1
2(1+|E′

sp(R)|+o(1)) (Theorem 8)2. Moreover,

1For the coding rates above channel capacity, these two exponents are both zero (α attains 1 in Eqs. (1) and (1)). We exclude
this trivial case and only consider the rate being strictly below capacity.
2The notion E′

sp(R) means the left-derivative of Esp(R). Note that Esp(R) is not necessarily differentiable.
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this sphere-packing bound and the best known random coding upper bound [22, 23, 24, 25] in the classical
case coincide up to the third-order term (see the discussion in Section 4)). Hence, our result yields a tight
asymptotics of the sphere-packing bound for constant composition codes. Our second contribution is

to show that, for a class of symmetric c-q channels, the prefactor f(n) = O(n− 1
2(1+|E′

sp(R)|)), holds for
general codes. In other words, we are able to obtain a tight sphere-packing bound for general codes, by
exploiting a symmetric property of the channel.

Our main ingredients are a tight concentration inequality in strong large deviation theory [26], [27,
Theorem 3.7.4], [28, Section III.D] (Appendix B), an one-shot converse via quantum hypothesis testing
[4, 7, 10], and a uniform continuity property (Proposition 18 in Appendix C). The strategy of the proof
consists of three steps: (i) formulate the error probability of a certain codebook to a hypothesis testing
problem; (ii) prove lower (or called the converse) bounds on type-I error in quantum hypothesis testing;
and (iii) relate the error with the strong sphere-packing exponent. In Section 4.1, we first prove a one-shot
converse bound to relate the channel coding problem into a binary quantum hypothesis (Proposition 10).
We then employ Bahadur-Ranga Rao’s inequality [26] to establish converse Hoeffding bounds for quantum
hypothesis testing (Theorem 11). Next, we apply a uniform continuity property (Proposition 18 in
Appendix C) and the established sharp Hoeffding bound (Theorem 11) to prove two finite blocklength
converse bounds on the optimal type-I error for a fixed-composition codeword. The first bound is a
Chebyshev-type bound with a subexponential prefactor (Proposition 12), while the second bound is a
sharp converse bound with a polynomial prefactor (Proposition 13). Finally, we combine these two results
to obtain a refined strong sphere-packing bound with a polynomial prefactor and finite blocklength.

Table 1 collects major proof approaches of classical sphere-packing bounds, Eqs. (1) and (1), and
discusses their generalizations to c-q channels. We remark that the established finite blocklength bounds
and the polynomial prefactor are crucial for the analysis of coding performance in the medium error
probability regime (more commonly known as moderate deviation analysis) [28, 29, 30], classical data
compression with quantum side information [31, 32], and joint source-channel coding with quantum side
information [33].

The remaining part of the paper is organized as follows. Section 2 introduces the notation and necessary
preliminaries. The relationship between the weak and strong sphere-packing exponents is proved in
Section 3. In Section 4, we prove a refined sphere-packing bound for c-q channels. We consider a
symmetric c-q channel and establish an exact sphere-packing bound in Section 5. Lastly, we conclude
this paper in Section 6.

2. Notation and Preliminaries

Throughout this paper, we consider a finite-dimensional Hilbert space H. The set of density operators
(i.e. positive semi-definite operators with unit trace) and the set of full-rank density operators on H are
defined as S(H) and S>0(H), respectively. For ρ, σ ∈ S(H), we write ρ ≪ σ if the support of ρ is contained
in the support of σ. The identity operator on H is denoted by 1H. If there is no possibility of confusion,
we will skip the subscript H. We use Tr [ · ] to denote the trace. Let N, R, R≥0, and R>0 denote the
set of integers, real numbers, non-negative real numbers, and positive real numbers, respectively. Define
[n] := {1, 2, . . . , n} for n ∈ N.

For a positive semi-definite operator A whose spectral decomposition is A =
∑

i aiPi, where (ai)i and
(Pi)i are the eigenvalues and eigenprojections of A, its power is defined as: Ap :=

∑
i:ai 6=0 a

p
iPi. In

particular, A0 denotes the projection onto supp(A), where we use supp(A) to denote the support of the
operator A. Further, A ⊥ B means supp(A) ∩ supp(B) = ∅, and A ≪ B indicates supp(A) ⊆ supp(B).
We denote by log the natural logarithm. We use f ∨ g (resp. a ∧ b) to denote the pointwise maximum
(resp. minimum) between two functions f and g.

2.1. Information Quantities and Error-Exponent Functions. Given a pair of positive semi-definite
operators ρ, σ ∈ S(H), we define quantum relative entropy [44, 45] and relative variance [46, 47, 48],

3Blahut in Ref. [10] claimed that the sphere-packing bound can be derived without using constant composition argument.
However, there is a non-trivial gap. We refer readers to the discussion by Nakiboğlu in Ref. [42, Appendix A]
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Asymptotics
Composition Pre-factor Rate back-off Classical-Quantum

ExpressionBounds\Settings
dependent f(n) g(n) channels

Shannon-Gallager-
Asymptotic Yes e−O(

√
n) O

(
logn
n

)
Dalai [17] Esp(R)(a)

Berlekamp [7]

Haroutunian [8]

Asymptotic Yes e−o(n) o(1) Winter [16] Ẽsp(R)Omura [34](b)

Csisár-Korner [12]

(c) Blahut [10] Asymptotic Yes3 e−O(
√
n) O

(
n− 1

2

)
Eqs. (4.2) & (4.2) Esp(R)

Finite Blocklength Yes n− 1
2(1+|E′

sp(R)|+o(1)) 0 Theorem 8 Esp(R)(d) Altuğ-Wagner [35]

(e) Elkayam-Feder [36] Asymptotic Yes O
(
n−t
)

O
(
logn
n

)
Unknown Unknown

Agustin-Nakiboğlu
Finite Blocklength No O

(
n−t
)

0 Unknown Unknown(f)
[37, 38, 39, 40, 41, 42]

Table 1. Different sphere-packing bounds are compared by (i) whether the bounds hold
for finite blocklength n or hold asymptotically as n → +∞; (ii) whether or not they are
dependent on the constant composition codes; (iii) & (iv) the asymptotics f(n) and g(n);
(v) the corresponding generalizations to classical-quantum channel coding; The parameter
t in rows (e) and (f) is some value in the range t > 1/2; and (vi) whether their error
exponent expressions for c-q channels are expressed by Esp(R) given in Eq. (1) or by

Ẽsp(R) defined in Eq. (1).

respectively as

D(ρ‖σ) := Tr [ρ (logρ− logσ)] ;

V (ρ‖σ) := Tr
[
ρ (logρ− logσ)2

]
−D(ρ‖σ)2,

when ρ ≪ σ, and +∞ otherwise.
For two positive definite operators ρ, σ > 0 on H, and every α ∈ (0, 1), we define the following two

families of quantum Rényi divergences [19, 49, 50]:

Dα(ρ‖σ) :=
1

α− 1
logQα(ρ‖σ), Qα(ρ‖σ) := Tr

[
ρασ1−α

]
; (7)

D♭
α(ρ‖σ) :=

1

α− 1
logQ♭

α(ρ‖σ), Q♭
α(ρ‖σ) := Tr

[
eα log ρ+(1−α) log σ

]
. (8)

We term the above quantities as the (Petz) α-Rényi divergence, and the log-Euclidean α-Rényi divergence,
respectively. The log-Euclidean Rényi divergence arises from the log-Euclidean operator mean (also called
the chaotic mean): A♦αB := exp ((1 − α) logA + α logB) for 0 ≤ α ≤ 1. For general positive semi-
definite operators ρ, σ ≥ 0, the above definitions can be extended as

Qα(ρ‖σ) := lim
δ↓0

Qα(ρ + δ1‖σ + δ1) and Q♭
α(ρ‖σ) := lim

δ↓0
Q♭

α(ρ + δ1‖σ + δ1).

From the Golden-Thompson inequality [20, 21]:

Tr
[
eA+B

]
≤ Tr

[
eA eB

]
, ∀A,B ≥ 0,

these two quantities are related by

Q♭
α(ρ‖σ) ≤ Qα(ρ‖σ), ∀α ∈ (0, 1). (9)

For α = 1 and α = 0, we define (see e.g. [50, Lemma 3.5]):

D1(ρ‖σ) := lim
α↑1

Dα(ρ‖σ) = D(ρ‖σ), D♭
1(ρ‖σ) := lim

α↑1
D♭

α(ρ‖σ) = D(ρ‖σ);

D0(ρ‖σ) := lim
α↓0

Dα(ρ‖σ), D♭
0(ρ‖σ) := lim

α↓0
D♭

α(ρ‖σ).

4



We will need the properties of the Rényi divergence for the next section.

Lemma 1. The following hold:

(a) For every ρ, σ ∈ S(H), the map α 7→ Dα (ρ‖σ) is continuous and monotone increasing on [0, 1].
(b) Let ρ ∈ S(H), positive semi-definite operators σ1 and σ2 on H, and α ∈ [0, 1]. If σ1 ≤ σ2, then

Dα(ρ‖σ1) ≥ Dα(ρ‖σ2). Moreover, if σ1 = γσ2 for some γ > 0, then Dα(ρ‖σ1) = Dα(ρ‖σ2)− log γ.
(c) For every ρ ∈ S(H) and α ∈ [0, 1], the map σ 7→ Dα(ρ‖σ) is convex and lower semi-continuous

on S(H).

We note that item (a) was proved in [50, Lemma 3.12, Corollary 3.15]; item (b) was proved in [50,
Lemma 3.24]; item (c) was shown in [51, 52, 19] [50, Theorem 3.16]4.

Let X = {1, 2, . . . , |X |} be a finite alphabet, and let P(X ) be the set of probability distributions on
X . A classical-quantum (c-q) channel W maps elements of the finite set X to density operators in S(H),
i.e. W : x 7→ Wx. For a c-q channel W : X → S(H) and P ∈ P(X ), it is convenient to denote the
corresponding c-q state:

P ◦W :=
∑

x∈X
P (x)|x〉〈x| ⊗Wx.

We also express the input distribution P ∈ P(X ) as a diagonal matrix with respect to the computational
basis {|x〉}x∈X , i.e. P =

∑
x∈X P (x)|x〉〈x|. Denote the conditional relative entropy of two c-q channels

V,W : X → S(H) with a prior distribution P ∈ P(X ) by

D (V‖W|P ) :=
∑

x∈X
P (x)D (Vx‖Wx) .

Similarly, we define the following conditional entropic quantities for W : X → S(H), σ ∈ S(H) and
P ∈ P(X ):

D (W‖σ|P ) :=
∑

x∈X
P (x)D (Wx‖σ) ,

Dα (W‖σ|P ) :=
∑

x∈X
P (x)Dα (Wx‖σ) , (10)

D♭
α (W‖σ|P ) :=

∑

x∈X
P (x)D♭

α (Wx‖σ) .

The mutual information of the prior distribution P ∈ P(X ) and the c-q channel W : X → S(H) is defined
as

I(P,W) := inf
σ∈S(H)

D (W‖σ|P ) = D (W‖PW|P ) , (11)

where PW :=
∑

x∈X P (x)Wx and the second equality can be found in Ref. [53]. The (classical) capacity
of the channel W : X → S(H) is denoted by [54, 55]:

CW := max
P∈P(X )

I(P,W).

We define two related information quantities: for every α ∈ [0, 1],

I(1)α (P,W) := inf
σ∈S(H)

Dα (P ◦W‖P ⊗ σ) ;

I(2)α (P,W) := inf
σ∈S(H)

Dα (W‖σ|P ) . (12)

The term I
(1)
α (P,W) is called the order α Rényi information [56, 57, 39] or the generalized Holevo quantity.

The second term I
(2)
α (P,W) can be viewed as a variant of the α-Rényi mutual information, and we call it

4It was shown in [50, Corollary 3.27] that the map σ 7→ Dα(ρ‖σ) is lower semi-continuous on S(H) for all α ∈ (0, 1). The
argument can be extended to the range α ∈ [0, 1] by the same method in [50, Lemma 3.26, Corollary 3.27].
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the the order α Augustin information [41, 42, 85]. It can be verified that these two functions are related
by Jensen’s inequality:

I(1)α (P,W) ≤ I(2)α (P,W). (13)

For the case of α = 1, they both equal conventional mutual information, i.e. I
(1)
1 (P,W) = I

(2)
1 (P,W) =

I(P,W). Mosonyi and Ogawa [50, Proposition 4.2] showed that for all α ∈ [0, 1],

Cα,W := sup
P∈P(X )

I(1)α (P,W) = sup
P∈P(X )

I(2)α (P,W), (14)

and it is termed the Rényi radius or the Rényi capacity of order α. It is not hard to verify that Cα,W equals
the usual channel capacity CW as α = 1. Moreover, Proposition 2 below and the compactness of P(X )
show that the suprema in Eq. (2.1) can be replaced with maxima. The following proposition presents
important properties of α-Augustin mutual information and radius. The proof is given in Appendix D.

Proposition 2 (Properties of order α Augustin Information and Radius). Given any classical-quantum
channel W : X → S(H) with |X | < ∞, the following hold:

(a) For every P ∈ P(X ), α 7→ I
(2)
α (P,W) is monotone increasing on [0, 1], and I

(2)
α (P,W) ≤ log |X |

for all α ∈ [0, 1].
(b) For every (α,P ) ∈ (0, 1] × P(X ), there exists a unique σα,P ∈ S(H), termed Augustin mean, such

that

I(2)α (P,W) = Dα (W‖σα,P |P ) ,

and

Tα,P (σ) = σ and σ ≫ PW if and only if σ = σα,P , (15)

where the map Tα,P : SP,W(H) → S(H) is defined as

Tα,P (σ) =
∑

x∈X
P (x)

σ
1−α
2 Wα

x σ
1−α
2

Tr [Wα
x σ

1−α]
.

(c) For every α ∈ [0, 1], the map P 7→ I
(2)
α (P,W) is concave on P(X ).

(d) For every P ∈ P(X ), α 7→ 1−α
α I

(2)
α (P,W) is concave on (0, 1].

(e) For every P ∈ P(X ), α 7→ I
(2)
α (P,W) is continuous on [0, 1].

(f) The family of functions {I(2)α (P,W)}α∈[0,1] is uniformly equicontinuous in P ∈ P(X ). Moreover,

The map (α,P ) 7→ I
(2)
α (P,W) is jointly continuous on [0, 1] × P(X ).

(g) The map (α,P ) 7→ σα,P is jointly continuous on (0, 1] × P(X ).
(h) The map α 7→ Cα,W is continuous and monotone increasing on [0, 1].

The strong sphere-packing exponent [17] of a c-q channel W : X → S(H) and a rate R ≥ 0 is defined
by

Esp(R) := max
P∈P(X )

Esp(R,P ), (16)

where

Esp(R,P ) := sup
s≥0

{E0(s, P ) − sR} , (17)

and E0 is the auxiliary function of the c-q channel W (see [13, 14, 15]):

E0(s, P ) := − log Tr



(
∑

x∈X
P (x) ·W 1/(1+s)

x

)1+s



for all P ∈ P(X ) and s ≥ 0.
6



The weak sphere-packing exponent [16] is defined as

Ẽsp(R) := max
P∈P(X )

Ẽsp(R,P ),

where

Ẽsp(R,P ) := min
V:X→S(H)

{D (V‖W|P ) : I(P,V) ≤ R} . (18)

We also need the following definitions: for any R ≥ 0 and P ∈ P(X ),

E(1)
sp (R,P ) := sup

0<α≤1

1 − α

α

(
I(1)α (P,W) −R

)
; (19)

E(2)
sp (R,P ) := sup

0<α≤1

1 − α

α

(
I(2)α (P,W) −R

)
, (20)

Eq. (2.1) implies that (see also Theorem 6) E
(1)
sp (R,P ) ≤ E

(2)
sp (R,P ). By quantum Sibson’s identity

[58]5, one finds

E(1)
sp (R,P ) = Esp(R,P ). (21)

Proposition 2 and Eq. (2.1) imply that the two quantities given in Eqs. (2.1) and (2.1) are equal to the
strong sphere-packing exponent by maximizing over the input distributions:

Esp(R) = max
P∈P(X )

E(1)
sp (R,P ) = max

P∈P(X )
E(2)

sp (R,P ). (22)

In Proposition 4 below, one has Esp(R) = +∞ for R < C0,W, and Esp(R) = 0 as R > CW. Throughout this
paper, we further assume that the considered c-q channel W satisfies C0,W < CW. We note that C0,W gives
an upper bound to the zero-error capacity of the channel. For details, we refer the readers to Ref. [17].

As we will show in Section 4, the quantity E
(2)
sp (R,P ) plays a significant role in the connection between

hypothesis testing and channel coding. Moreover, Proposition 3 below shows that the the optimizer in
Eqs. (2.1) and (2.1) forms a saddle-point. The proof closely follows Altuğ and Wagner [35, Proposition
1], and is given in Appendix E.

Proposition 3 (Saddle-Point). Consider a classical-quantum channel W : X → S(H), any R ∈ (C0,W, CW),

and P ∈ P(X ). Let6

SP,W(H) := {σ ∈ S(H) : ∀x ∈ supp(P ), Wx 6⊥ σ} .
Define

FR,P (α, σ) :=





1 − α

α
(Dα (W‖σ|P ) −R) , α ∈ (0, 1)

0, α = 1
, (23)

on (0, 1] × S(H), and denote by

PR(X ) :=

{
P ∈ P(X) : sup

0<α≤1
inf

σ∈S(H)
FR,P (α, σ) ∈ R>0

}
. (24)

The following holds

(a) For any P ∈ P(X ), FR,P (·, ·) has a saddle-point on (0, 1] × SP,W(H) with the saddle-value:

min
σ∈S(H)

sup
0<α≤1

FR,P (α, σ) = sup
0<α≤1

min
σ∈S(H)

FR,P (α, σ) = E(2)
sp (R,P ).

5 For joint state ρAB ∈ S(AB) with marginal states denoted by ρA and ρB, quantum Sibson’s identity [58] states that

the minimizer of minσ∈S(H)Dα(ρAB‖ρA ⊗ σB) is (TrA [ραAB])
1/α /Tr

[

(TrA [ραAB])
1/α

]

. For the case of classical-quantum

channels, the minimizer of minσ∈H Dα(P ◦W‖P ⊗ σ) is then
(
∑

x∈X
P (x)Wα

x

)1/α
/Tr

[

(
∑

x∈X
P (x)Wα

x

)1/α
]

.
6For α ∈ (0, 1], SP,W(H) is the effective domain of FR,P (α, ·) [75]. Namely, FR,P (α, σ) is finite for all σ ∈ SP,W(H).
Proposition 3 then aims to find the saddle-points within its domain (0, 1]×SP,W(H). Otherwise, the saddle-point makes no
sense.
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(b) Fix P ∈ PR(X ). Any saddle-point (α⋆
R,P , σ

⋆
R,P ) of FR,P (·, ·) satisfies α⋆

R,P ∈ (0, 1) and

σ⋆
R,P ≫ Wx, ∀x ∈ supp(P ).

(c) For P ∈ PR(X ), the saddle-point is unique.
(d) For any R ∈ (C0,W, R], both α⋆

r,P and σ⋆
r,P are jointly continuous functions of (r, P ) on [R,R] ×

P(X ).

The following proposition discusses the continuity and differentiability of the error-exponent functions.
The proof is shown in Appendix F.

Proposition 4 (Properties of Error-Exponent Functions). Consider a classical-quantum channel W :
X → S(H) with C0,W < CW. We have

(a) Given every P ∈ P(X ), E
(2)
sp (·, P ) is convex and non-increasing on [0,+∞], and continuous on[

I
(2)
0 (P,W),+∞

]
. For every R > C0,W, E

(2)
sp (R, ·) is continuous on P(X ). Further,

E(2)
sp (R,P ) =





+∞, R < I
(2)
0 (P,W)

0, R ≥ I
(2)
1 (P,W)

.

(b) Esp(·) is convex and non-increasing on [0,+∞], and continuous on [C0,W,+∞]. Further,

Esp(R) =

{
+∞, R < C0,W

0, R ≥ C1,W
.

(c) Consider any R ∈ (C0,W, CW) and P ∈ PR(X ) (see Eq. (3)). The function E
(2)
sp (·, P ) is differen-

tiable with

s⋆R,P :=
1 − α⋆

R,P

α⋆
R,P

= − ∂E
(2)
sp (r, P )

∂r

∣∣∣∣∣
r=R

∈ R>0,

where α⋆
R,P is the optimizer in Eq. (2.1). Moreover,

Iα⋆
R,P

(P,W) > R.

Given any R ∈ (C0,W, CW) and P ∈ PR(X ), we define E′
sp(R) as the left derivative of Esp(R):

E′
sp(R) := lim

δ↓0
Esp(R− δ) − Esp(R)

−δ
.

Since Esp(R) is continuous in R by Proposition 4-(b), the above definition is well-defined. Moreover,
Eq. (2.1) and Proposition 4-(c) imply that the absolute value of E′

sp(R) means the maximum absolute
value of the slope of the sphere-packing exponent at R by

∣∣E′
sp(R)

∣∣ = max
P :E

(2)
sp (R,P )=Esp(R)

s⋆R,P . (25)

Note that the term
∣∣E′

sp(R)
∣∣ in Eq. (2.1) is well-defined and finite by item (d) in Proposition 3.

2.2. Quantum Hypothesis Testing and Channel Coding. Consider a binary hypothesis whose null
and alternative hypotheses are ρ ∈ S(H) and σ ∈ S(H), respectively. The type-I error and type-II error
of the hypothesis testing, for an operator 0 ≤ Q ≤ 1, are defined as:

α (Q; ρ) := Tr [(1−Q)ρ] ,

β (Q;σ) := Tr [Qσ] .

There is a trade-off relation between these two errors. Thus we can define the minimum Type-I error
when the type-II error is below µ ∈ (0, 1) as

α̂µ (ρ‖σ) := min
0≤Q≤1

{
α (Q; ρ) : β (Q;σ) ≤ µ

}
.
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We define an error-exponent function [59, 60, 61] for two sequences of states

H0 : ρn = ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρn,

H1 : σn = σ1 ⊗ σ2 ⊗ · · · ⊗ σn,

by

φn (r|ρn‖σn) := sup
α∈(0,1]

{
1 − α

α

(
1

n
Dα (ρn‖σn) − r

)}
, r ≥ 0. (26)

It is known that [61, Lemma 4]

φn (r|ρn‖σn) = +∞, ∀r ∈
[
0,− 1

n
D0 (ρn‖σn)

)
.

Let M be a finite alphabetical set with size M = |M|. An (n-block) encoder is a map fn : M → X n

that encodes each message m ∈ M to a codeword xn(m) := x1(m)x2(m) . . . xn(m) ∈ X n. The codeword
xn(m) is then mapped to a state

W⊗n
x
n(m) = Wx1(m) ⊗Wx2(m) ⊗ · · · ⊗Wxn(m) ∈ S(H⊗n).

The decoder is described by a positive operator-valued measurement (POVM) Πn = {Πn,1, . . . ,Πn,M}
on H⊗n, where Πn,i ≥ 0 and

∑M
i=1 Πn,i = 1. The pair (fn,Πn) =: Cn is called an (n,R)-code with

rate R = 1
n log |Cn| = 1

n logM . The error probability of sending a message m with the code Cn is

ǫm(Cn) := 1 − Tr
(

Πn,mW⊗n
x
n(m)

)
. We use ǫmax(Cn) = maxm∈M ǫm(Cn) and ǭ(Cn) = 1

M

∑
m∈M ǫm(Cn) to

denote the maximal error probability and the average error probability, respectively. Denote by ǫ∗ (n,R)
the smallest average probability of error among all the coding strategies with a blocklength n and coding
rate R, i.e.

ǫ∗(n,R) := inf{ǭ(Cn) : Cn is an (n,R)-code}.
The reliability function of the channel W and the coding rate R is defined by7

E(R) := lim sup
n→+∞

− 1

n
log ǫ∗ (n,R) .

Winter [16] and Dalai [17] showed that the reliability function of a c-q channel can be upper bounded by

E(R) ≤ Ẽsp(R) and E(R) ≤ Esp(R), respectively. Given a sequence xn ∈ X n, we denote by

Px
n(x) :=

1

n

n∑

i=1

1 {x = xi} , ∀x ∈ X

the empirical distribution of xn, where xi is the i-th position of xn; and 1{A} = 1 if the event A is true;
otherwise 1{A} = 0. A constant composition code with a composition Px

n refers to a codebook whose
codewords all have the same distribution Px

n .

2.3. Nussbaum-Szko la Distributions. Assume the dimension of the Hilbert space H is d. Given
density operators ρ, σ ∈ S(H) with spectral decompositions

ρ =
∑

i∈[d]
λi|ei〉〈ei|, and σ =

∑

j∈[d]
µj |fj〉〈fj |,

we define the Nussbaum-Szko la distributions [62] pρ,σ, qρ,σ as

pρ,σ(i, j) := λi|〈ei|fj〉|2, qρ,σ(i, j) := µj|〈ei|fj〉|2. (27)

The distributions pρ,σ, qρ,σ have the same mathematical properties as the density operators ρ, σ in some
cases, and thus are useful in the sequel. First, one can verify that [62, 46],

Dα (ρ‖σ) = Dα (pρ,σ‖qρ,σ) , ∀α ∈ [0, 1].

7Throughout this paper, we skip the dependence of the channel W in the reliability function and error-exponent functions.
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Second, for product states ρ1 ⊗ ρ2 and σ1 ⊗ σ2, we have

pρ1⊗ρ2,σ1⊗σ2 = pρ1,σ1 ⊗ pρ2,σ2 , and qρ1⊗ρ2,σ1⊗σ2 = qρ1,σ1 ⊗ qρ2,σ2 .

Third, ρ ≪ σ if and only if pρ,σ ≪ qρ,σ. Moreover, we will use ω to represent the pair of indices (i, j) in
Eq. (2.3), and view the distributions pρ,σ, qρ,σ as diagonal matrices, e.g. Tr [pρ,σ] =

∑
ω∈[d]×[d] p

ρ,σ(ω).

3. Relation between the Strong and Weak Sphere-Packing Exponents

This section derives alternative formulations of the strong and weak sphere-packing exponents of
Eqs. (1)-(1), and provides a relation between these two exponents. As we will show later, the derived
formulations are essentially optimization problems in the primal domain, while the expressions in Eqs. (1)
and (1) are corresponding dual representations.

We first consider the following convex optimization problem and then exploit it to establish variational
formulations of the sphere-packing exponents. Let ρ, τ ∈ S(H) be two density operators. Consider the
following convex optimization problem:

(P) e(r) := inf
σ∈S(H)

D (σ‖ρ) ,

subject to D (σ‖τ) ≤ r.
(28)

The above primal problem is interpreted as finding the optimal operator σ⋆ that achieves the minimum
relative entropy e(r) to ρ, within r-radius to τ . The following result shows the dual representation of
problem (P) via Lagrangian duality.

Lemma 5 ([59, Section 3.7], [63], [50, Theorem 3.6]). The dual problem of (P) is given by

(D) sup
s≥0

{
−(1 + s) logQ♭

1
1+s

(ρ‖τ) − sr

}
.

Proof. By the method of Lagrange multipliers, the primal problem in Eq. (3) can be rewritten as

sup
s≥0

inf
σ∈S(H)

{D(σ‖ρ) + s (D(σ‖τ) − r)}

= sup
s≥0

{
(1 + s) inf

σ∈S(H)

{
1

1 + s
D(σ‖ρ) +

s

1 + s
D(σ‖τ)

}
− sr

}

= sup
s≥0

{
−(1 + s) logQ♭

1
1+s

(ρ‖τ) − sr

}
,

where the last equality follows from [50, Theorem 3.6]. �

Theorem 6 (Variational Representations of the Sphere-Packing Exponents). Let W : X → S(H) be a
classical-quantum channel. For any R > C0,W, we have

Ẽsp(R,P ) = sup
0<α≤1

min
σ∈S(H)

{
1 − α

α

(
D♭

α (W‖σ|P ) −R
)}

, and (29)

Esp(R,P ) ≤ sup
0<α≤1

min
σ∈S(H)

{
1 − α

α
(Dα (W‖σ|P ) −R)

}
, (30)

where Ẽsp(R,P ) and Esp(R,P ) are defined in Eqs. (2.1) and (2.1), respectively.
Moreover, equality in Eq. (6) is attained when maximizing over all prior distributions, i.e.,

Esp(R) = max
P∈P(X )

Esp(R,P ) = max
P∈P(X )

sup
0<α≤1

min
σ∈S(H)

{
1 − α

α
(Dα (W‖σ|P ) −R)

}
. (31)

Proof. We start with the proof of Eq. (6). Recall Eq. (2.1):

I(P,V) = min
σ∈S(H)

D (V‖σ|P ) .
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We find

Ẽsp(R,P ) = min
V:X→S(H)

{D (V‖W|P ) : I(P,V) ≤ R}

= min
V:X→S(H)

{
D (V‖W|P ) : min

σ∈S(H)
D (V‖σ|P ) ≤ R

}

= sup
s≥0

min
V:X→S(H)

{
D (V‖W|P ) + s

(
min

σ∈S(H)
D (V‖σ|P ) −R

)}

= sup
s≥0

min
σ∈S(H)

min
V:X→S(H)

{
−sR +

∑

x∈X
P (x) [D (Vx‖Wx) + s ·D (Vx‖σ)]

}

= sup
s≥0

min
σ∈S(H)

{
∑

x∈X
P (x) min

Vx∈S(H)
[D (Vx‖Wx) + s ·D (Vx‖σ) − sR]

}

= sup
s≥0

min
σ∈S(H)

{
∑

x∈X
P (x)

[
−(1 + s) logQ♭

1
1+s

(Wx‖σ) − sR

]}
.

In the third equality we introduced the constraint into the objective function via the Lagrange multiplier
s ≥ 0; The fifth equality follows from the linearity of the convex combination; and the last line is due to
Lemma 5. Further, we use the substitution α = 1/(1 + s) and recall the definition of the log-Euclidean
α-Rényi divergence given in Eq. (2.1) to obtain:

Ẽsp(R,P ) = sup
0<α≤1

min
σ∈S(H)

{
1 − α

α

(
D♭

α (W‖σ|P ) −R
)}

.

Hence, we prove the first claim in Eq. (6).
Next, we will prove Eq. (6). From Jensen’s inequality and the concavity of the logarithm, the right-hand

side of Eq. (6) implies that

sup
0<α≤1

min
σ∈S(H)

{
1 − α

α

(
∑

x∈X
P (x)Dα (Wx‖σ) −R

)}

= sup
0<α≤1

min
σ∈S(H)

{
− 1

α

∑

x∈X
P (x) log Tr

[
Wα

x σ
1−α
]
− 1 − α

α
R

}

≥ sup
0<α≤1

min
σ∈S(H)

{
− 1

α
log Tr

[
∑

x∈X
P (x)

[
Wα

x σ
1−α
]
]
− 1 − α

α
R

}

= Esp(R,P ),

where the last equality follows from Eq. (2.1).
Finally, we invoke the following identity proved by Mosonyi and Ogawa [50, Proposition 4.2]:

max
P∈P(X )

min
σ∈S(H)

Dα (W‖σ|P ) = max
P∈P(X )

min
σ∈S(H)

Dα (P ◦W‖P ⊗ σ) .

Note that the above relation also holds for D♭
α. Then, combining Eqs. (2.1), (2.1) and (2.1), Eq. (6) holds

as follows:

Esp(R) = max
P∈P(X )

Esp(R,P )

= max
P∈P(X )

E(1)
sp (R,P )

= max
P∈P(X )

min
σ∈S(H)

Dα (P ◦W‖P ⊗ σ)

= max
P∈P(X )

min
σ∈S(H)

Dα (W‖σ|P ) .

�
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The following corollary is a simple consequence of the variational representations of the sphere-packing
exponents in Theorem 6 and Eq. (2.1) .

Corollary 7. For any classical-quantum channel W : X → S(H), R > C0,W, and P ∈ P(X ), it holds that

Esp(R,P ) ≤ Ẽsp(R,P ).

4. Finite Blocklength Sphere-Packing Bound

The main result in the section is a finite blocklength strong sphere-packing bound for c-q channels
with a polynomial prefactor (Theorem 8), improving upon a subexponential prefactor obtained in [17].
To establish this result, the key is to employ a hypothesis testing reduction and a sharp concentration
inequality [26, 35]. Our proof consists of three major steps: (i) reducing the channel coding problem to
binary hypothesis testing (Proposition 10); (ii) bounding its type-I error from below (Propositions 12 and
13); (iii) employing Theorem 6 to relate the derived bound to the strong sphere-packing exponent. We
discuss Propositions 10, 12, and 13 in Section 4.1, and prove the main result Theorem 8 in Section 4.2.

Theorem 8 (Refined Strong Sphere-Packing Bound of Constant Composition Codes). Consider a classical-
quantum channel W : X → S(H) and R ∈ (C0,W, CW). For every γ > 0, there exist an N0 ∈ N and
a constant A > 0 such that for all constant composition codes Cn of length n ≥ N0 with message size
|Cn| ≥ exp{nR}, we have

ǭ (Cn) ≥ A

n
1
2(1+|E′

sp(R)|+γ)
exp {−nEsp(R)} .

The following corollary generalizes the refined sphere-packing bound for constant composition codes to
arbitrary codes via a standard argument [7, p. 95].

Corollary 9 (Refined Strong Sphere-Packing Bound for General Codes). Consider a classical-quantum
channel W : X → S(H) and R ∈ (C0,W, CW). There exist some t > 1/2 and N0 ∈ N such that for all
codes of length n ≥ N0, we have

ǫ∗ (n,R) ≥ n−t exp {−nEsp(R)} .

Proofs for Theorem 8 and Corollary 9 are provided in Section 4.2.

Theorem 8 yields

log
1

ǭ(Cn)
≤ nEsp(R) +

1

2

(
1 +

∣∣E′
sp(R)

∣∣) log n + o(log n),

where the term 1
2

(
1 +

∣∣E′
sp(R)

∣∣) can be viewed as a second-order term (see the discussions in [65, Section

4.4]). On the other hand, for the case of classical non-singular channels8, it was shown that [24, Theorem
3.6], for all constant composition codes Cn and rate R ∈ (Rcrit, CW),

log
1

ǭ(Cn)
≥ nEr(R) +

1

2

(
1 +

∣∣E′
r(R)

∣∣) log n + Ω(1),

where Er(R) is the random coding exponent, and Rcrit is the critical rate such that Er(R) = Esp(R) for all
R ≥ Rcrit [6, p. 160], [15]. Hence our result, Theorem 8, matches the achievability up to the logarithmic
order. We note that whether the third order o(log n) in Eq. (4) can be improved to O(1) is still unknown
even for the classical case.

8For classical singular channels, one has log 1
ǭ(Cn)

≥ nEr(R) + 1
2
log n + Ω(1) [24]. Further, it was conjectured that [66]

that log 1
ǭ(Cn)

≤ nEsp(R) + 1
2
log n+ o(log n), for all asymmetric classical singular channels and constant composition codes.

However, such a result remains open.
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4.1. Converse Bounds for Quantum Hypothesis Testing. This section contains the hypothesis
testing reduction method (Proposition 10) and two converse bounds for the optimal type-I error of a
composition (Propositions 12 and 13). First of all, Proposition 10 allows us to lower bound the optimal
error probability of a code to the optimal type-I error in quantum hypothesis testing. To further lower
bound the type-I error, we prove a converse Hoeffding bound for a binary hypothesis testing of product
states in Theorem 11. Choosing the hypotheses in Theorem 11 as a channel output state of a codeword
against an n-copy state and employing a uniform continuity (Proposition 18 in Appendix C), we estab-
lish a finite blocklength Chebyshev-type converse bound (Proposition 12), and a sharp converse bound
(Proposition 13), respectively. In Section 4.2, we will combine these two bounds to prove the desired
sphere-packing bound (Theorem 8).

We remark that the converse bounds (Propositions 12 and 13) for fixed composition of codewords hold
for all sufficiently large n. Moreover, we call such bounds finite blocklength bounds because the blocklength
n only depends on the channel W, coding rate R, and |X |. The independence of the composition of codes
allows us to establish finite blocklength sphere-packing bounds. The key ingredient here is to prove a
non-trivial uniform continuity property in the large deviation regime (Appendix C).

In the following, we show Proposition 10 and its proof. We note that Proposition 10 below is similar
to the meta-converse in Ref. [67]. However, the idea dates back to Fano [4], Shannon-Gallager-Berlekamp
[7], and Blahut [10, 64].

Proposition 10. For any classical-quantum channel W : X → S(H) and any code C with message size
M , it follows that

ǫmax (C) ≥ max
σ∈S(H)

min
x∈C

α̂ 1
M

(Wx‖σ) .

Proof. Let x(m) be the codeword encoding the message m ∈ {1, . . . ,M}. Define a binary hypothesis
testing problem:

H0 : Wx,

H1 : σ,

where σ ∈ S (H) can be viewed as a dummy channel output. Since
∑M

m=1 β (Πm;σ) = 1 for any POVM
Π = {Π1, . . . ,ΠM}, and β (Πm;σ) ≥ 0 for every m ∈ M, there must exist a message m ∈ M for any code
C such that β (Πm;σ) ≤ 1

M . Fix such x := x (m). Then

ǫmax (C) ≥ ǫm (C) = α (Πm;Wx) ≥ α̂ 1
M

(Wx‖σ) ≥ min
x∈C

α̂ 1
M

(Wx‖σ) . (32)

Since the above inequality (4.1) holds for every σ ∈ S (H), it follows that

ǫmax (C) ≥ max
σ∈S(H)

min
x∈C

α̂ 1
M

(Wx‖σ) .

�

Before showing the following converse Hoeffding bound, Theorem 11, we first introduce some notation.
Let

H0 : ρn = ρ1 ⊗ · · · ⊗ ρn; (33)

H1 : σn = σ1 ⊗ · · · ⊗ σn,
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where ρx, σx ∈ S(H) for x ∈ [n]. Further, denote by (pi, qi) be the Nussbaum-Szko la distribution of
(ρi, σi) given in Section 2.3. For α ∈ [0, 1], define

Bα(ρn‖σn) :=
1

n

∑

x∈[n]
Evx,α

[
log

px
qx

]
;

Vα(ρn‖σn) :=
1

n

∑

x∈[n]
Evx,α

[∣∣∣∣log
px
qx

− Evx,α

[
log

px
qx

]∣∣∣∣
2
]

;

Tα(ρn‖σn) :=
1

n

∑

x∈[n]
Evx,α

[∣∣∣∣log
px
qx

− Evx,α

[
log

px
qx

]∣∣∣∣
3
]
,

where (px, qx) is the Nussbaum-Szko la distribution of (ρx, σx) for x ∈ [n], and the tilted distribution is

vx,α(i, j) :=
pαx(i, j)q1−α

x (i, j)∑
ı, p

α
x(ı, )q1−α

x (ı, )
, α ∈ [0, 1].

With the above notation, we have the following converse bound.

Theorem 11 (Sharp Converse Hoeffding Bounds for Quantum Hypothesis Testing). Consider a binary
hypothesis testing: H0 : ρn =

⊗n
i=1 ρi and H1 : σn =

⊗n
i=1 σi given in Eq. (4.1) with ρn ≪ σn. Let r ∈ R

be such that there exists an α⋆ ∈ (0, 1] such that

φn (r|ρn‖σn) =
1 − α⋆

α⋆

(
1

n
Dα⋆ (ρn‖σn) − r

)
.

Then, we have the following: (i) for any test Qn, either

α (Qn; ρn) ≥ 1

8
exp

{
−nφn(r|ρn‖σn) − α⋆

√
2nVα⋆(ρn‖σn)

}
, (34)

or

β (Qn;σn) ≥ 1

8
exp

{
−nr − (1 − α⋆)

√
2nVα⋆(ρn‖σn)

}
(35)

holds; (ii) if α⋆ ∈ (0, 1), then for any test Qn, either

α (Qn; ρn) ≥ e−nφn(r|ρn‖σn) e−Kn(α⋆)

2
√

2nπVα⋆(ρn‖σn)

(
1 − 1 + (1 + Kn(α⋆)2)

2
√

nVα⋆(ρn‖σn)

)
, (36)

or

β (Qn;σn) ≥ e−nr e−Kn(α⋆)

2
√

2nπVα⋆(ρn‖σn)

(
1 − 1 + (1 + Kn(α⋆)2)

2
√

nVα⋆(ρn‖σn)

)
(37)

holds. Here, Kn(α) := 15
√
2πTα(ρn‖σn)
Vα(ρn‖σn) ∈ R>0 and Vα⋆(ρn‖σn) ∈ R>0.

Proof. The first claim directly follows from Dailai’s result in [17, Theorem 4]. Before proceeding, we need
to introduce some notation. Let p̃n :=

⊗n
i=1 p̃i and q̃n :=

⊗n
i=1 q̃i, where (p̃i, q̃i) are the Nussbaum-Szko la

distributions [62] of (ρi, σi) for i ∈ [n]. Since Dα(ρi‖σi) = Dα(p̃i‖q̃i), for all α ∈ (0, 1), we shorthand

φn(r) := φn (r|ρn‖σn) = φn(r|p̃n‖q̃n) ∈ R>0.

Applying Nagaoka’s argument [63], for any 0 ≤ Qn ≤ 1 with δ = exp{nr − nφn(r)}, we have

α (Qn; ρn) + δβ (Qn;σn) ≥ 1

2

(
α
(
Ũ; p̃n

)
+ enr−nφn(r)β

(
Ũ; q̃n

))
, (38)

where α
(
Ũ; p̃n

)
:=
∑

ω/∈Ũ p̃n(ω), β
(
Ũ; q̃n

)
:=
∑

ω∈Ũ q̃n(ω), and

Ũ :=
{
ω : p̃n(ω)enφn(r) > q̃n(ω)enr

}
.
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Now, we further define the non-normalized distributions pn :=
⊗n

i=1 pi and qn :=
⊗n

i=1 qi, where pi :=
p̃iq

0
i , qi := q̃ip

0
i , for every i ∈ [n]. Namely, we restrict (pn, qn) to be in the joint support of p̃n and q̃n.

Letting

U :=
{
ω : pn(ω)enφn(r) > qn(ω)enr

}
,

it is not hard to see that

α (U; pn) = α
(
Ũ; p̃n

)
;

β (U; qn) = β
(
Ũ; q̃n

)

φn(r) = φn(r|pn‖qn).

Hence, we focus on the pair (pn, qn) and the decision region U onwards.
Let

Λ0,n(α) :=
1

n

∑

i∈[n]
Λ0,i(α), Λ0,i(α) := logEpi

[
e
(1−α) log

qi
pi

]
;

Λ1,n(α) :=
1

n

∑

i∈[n]
Λ0,i(α), Λ1,i(α) := logEqi

[
e
(1−α) log

pi
qi

]
.

Since pn and qn have the same support, both Λ0,n(α) and Λ1,n(α) are smooth functions in α ∈ R. One
can the calculate their derivatives as follows:

Λ′
0,n(α) =

1

n

∑

i∈[n]
Evi,α

[
log

pi
qi

]
; Λ′

1,n(α) =
1

n

∑

i∈[n]
Evi,1−α

[
log

qi
pi

]

Λ′′
0,n(α) =

1

n

∑

i∈[n]
Varvi,α

[
log

pi
qi

]
; Λ′′

1,n(α) =
1

n

∑

i∈[n]
Varvi,1−α

[
log

qi
pi

]
,

T0,n(α) :=
1

n

∑

i∈[n]
Evi,α

[∣∣∣∣log
pi
qi

− Λ′
0,n(α)

∣∣∣∣
3
]

;

T1,n(α) :=
1

n

∑

i∈[n]
Evi,1−α

[∣∣∣∣log
qi
pi

− Λ′
1,n(α)

∣∣∣∣
3
]
,

where we denote the tilted distribution by

vi,α(ω) :=
pαi (ω)q1−α

i (ω)∑
ω̄ pαi (ω̄)q1−α

i (ω̄)
, α ∈ [0, 1].

Further, it is not hard to verify that for all α ∈ [0, 1].

Λ0,n(α) = Λ1,n(1 − α); Λ′
0,n(α) = −Λ′

1,n(1 − α);

Λ′′
0,n(α) = Λ′′

1,n(1 − α); T0,n(α) = T1,n(1 − α).
(39)

Next, we define the Lengendre-Fenchel transform:

Λ∗
j,n(z) := sup

α∈R
{(1 − α)z − Λj,n(α)} , j ∈ {0, 1}.

The quantities Λ∗
j,n(z) would appear in the lower bounds of α (Qn; ρn) and β (Qn;σn) as shown later.

Now, we are ready to show the first claim. Ref. [17, Theorem 4] states that for any test Qn, either

α (Qn; ρn) ≥ 1

8
exp

{
−n
[
α⋆Λ′

0,n (α⋆) − Λ0,n (α⋆)
]
− α⋆

√
2nVα⋆ (ρn‖σn)

}
,

or

β (Qn;σn) ≥ 1

8
exp

{
−n
[
−(1 − α⋆)Λ′

0,n (α⋆) + Λ0,n (α⋆)
]
− (1 − α⋆)

√
2nVα⋆ (ρn‖σn)

}
,
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holds. By Eqs. (4.1), and (A), (A) in Appendix A, we have

φn(r) = α⋆Λ′
0,n (α⋆) − Λ0,n (α⋆) ;

r = −(1 − α⋆)Λ′
0,n (α⋆) + Λ0,n (α⋆) ,

which proves the first claim.
To show the second claim, we will employ Bahadur-Ranga Rao’s concentration inequality, Theorem

17, in Appendix B, to further lower bound α (U; pn) and β (U; qn). Letting Zi = log qi
pi

with probability

measure µi = pi, and z = r − φn(r) in Theorem 17, the Bahadur-Randga Rao’s inequality gives

α (U; pn) :=
∑

ω/∈U
pn(ω)

= Pr

{
1

n

n∑

i=1

Zi ≥ φn(r) − r

}

≥ exp
{
−nΛ∗

0,n (φn(r) − r)
} e−Kn(α⋆)

√
2πΛ′′

n(α⋆)


1 − 1 + (1 + Kn(α⋆)2)

2
√

Λ′′
0,n(α⋆)


 ,

where

Kn(α) := 15
√

2π
Tα(ρn‖σn)

Vα(ρn‖σn)
= 15

√
2
T0,n(α)

Λ′′
0,n(α)

.

Moreover, Lemma 16 in Appendix A relates the Legendre-Fenchel transform Λ∗
j,P

x
n
(z) to the desired error

exponent function φn(r):

Λ′′
0,n(α⋆) > 0;

Λ∗
0,n (φn(r) − r) = φn(r);

Λ∗
1,n (r − φn(r)) = r.

Hence, we have

α (U; pn) ≥ exp {−nφn(r)} e−Kn(α⋆)

√
2πΛ′′

0,n(α⋆)


1 − 1 + (1 + Kn(α⋆)2)

2
√

Λ′′
0,n(α⋆)


 . (40)

Similarly, applying Theorem 17 with Zi = log pi
qi

, µi = qi, and z = φn(r) − r yields

β (U; qn) :=
∑

ω∈U
qn(ω)

= Pr

{
1

n

n∑

i=1

Zi ≥ φn(r) − r

}

≥ exp
{
−nΛ∗

1,n (r − φn(r))
} e−Kn(1−α⋆)

√
2πΛ′′

1,n(1 − α⋆)


1 − 1 + (1 + Kn(1 − α⋆)2)

2
√

Λ′′
1,n(1 − α⋆)




= exp {−nr} e−Kn(1−α⋆)

√
2πΛ′′

1,n(1 − α⋆)


1 − 1 + (1 + Kn(1 − α⋆)2)

2
√

Λ′′
1,n(1 − α⋆)




= exp {−nr} e−Kn(α⋆)

√
2πΛ′′

0,n(α⋆)


1 − 1 + (1 + Kn(α⋆)2)

2
√

Λ′′
0,n(α⋆)


 , . (41)

where the last equality follows from Eq. (4.1). Hence, by Eqs. (4.1), (4.1), and (4.1), we conclude our
claim. �
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In the following Proposition, we will prove a finite blocklength bound of a composition via Eqs. (11)
and (11) in the above Theorem 11. The difficulty of deriving a finite blocklength result is that one needs
to obtain some universal coefficients independent of all possible compositions. Our core technique here is
a uniform continuity property, Proposition 18, which will be presented in Appendix C.

The following result is essentially a Chebyshev-type bound with prefactor exp{O(
√
n)}. We will employ

it to lower bound the error of “bad sequences” that yield a inferior error exponent in Section 4.2.

Proposition 12 (Chebyshev-Type Bound for a Fixed Composition). Let W : X → S(H) be a classical-
quantum channel. Fix R ∈ (C0,W, CW). Consider a sequence xn ∈ X n Then, for every c > 0, there exist
a state σ⋆ ∈ S(H), an integer N0 ∈ N, independent of the sequences xn and σ, such that for all n ≥ N0

we have

α̂c exp{−nR}
(
W⊗n

x
n ‖(σ⋆)⊗n

)
≥ exp

{
−A

√
n− nE(2)

sp (R,Px
n)
}
,

where A ∈ R>0 is a finite positive constant depending on R and W.

Proof. Fix an arbitrary R ∈
(
C0,W, R

)
. Let γn := a

√
n

2n + log 8−log c
n and Rn := R− γn for some a ∈ R. The

choice of a and the rate back-off term γn will become evident later. Let N1 ∈ N such that Rn ∈ [R,R]
for all n ≥ N1. Subsequently, we choose such n ≥ N1 onwards.

We choose the optimal output state as

σ⋆ = arg min
σ∈S(H)

sup
0<α≤1

1 − α

α
(Dα (W‖σ|Px

n) −Rn) .

Let pn :=
⊗n

i=1 pxi and qn :=
⊗n

i=1 qxi , where (pxi , qxi) are Nussbaum-Szko la distributions [62] of
(Wxi , σ

⋆
R,P ) for every i ∈ [n]. Since Dα(Wxi‖σ⋆) = Dα(pxi‖qxi), for α ∈ (0, 1], again we shorthand

for all Rn ∈ [R,R],

φn(Rn) := φn

(
Rn|W⊗n

x
n ‖(σ⋆)⊗n

)
= φn(Rn|pn‖qn) = E(2)

sp (Rn, Px
n) , (42)

where the last equality in Eq. (4.1) follows from the saddle-point property, item (a) in Proposition 3.
Moreover, item (b) in Proposition 3 implies that the state σ⋆ dominants all the states: σ⋆ ≫ Wx, for all
x ∈ supp(Px

n), Hence, we have pn ≪ qn. This guarantees that Vα (Wx‖σ⋆) is finite for all α ∈ [0, 1] and
all x ∈ supp(Px

n).
Theorem 11 implies that for any test Qn either

α
(
Qn;W⊗n

x
n

)
≥ 1

8
exp

{
−nφn(Rn) − α⋆

Rn,Px
n

√
2nVα⋆

Rn,P
x
n

(Px
n ,W)

}
, (43)

or

β
(
Qn; (σ⋆)⊗n

)
≥ 1

8
exp

{
−nRn − (1 − α⋆

Rn,Px
n )
√

2nVα⋆
Rn,P

(Px
n ,W)

}
,

where α⋆
r,P

x
n
∈ (0, 1) satisfies, for all r ∈ [R,R],

φn(r) =
1 − α⋆

r,P
x
n

α⋆
r,P

x
n

(
I
(2)
α⋆
r,P

x
n

(Px
n ,W) − r

)
.

and we define

Vα(P,W) :=
∑

x∈X
P (x)Evx,α

[∣∣∣∣log
px
qx

− Evx,α

[
log

px
qx

]∣∣∣∣
2
]
,

vx,α(ω) :=
pαx(ω)q1−α

x (ω)∑
ω̄ pαx(ω̄)q1−α

x (ω̄)
.

Now, we will introduce a constant independent of xn to obtain a finite blocklength lower bound for
α̂c exp{−nR}(W⊗n

x
n ‖(σ⋆)⊗n). Let

Vmax(R) := max
(r,P )∈[R,R]×P(X )

Vα⋆
r,P

(P,W). (44)
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Recall that Vα (Px
n ,W) is finite for all α ∈ [0, 1]. Proposition 18 in Appendix C implies that Vα⋆

r,P
(P,W) is

joint continuous on [R,R]×P(X ). Further, since P(X ) is compact, the quantity in Eq. (4.1) is well-defined
and finite. Therefore,

β
(
Qn; (σ⋆)⊗n

)
≥ 1

8
exp

{
−nRn − (1 − α⋆

Rn,Px
n )
√

2nVα⋆
Rn,P

x
n

(Px
n ,W)

}

≥ 1

8
exp

{
−nRn −

√
2nVmax(R)

}

= c exp {−nR} , (45)

where we choose a :=
√

2Vmax(R) in the rate back-off term γn := a
√
n

2n + log 8−log c
n .

Next, Eqs. (4.1) and (4.1) yield

α̂c exp{−nR}(W⊗n
x
n ‖(σ⋆)⊗n) ≥ 1

8
exp

{
−nφn(Rn) − α⋆

Rn,Px
n

√
2nVα⋆

Rn,P
x
n

(Px
n ,W)

}

≥ 1

8
exp

{
−
√

2nVmax(R) − nE
(2)
sp (R− γn, Px

n)

}
. (46)

Further, the convexity and the monotone decreases of r 7→ E
(2)
sp (r, P ) given in Proposition 4-(a) shows

that

E(2)
sp (R− γn, Px

n) ≤ E(2)
sp (R,Px

n) − γn
∂E

(2)
sp (r, Px

n )

∂r

∣∣∣∣∣
r=R

,

≤ E(2)
sp (R,Px

n) − γn
∂E

(2)
sp (r, Px

n )

∂r

∣∣∣∣∣
r=R

. (47)

Next, we denote

Υ := max
P∈P(X )

∣∣∣∣∣∣
∂E

(2)
sp (r, P )

∂r

∣∣∣∣∣
r=R

∣∣∣∣∣∣
. (48)

Observe that Υ ∈ R≥0 due to R > C0,W and item (d) of Proposition 3. Then, Eqs. (4.1), (4.1), and (4.1)
lead to

α̂c exp{−nR}
(
W⊗n

x
n ‖(σ⋆)⊗n

)
≥ exp

{
− log 8 −

√
2nVmax(R) − γnΥ − nE(2)

sp (R,Px
n)
}
.

Since γn = O(1/
√
n), for any A >

√
2Vmax(R), there exists a sufficiently large N2 ∈ N such that for all

n ≥ N2.

log 8 +
√

2nVmax(R) + γnΥ ≤ A
√
n.

By letting N0 := max{N1, N2} completes the proof. �

The following Proposition 13 is a sharp converse bound with polynomial prefactors obtained from
Eqs. (11) and (11) in Theorem 11, which in turn were proved by employing Bahadur-Ranga Rao’s inequal-
ity (see Appendix B). Similar to Proposition 12 presented before, we will employ the uniform continuity,
Proposition 18, given in Appendix C to prove Proposition 13. In Section 4.2, we will exploit this result
to bound the error of “good sequences” with a polynomial prefactor.

Proposition 13 (Sharp Converse Bound for a Fixed Composition). Let W : X → S(H) be a classical-
quantum channel Fix R ∈ (C0,W, CW). Consider a sequence xn ∈ X n satisfying

E(2)
sp (R,Px

n) ∈ [ν,+∞) (49)

for some constant ν > 0. Then, for every c > 0, there exist a state σ⋆ ∈ S(H), an integer N0 ∈ N,
independent of the sequences xn and σ, such that for all n ≥ N0 we have

α̂c exp{−nR}
(
W⊗n

x
n ‖(σ⋆)⊗n

)
≥ A

n
1
2

(

1+s⋆R,P
x
n

) exp
{
−nE(2)

sp (R,Px
n)
}
,
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where s⋆R,P := − ∂E
(2)
sp (r,P )
∂r

∣∣∣∣
r=R

, and A ∈ R>0 is a finite positive constant depending on R, ν and W.

Proof. Fix an arbitrary R ∈
(
C0,W, R

)
. Let γn := logn

2n + x
n and Rn := R− γn for some x ∈ R. The choice

of x and the rate back-off term γn will become evident later. Let N1 ∈ N such that Rn ∈ [R,R] for all
n ≥ N1. Subsequently, we choose such n ≥ N1 onwards.

We choose the optimal output state as

σ⋆ = arg min
σ∈S(H)

sup
0<α≤1

1 − α

α
(Dα (W‖σ|Px

n) −Rn) .

as in the proof of Proposition 12. Let pn :=
⊗n

i=1 pxi and qn :=
⊗n

i=1 qxi , where (pxi , qxi) are Nussbaum-
Szko la distributions [62] of (Wxi , σ

⋆) for every i ∈ [n]. Since Dα(Wxi‖σ⋆) = Dα(pxi‖qxi), for α ∈ (0, 1],
again we shorthand for all Rn ∈ [R,R],

φn(Rn) := φn

(
Rn|W⊗n

x
n ‖(σ⋆)⊗n

)
= φn(Rn|pn‖qn) = E(2)

sp (Rn, Px
n) , (50)

where the last equality in Eq. (4.1) follows from the saddle-point property, item (a) in Proposition 3.
Moreover, item (b) in Proposition 3 implies that the state σ⋆ dominants all the states: σ⋆ ≫ Wx, for all
x ∈ supp(Px

n), Hence, we have pn ≪ qn. Without loss of generality, we set zero all elements of qxi that
do not lie in the support of pxi , i.e. qxi(ω) = 0, ω 6∈ supp(pxi), i ∈ [n], because those elements do not
contribute in φn(Rn).

Next, we define

Vα(P,W) :=
∑

x∈X
P (x)Evx,α

[∣∣∣∣log
px
qx

− Evx,α

[
log

px
qx

]∣∣∣∣
2
]

;

Tα(P,W) :=
∑

x∈X
P (x)Evx,α

[∣∣∣∣log
px
qx

− Evx,α

[
log

px
qx

]∣∣∣∣
3
]
,

vx,α(ω) :=
pαx(ω)q1−α

x (ω)∑
ω̄ pαx(ω̄)q1−α

x (ω̄)
,

Applying Theorem 11, we have for any test Qn,

α
(
Qn;W⊗n

x
n

)
≥ e−nφn(Rn) e

−Kn(α⋆
Rn,P

x
n
)

2
√

2nπVα⋆
Rn,P

x
n

(Px
n ,W)


1 −

1 + (1 + Kn(α⋆
Rn,Px

n
)2)

2
√

nVα⋆
Rn,P

x
n

(Px
n ,W)


 (51)

β
(
Qn; (σ⋆)⊗n

)
≥ e−nRn

e
−Kn(α⋆

Rn,P
x
n
)

2
√

2nπVα⋆
Rn,P

x
n

(Px
n ,W)


1 −

1 + (1 + Kn(α⋆
Rn,Px

n
)2)

2
√

nVα⋆
Rn,P

x
n

(Px
n ,W)


 , (52)

where Kn(α) := 15
√

2Tα(Px
n ,W)

Vα(Px
n ,W) , and α⋆

r,P
x
n
∈ (0, 1) satisfies, for all r ∈ [R,R],

φn(r) =
1 − α⋆

r,P
x
n

α⋆
r,P

x
n

(
I
(2)
α⋆
r,P

x
n

(Px
n ,W) − r

)
.

In the following, we will remove the dependency of Rn and Px
n in V(·)(·) and Kn(·). Define the following

quantities:

Vmax(R, ν) := max
(r,P )∈[R,R]×PR,ν(X )

Vα⋆
r,P

(P,W) ; (53)

Vmin(R, ν) := min
(r,P )∈[R,R]×PR,ν(X )

Vα⋆
r,P

(P,W) ; (54)

Kmax(R, ν) := 15
√

2π max
(r,P )∈[R,R]×PR,ν(X )

Tα⋆
r,P

(P,W)

Vα⋆
r,P

(P,W)
, (55)
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where

PR,ν(X ) :=
{
P ∈ P(X ) : ν ≤ E(2)

sp (R,Px
n) ≤ Esp(R) < +∞

}
(56)

is a compact set owing to the continuity of r 7→ E
(2)
sp (r, P ) given in Proposition 4. Also, Proposition 18

in Appendix C shows that the objective functions in Eqs. (4.1), (4.1), and (4.1) are continuous functions
on P(X ), which guarantees the maximization and minimization in the above definitions are well-defined
and finite. Further, the quantity Vmin(R, ν) is bounded away from zero because of the positivity given in
Theorem 11.

Now, we are ready to derive the lower bounds for α̂c exp{−nR}
(
W⊗n

x
n ‖(σ⋆)⊗n

)
. Let N2 ∈ N be sufficiently

large such that for all n ≥ N2,

√
n ≥ 1 + (1 + Kmax(R, ν))2√

Vmin(R, ν)
.

Then, Eqs. (4.1) and (4.1) give

α
(
Qn;W⊗n

x
n

)
≥ A(R, ν)√

n
exp {−nφn(Rn)} ;

β
(
Qn; (σ⋆)⊗n

)
≥ A(R, ν)√

n
exp {−nRn} ,

where

A(R, ν) :=
e−Kmax(R,ν)

4
√

2πVmax(R, ν)
.

Choosing x = − logA(R, ν) + log c in the rate back-off term γn = logn
2n + x

n , we have

β
(
Qn; (σ⋆)⊗n

)
≥ c exp{−nR}. (57)

Combining Eqs. (4.1) and (4.1) then yields

α̂c exp{−nR}
(
W⊗n

x
n ‖(σ⋆)⊗n

)
≥ A(R, ν)√

n
exp {−nφn (Rn)} =

A(R, ν)√
n

exp
{
−nE(2)

sp (R− γn, Px
n)
}
. (58)

It remains to remove the rate back-off term γn in Eq. (4.1). By Taylor’s theorem, one has

E(2)
sp (R− γn, Px

n) = E(2)
sp (R,Px

n) − γn
∂E

(2)
sp (r, Px

n)

∂r

∣∣∣∣∣
r=R

+
γ2n
2

∂2E
(2)
sp (r, Px

n)

∂r2

∣∣∣∣∣
r=R̄

, (59)

for some R̄ ∈ (R,R). Recalling item (d) in Lemma 16, one can show that

− ∂E
(2)
sp (r, Px

n)

∂r

∣∣∣∣∣
r=R

= s⋆R,P
x
n =

1 − α⋆
R,P

x
n

α⋆
R,P

x
n

∈ R>0,

∂2E
(2)
sp (r, Px

n)

∂r2

∣∣∣∣∣
r=R̄

=
(1 + s̄)3

Vα⋆
R̄,P

x
n

(Px
n ,W)

≤ (1 + s0)
3

Vmin(R, ν)
=: Υ ∈ R>0,

(60)

where

s̄ := − ∂E
(2)
sp (r, Px

n)

∂r

∣∣∣∣∣
r=R̄

≤ − ∂E
(2)
sp (r, Px

n)

∂r

∣∣∣∣∣
r=R

=: s0 ∈ R>0

by the monotone decreases of r 7→ E
(2)
sp (r, P ). Then, Eqs. (4.1), (4.1) and (4.1) lead to

α̂c exp{−nR}
(
W⊗n

x
n ‖(σ⋆)⊗n

)
≥ A(R, ν)√

n
exp

{
−nE(2)

sp (R,Px
n) − n

[
γn

(
s⋆R,P

x
n +

γn
2

Υ
)]}

=
A(R, ν)

n
1
2

(

1+s⋆R,P
x
n

) exp
{
−nE(2)

sp (R,Px
n) − ℓn

}
, (61)
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where we denote by

ℓn := −
(
s⋆R,P

x
n +

γn
2

Υ
)

logA(R, ν) +
γnΥ

4
log n.

Since s⋆R,P
x
n
∈ R>0 and γn log n = o(1), we choose a constant L ∈ R>0 and N3 ∈ N such that

ℓn ≤ L, ∀N ≥ N3. (62)

Hence, Eqs. (4.1) and (4.1) lead to

α̂c exp{−nR}
(
W⊗n

x
n ‖(σ⋆)⊗n

)
=

A(R, ν) exp{−L}

n
1
2

(

1+s⋆R,P
x
n

) exp
{
−nE(2)

sp (R,Px
n)
}
.

By letting N0 := max {N1, N2, N3} and A′ := A(R, ν) exp{−L}, we conclude the proof. �

4.2. Proofs of Theorem 8 and Corollary 9. We are ready to prove our main result—the refined
strong sphere-packing bound in Theorem 8 for constant composition codes and Corollary 9 for general
codes.

Proof of Theorem 8. Fix any rate C0,W < R < CW. First note that by Ref. [15, Proposition 10], we find

Esp(R) ∈ R>0.

By Proposition 10 and the standard expurgation method (see e.g. [7, p. 96], [10, Theorem 20], [64, p. 395]),
it holds for every constant composition code Cn with a common composition Px

n that

ǫ (Cn) ≥ 1

2
ǫmax

(
C′
n

)
≥ max

σ∈S(H)

1

2
α̂1/|C′

n|
(
W⊗n

x
n ‖σ⊗n

)

≥ max
σ∈S(H)

1

2
α̂2 exp{−nR}

(
W⊗n

x
n ‖σ⊗n

)
(63)

≥ 1

2
α̂2 exp{−nR}

(
W⊗n

x
n ‖(σ⋆)⊗n

)
, (64)

where C′
n is an expurgated code with message size |C′

n| = ⌈|Cn|/2⌉ ≥ 1
2 exp{nR}. Inequality (4.2) holds

because the map µ 7→ α̂µ is monotone decreasing. In the last line (4.2) we denote by σ⋆ a channel output
state that depends on the coding rate R and the composition Px

n , and σ⋆ will be chosen later.
In the following, we deal with sequences of inputs that will yield different lower bounds. Fix an arbitrary

δ ∈ (0, Esp(R)). Let ν := Esp(R) − δ > 0, and recall the definition in Eq. (4.1):

PR,ν(X ) :=
{
Px

n ∈ P(X ) : ν ≤ E(2)
sp (R,Px

n) ≤ Esp(R) < +∞
}
.

The set PR,ν(X ) ensures that the error exponents of the input sequences xn with composition Px
n ∈

PR,ν(X ) are close to the sphere-packing exponent Esp(R).
For sequences xn with Px

n /∈ PR,ν(X ), we infer that

Esp(R) − E(2)
sp (R,Px

n) = δ > 0.

We then apply the Chebyshev-type bound, Proposition 12, with c = 2 to obtain, for some κ ∈ R>0 and
∀Px

n /∈ PR,ν(X ),

α̂2 exp{−nR}
(
W⊗n

x
n ‖(σ⋆)⊗n

)
≥ exp

{
−κ

√
n− nE(2)

sp (R,Px
n)
}
, (65)

≥ exp
{
−κ

√
n− n [Esp (R) − δ]

}
, (66)

for all sufficiently large n, say n ≥ N1 ∈ N. The equality in Eq. (4.2) follows from the saddle-point
property, item (a) in Proposition 3, and the constants κ1, κ2 are positive and finite constants.

Next, we consider sequences xn with Px
n ∈ PR,ν(X ). Since such sequences satisfy Eq. (13), we apply

the sharp lower bound, Proposition 13, with c = 2 to obtain, ∀Px
n ∈ PR,ν(X ),

α̂2 exp{−nR}
(
W⊗n

x
n ‖(σ⋆)⊗n

)
≥ 2A

n
1
2

(

1+s⋆R,P
x
n

) exp
{
−nE(2)

sp (R,Px
n)
}
, (67)
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for all sufficiently large n, say n ≥ N2 ∈ N, and some A ∈ R>0. In the following, we will relate the term
s⋆R,P

x
n

in Eq. (4.2) to
∣∣E′

sp(R)
∣∣. The idea follows similar from [35, Eqs. (111)–(114)]. Let

P
⋆
R(X ) :=

{
P ∈ P(X ) : E(2)

sp (R,P ) = Esp(R)
}
,

Pθ(X ) :=

{
P ∈ PR,ν(X ) : min

Q∈P⋆
R(X )

‖P −Q‖1 ≥ θ

}
.

Since s⋆R,(·) is uniformly continuous on the compact set P ∈ PR,ν(X ) (see item (d) of Proposition 3), one

has

∀γ ∈ R>0, ∃f(γ) ∈ R>0, such that ∀P,Q ∈ PR,ν(X ), ‖P −Q‖1 < f(γ) ⇒
∣∣s⋆R,P − s⋆R,Q

∣∣ < γ. (68)

By choosing γ ∈ R>0 that satisfies Eq. (4.2), it follows that

s⋆R,P
x
n ≤

∣∣E′
sp(R)

∣∣+ γ, ∀Px
n ∈ PR,ν(X )\Pf(γ)(X ). (69)

Hence, Eqs. (4.2) and (4.2) further lead to, ∀Px
n ∈ PR,ν(X )\Pf(γ)(X ),

α̂2 exp{−nR}
(
W⊗n

x
n ‖(σ⋆)⊗n

)
≥ 2A

n
1
2(1+|E′

sp(R)|+γ)
exp {−nEsp (R)} . (70)

For the case Px
n ∈ PR,ν(X ) ∩ Pf(γ)(X ), we have

Esp(R) − max
P∈Pf(γ)(X )

E(2)
sp (R,Px

n) =: δ′ > 0. (71)

Then, Eqs. (4.2) and (4.2) give, ∀Px
n ∈ PR,ν(X ) ∩ Pf(γ)(X ),

α̂2 exp{−nR}
(
W⊗n

x
n ‖(σ⋆)⊗n

)
≥ 2A

n
1
2

(

1+s⋆R,P
x
n

) exp
{
−n
[
Esp (R) − δ′

]}
. (72)

Finally, by comparing the bounds in Eqs. (4.2), (4.2) and (4.2), the first-order leading term in the
right-hand side of Eq. (4.2) decays faster than that of Eqs. (4.2) and (4.2). Thus, for sufficiently large n,
say n ≥ N3 ∈ N, we combine the bounds to obtain, for all compositions Px

n ∈ P(X ),

α̂2 exp{−nR}
(
W⊗n

x
n ‖(σ⋆)⊗n

)
≥ 2A

n
1
2(1+|E′

sp(R)|+γ)
exp {−nEsp (R)} . (73)

By combining Eqs. (4.2), (4.2), we conclude our result: for any γ > 0 and every n-blocklength constant
composition code Cn,

ǭ (Cn) ≥ A

n
1
2(1+|E′

sp(R)|+γ)
exp {−nEsp (R)} ,

for all sufficiently large n ≥ N0 := max {N1, N2, N3}. �

Proof of Corollary 9. For an n-blocklength code, there are at most
(n+|X |−1

|X |−1

)
< n|X | different composi-

tions. Hence, for any code with M = exp{nR} codewords, there exists some codewords M ′ of the same

composition such that M ′ ≥ M/n|X |. Denote by C′
n such constant composition codes with composition

Px
n .

Fix an arbitrary R ∈ (C0,W, R), and choose N1 be an integer such that R− |X |
n log n ≥ R for all n ≥ N1.

Consider such n ≥ N1 onwards. By following the similar steps in Theorem 8, we obtain

ǫ∗ (n,R) ≥ ǭ
(
C′
n

)
≥ A

n
1
2

(

1+s⋆
R,Pn

x

) exp

{
−nE(2)

sp

(
R− |X |

n
log n, Px

n

)}
, (74)

for all sufficiently large n, say n ≥ N2 ∈ N, and some s⋆R,P
x
n
∈ R>0. Let

Υ := max
P∈P(X ):E

(2)
sp (R̄,P )=Esp(R̄)

∣∣∣∣∣∣
∂E

(2)
sp (r, P )

∂r

∣∣∣∣∣
r=R

∣∣∣∣∣∣
.
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Then, item (a) in Proposition 4 implies that

E(2)
sp

(
R− |X |

n
log n, Px

n

)
≤ E(2)

sp (R,Px
n) + Υ · |X |

n
log n

≤ Esp(R) + Υ · |X |
n

log n, ∀n ≥ N2 (75)

Combining Eqs. (4.2) and (4.2) gives

ǫ∗ (n,R) ≥ A

n
1
2

(

1+s⋆R,P
x
n

)

+Υ|X |
exp {−nEsp(R)} , ∀n ≥ max{N1, N2}.

By choosing t ∈ R>0 such that n−t ≤ An
− 1

2

(

1+s⋆R,P
x
n

)

−Υ|X |
, and letting N0 := max{N1, N2}, we conclude

our claim. �

5. Symmetric Classical-Quantum Channels

In this section, we consider a symmetric c-q channels. By using the symmetric property of the channels,

we show that the uniform distribution, denoted by UX , achieves the maximum of E
(1)
sp (R, ·) and E

(2)
sp (R, ·).

Then, by choosing the optimal output state σ⋆
R = σ⋆

R,UX
, every input sequence in the codebook is a good

codeword and attains the sphere-packing exponent Esp(R). Hence, we can remove the assumption of
constant composition codes and apply Theorem 8 in Section 4 to obtain the optimal prefactor for the
sphere-packing bound (Theorem 14).

A c-q channel W : X → S(H) is symmetric if it satisfies

Wx := V x−1W1(V
†)x−1, ∀x ∈ X , (76)

where W1 ∈ S(H) is an arbitrary density operator, and V is a unitary operator on S(H) that satisfies
V †V = V V † = V |X | = 1H.

Theorem 14 (Exact Sphere-packing Bound for Symmetric Classical-Quantum Channels). For any rate
R ∈ (C0,W, CW), there exist A > 0 and N0 ∈ N such that for all codes Cn of length n ≥ N0 with message
size |Cn| ≥ exp{nR}, we have

ǫmax (Cn) ≥ A

n
1
2(1+|E′

sp(R)|) exp {−nEsp(R)} .

Proof. The proof consists of the following steps. First, we show that the distribution UX satisfies

E
(1)
sp (R,UX ) = E

(2)
sp (R,UX ) = Esp(R). Second, we show that E

(2)
sp (R,P ) = Esp(R) for all P ∈ P(X ),

which means that any codeword attains the sphere-packing exponent. Finally, we follow Theorem 8 to
complete the proof.

Fix any R ∈ (C0,W, CW). From the definition of the symmetric channels in Eq. (5), it is not hard to

verify that UXWα = V UXWαV † for all α ∈ (0, 1], where we denote by PW
α :=

∑
x∈X P (x)Wα

x for all
α ∈ (0, 1]. Hence, it follows that

Tr[Wα
x (UXW

α)
1−α
α ] = Tr[V x−1Wα

1 V
†x−1(UXW

α)
1−α
α ]

= Tr[Wα
1 (UXW

α)
1−α
α ] (77)

for all x ∈ X and α ∈ (0, 1]. Summing Eq. (5) over all x ∈ X and dividing by M yields that

Tr[Wα
x (UXW

α)
1−α
α ] = Tr[(UXW

α)
1
α ], (78)

for all x ∈ X and α ∈ (0, 1]. Recalling Proposition 15 below, the above equation shows that the distribution
UX indeed maximizes E0(s, P ), ∀s ∈ R≥0. Then we have

E(1)
sp (R,UX ) = sup

s≥0

{
max

P∈P(X )
E0(s, P ) − sR

}
= Esp(R).

Further, Jensen’s inequality shows that E
(2)
sp (R,UX ) ≥ E

(1)
sp (R,UX ) = Esp(R), and thus, E

(2)
sp (R,UX ) =

Esp(R).
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Next, let (α⋆
R, σ

⋆
R) be the saddle-point of FR,UX

(·, ·) (see Eq. (3)). One can observe from the definition

of E
(2)
sp and Eq. (5) that all the quantities Dα⋆

R
(Wx‖σ⋆

R), x ∈ X , are equal. By Proposition 2-(b), we
obtain

σ⋆
R =

(
UXWα⋆

R

)1/α⋆
R

Tr
[(
UXWα⋆

R

)1/α⋆
R

] ,

which, in turn, implies that

E(2)
sp (R,P ) = sup

α∈(0,1]
FR,P (α, σ⋆

R) = sup
s≥0

{E0(s, UX ) − sR} = Esp(R), ∀P ∈ P(X ). (79)

Further, we have

∣∣E′
sp(R)

∣∣ =
1 − α⋆

R

α⋆
R

=

∣∣∣∣∣
∂E

(2)
sp (R,P )

∂R

∣∣∣∣∣ , ∀P ∈ P(X ). (80)

Since Eqs. (5) and (5) indicates that every input sequence attains the sphere-packing exponent, we apply
the same arguments in the proof of Theorem 8 to conclude this theorem.

Proposition 15 ([14, Eq. (38)]). Let s ∈ R≥0 be arbitrary. The necessary and sufficient condition for
the distribution P ⋆ to maximize E0(s, P ) is

Tr

[
W 1/(1+s)

x ·
(
∑

x̄∈X
P ⋆(x̄)W

1/(1+s)
x̄

)s]
≥ Tr



(
∑

x̄∈X
P ⋆(x̄)W

1/(1+s)
x̄

)1+s

 , ∀x ∈ X

with equality if P ⋆(x) 6= 0.

�

6. Conclusions

In this paper, we provided an exposition of sphere-packing bounds in classical and quantum channel
coding. Unlike classical results, there are two different quantum sphere-packing exponents, one being
stronger than the other. We provided variational representations for these two exponents, and showed
that they are ordered by the Golden-Thompson inequality. Our proof strategy was inspired by Blahut’s
approach of hypothesis testing reduction [10] and Altuğ-Wagner’s technique in strong large deviation
theory [35]. Specifically, the prefactor of the bound, that is akin to the converse Hoeffding bound in
quantum hypothesis testing, can be improved by Bahadur-Ranga Rao’s sharp concentration inequality
[26, 27]. Consequently, we obtained a refined strong sphere-packing bound for c-q channels and constant

composition codes with a polynomial prefactor f(n) = n− 1
2(1+|E′

sp(R)|+o(1)). Moreover, the established
result matches the best known random coding bound (i.e. achievability) up to the logarithmic order
[35, 23, 24, 25]. For the case of general codes, the derived prefactor is of the polynomial order, i.e. f(n) =
O(n−t) for some t > 1/2. We are able to obtain the exact prefactor without the assumption of constant
composition codes for a class of symmetric c-q channels. We note that the exact prefactor for general
codes is still open even in the classical case. Finally, our refinement enables a moderate deviation analysis
in c-q channels [29] (see also [30]).
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the suggestion on the manuscript.

24



Appendix A. Lengendre-Fenchel Transform and Error-Exponent Functions

In this section, we will see that the Lengendre-Fenchel transform is closely related to the error-exponent
function of hypothesis testing and channel coding. Let Z be a random variable, and denote by Λ(α) :=

logE[e(1−α)Z ] the cumulant-genearating function. We call the following quantity the Lengendre-Fenchel
transform of Λ(α):

Λ∗(z) := sup
α∈R

{z(1 − α) − Λ(α)} .

This quantity arises in the exponent of various large deviation concentration inequalities [27]. By choosing
Z to be the log-likelihood of two distributions as will be shown later, the Lengendre-Fenchel transform
will determine how fast the errors in a hypothesis testing exponentially decay.

Consider the following binary hypotheses:

H0 : pn := px1 ⊗ px2 ⊗ · · · pxn ,

H1 : qn := qx1 ⊗ qx2 ⊗ · · · qxn ,
(81)

where pxi , qxi for xi ∈ X , i ∈ [n] are probability mass functions with pn ≪ qn. Given any r ≥ 0, recall
the definition of the error-exponent function in Eq. (2.2):

φn(r) = φn(r|pn‖qn) = sup
α∈(0,1]

{
1 − α

α

(
1

n
Dα (pn‖qn) − r

)}
. (82)

Without loss of generality, we set zero all elements of qxi that do not lie in the support of pxi , i.e. qxi(ω) = 0,
ω 6∈ supp(pxi), i ∈ [n], because those elements do not contribute in φn(r).

Let random variable Z0 = log qn

pn with probability distribution pn, and let Z1 = log pn

qn with probability

distribution qn. We denote their cumulant generating fucntions by

Λ0,n(α) :=
1

n
logEpn

[
e(1−α)Z0

]
=

1

n

∑

i∈[n]
Λ0,i(α),

Λ1,n(α) :=
1

n
logEqn

[
e(1−α)Z1

]
=

1

n

∑

i∈[i]
Λ1,i(α);

where

Λ0,i(α) := logEpi

[
e
(1−α) log

qi
pi

]
, Λ1,i(α) := logEqi

[
e
(1−α) log

pi
qi

]
.

Rewrite the right-hand side of Eq. (A) with α = 1
1+s , and observe that

∑

x∈X
Px

n(x)sD 1
1+s

(px‖qx) = −(1 + s)Λ0,P
x
n

(
1

1 + s

)

=: E
(2)
0 (s, Px

n). (83)

Then the error-exponent function in Eq. (A) can also be viewed as a Lengendre-Fenchel transform of

E
(2)
0 (s, Px

n):

φn(r) = sup
s≥0

{
E

(2)
0 (s, Px

n) − sr
}
. (84)

The following lemma relates φn(r) to Λ∗
j,n(z), the Lengendre-Fenchel transform of Eq. (A):

Λ∗
j(z) := sup

α∈R
{z(1 − α) − Λj,n(α)} , j ∈ {0, 1}. (85)

Such a transform plays a significant role in concentration inequalities, convex analysis, and large deviation
theory [27].

Lemma 16. Let pn and qn be described as above. Assume r > 1
nD0 (pn‖qn) and φn(r) > 0. The following

hold:

(a) Λ′′
0,n(α) > 0 for all α ∈ [0, 1].
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(b) Λ∗
0,n (φn(r) − r) = φn(r).

(c) Λ∗
1,n (r − φn(r)) = r.

(d) The optimizer α⋆ ∈ (0, 1) of Λ∗
0(z) in Eq. (A) is unique, and satisfies Λ′

0,P
x
n

(α⋆) = φn(r) − r. In

particular, one has α⋆ = s⋆

1+s⋆ and

s⋆ = −∂φn(r)

∂r
;

∂2φn(r)

∂r2
= −

(
∂2E

(2)
0 (s, Px

n)

∂s2

∣∣∣∣∣
s=s⋆

)−1

=
(1 + s⋆)3

Λ′′
0,P

x
n

(α⋆)
> 0.

Before proving Lemma 16, we will need the following partial derivatives with respect to t:

Λ′
0,i(α) = Evi,α

[
log

pi
qi

]
, Λ′

1,i(α) = Evi,1−α

[
log

qi
pi

]
;

Λ′′
0,i(α) = Varvi,α

[
log

pi
qi

]
, Λ′′

1,i(α) = Varvi,α

[
log

qi
pi

]
, (86)

where we denote the tilted distributions for every i ∈ [n] and t ∈ [0, 1] by

vi,α(ω) :=
pαi (ω)q1−α

i (ω)∑
ω̄ p

α
i (ω̄)q1−α

i (ω̄)
, ω̄ ∈ supp(pi).

Since pn and qn share the same support, the above derivatives are well-defined. Further, it is not hard to
verify that

Λ0,i(α) = Λ1,i(1 − α), Λ′
0,i(α) = −Λ′

1,i(1 − α), Λ′′
0,i(α) = Λ′′

1,i(1 − α). (87)

This lemma closely follows Ref. [35, Lemma 9]; however, the major difference is that we prove the
claim using φn(r|ρn‖σn) in Eq. (2.2) instead of the discrimination function: min {D (τ‖ρ) : D (τ‖σ) ≤ r}
in Eq. (3). This expression is crucial to obtaining the sphere-packing bound in Theorem 8 in the strong
from, cf. Eq. (1), instead of the weak form, cf. Eq. (1).

Proof of Lemma 16-(a). We will prove this statement by contradiction. Let α ∈ [0, 1], Assuming that
Λ′′
0,n(α) = 0, implies Λ′′

0,i(α) = 0, ∀i ∈ [n]. Recall from Eq. (A)

0 = Λ′′
0,i(α) = Varvi,α

[
log

pi
qi

]
,

which is equivalent to

pi(ω) = qi(ω) · eΛ
′
0,i(α), ∀ω ∈ supp(pi). (88)

Summing both sides of Eq. (A) over ω ∈ supp(pi) gives

1 = Tr
[
p0i qi

]
eΛ

′
0,i(α). (89)

Then, Eqs. (A) and (A) imply that

φn(r) = sup
0<α≤1

α− 1

α

(
r − 1

n
Dα (pn‖qn)

)

= sup
0<α≤1

α− 1

α


r +

1

n

∑

i∈[n]
log Tr

[
p0i qi

]



= 0, (90)

where Eq. (A) follows since r > 1
nD0(pn‖qn) by assumption. However, this contradicts with the assump-

tion φn(r) > 0. Hence, we conclude item (a). �
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Proof of Lemma 16-(b). In the following, we use the substitution s = 1−α
α for convenience.

Observe that E
(2)
0 (s, Px

n) − sr in Eq. (A) is strictly concave in s ∈ R≥0 since

∂2E
(2)
0 (s, Px

n)

∂s2
= − 1

(1 + s)3
Λ′′
0,P

x
n

(
s

1 + s

)
< 0, (91)

owing to Eqs. (A), (A), and item (a). Moreover, s = 0 cannot be an optimum in Eq. (A); otherwise, it
will violate the assumption φn(r) ≥ 0. Thus a unique maximizer s⋆ ∈ R>0 exists such that

φn(r) = −s⋆r + E
(2)
0 (s⋆, Px

n) (92)

=
1

1 + s⋆
Λ′
0,P

x
n

(
1

1 + s⋆

)
− Λ0,P

x
n

(
1

1 + s⋆

)
. (93)

where in the second equality we use Eq. (A) and

r =
∂E

(2)
0 (s, Px

n)

∂s

∣∣∣∣∣
s=s⋆

(94)

= − 1

1 + s⋆
Λ′
0,P

x
n

(
1

1 + s⋆

)
− Λ0,P

x
n

(
1

1 + s⋆

)
. (95)

Comparing Eq. (A) with (A) gives

Λ′
0,P

x
n

(
1

1 + s⋆

)
= φn(r) − r, (96)

which is exactly the optimum solution to Λ∗
0,P

x
n

(z) in Eq. (A) with

α⋆ =
1

1 + s⋆
∈ (0, 1), (97)

z = φn(r) − r.

Hence, we obtain

Λ∗
0,P

x
n (φn(r) − r) =

1

1 + s⋆
z − Λ0,P

x
n

(
1

1 + s⋆

)

=
1

1 + s⋆
(φn(r) − r) − Λ0,P

x
n

(
1

1 + s⋆

)

=
s⋆

1 + s⋆
Λ′
0,P

x
n

(
1

1 + s⋆

)
− Λ0,P

x
n

(
s⋆

1 + s⋆

)

= φn(r),

where Eqs. (A) and (A) are used in the third and last equalities. �

Proof of Lemma 16-(c). This proof follows from similar arguments in item (b) and Eq. (A). Eqs. (A) and
(A) lead to

Λ′
1,P

x
n

(
s⋆

1 + s⋆

)
= r − φn(r), (98)

which satisfies the optimum solution to Λ1,P
x
n (z) in Eq. (A) with α⋆ = s⋆

1+s⋆ ∈ (0, 1) and z = r − φn(r).
Then,

Λ∗
1,P

x
n (r − φn(r)) = α⋆z − Λ1,P

x
n (α⋆)

=
s⋆

1 + s⋆
(r − φn(r)) − Λ1,P

x
n

(
s⋆

1 + s⋆

)

=
1

1 + s⋆
Λ′
1,P

x
n

(
s⋆

1 + s⋆

)
− Λ1,P

x
n

(
s⋆

1 + s⋆

)

= r,
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where the third equality is due to Eq. (A), and the last equality follows from Eqs. (A) and (A).
�

Proof of Lemma 16-(d). The fact that a unique optimizer α⋆ ∈ (0, 1) exists such that Λ′
0,P

x
n

(α⋆) =

φn(r) − r follows directly from Eqs. (A), (A) and Λ′′
0,P

x
n

(α) > 0, for α ∈ [0, 1].

Moreover, Eqs. (A), (A), and (A) yield

−∂φn(r)

∂r
= s⋆,

∂2φn(r)

∂r2
= −∂s⋆

∂r
= −

(
∂2E

(2)
0 (s, Px

n)

∂s2

)−1
∣∣∣∣∣∣
s=s⋆

=
(1 + s⋆)3

Λ0,P
x
n

(
1

1+s⋆

) ,

which completes the claim in item (d). �

Appendix B. A Tight Large Deviation Inequality

Let (Zi)
n
i=1 be a sequence of independent, real-valued random variables with probability measures

(µi)
n
i=1. Let Λi(α) := logE

[
e(1−α)Zi

]
and define the Legendre-Fenchel transform of 1

n

∑n
i=1 Λi(·) to be:

Λ∗
n(z) := sup

α∈R

{
z(1 − α) − 1

n

n∑

i=1

Λi(α)

}
, ∀z ∈ R.

The so-called large deviation inequality means estimate the probability of sum of independent random
variables that deviate from the mean by a linear amount, i.e. Pr

{
1
n

∑n
i=1 Zi ≥ z

}
. Cramér’s theorem [27,

Chapter 2] states that

Pr

{
1

n

n∑

i=1

Zi ≥ z

}
= e−nΛ∗

n(z)+o(n), (99)

where eo(n) is some subexponential prefactor. The upper bound of Eq. (B) can be simply shown by the
exponent Chebyshev inequality:

Pr

{
1

n

n∑

i=1

Zi ≥ z

}
≤ e−nΛ∗

n(z),

while the lower bound is more involved. The Bahadur-Ranga Rao’s concentration inequality below then
provides a sharp lower bound and show that the subexponential prefactor can be improved to O( 1√

n
).

Let z ∈ R be such that ∃α⋆ ∈ (0, 1) and

Λ∗
n(z) = z(1 − α⋆) − 1

n

n∑

i=1

Λi(α
⋆). (100)

Define the probability measure µ̃i via

dµ̃i

dµi
(zi) := ezi(1−α⋆)−Λi(α⋆),

and let Z̄i := Zi − Eµ̃i [Zi]. Furthermore, define m2,n := 1
n

∑n
i=1 Varµ̃i

[
Z̄i

]
, m3,n := 1

n

∑n
i=1Eµ̃i

[∣∣Z̄i

∣∣3
]
,

and Kn(α⋆) :=
15

√
2πm3,n

m2,n
. With these definitions, we can now state the following sharp concentration

inequality for 1
n

∑n
i=1 Zi:

Theorem 17 (Bahadur-Ranga Rao’s Concentration Inequality [35, Proposition 5], [26]). Provided Eq. (B)
holds, then

Pr

{
1

n

n∑

i=1

Zi ≥ z

}
≥ e−nΛ∗

n(z)
e−Kn(α⋆)

2
√

2nπm2,n

(
1 − 1 + (1 + Kn(α⋆))2

2
√

2nm2,n

)
.
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Appendix C. Uniform Continuity

The goal of this section is to present various uniform continuity properties, which play a significant
role in proving finite blocklength converse bounds (see Propositions 12 and 13). Let r ∈ (C0,W, C1,W)

throughout this section. For any P ∈ Pr(X ) :=
{
P ∈ P(X ) : E

(2)
sp (r, P ) > 0

}
, we denote by (α⋆

r,P , σ
⋆
r,P ) ∈

(0, 1) × S(H) the unique saddle-point of F (r, P ) (see Proposition 3-(c)). For P /∈ Pr(X ), note that (1, σ)
is a saddle-point of F (r, P ) for all σ ∈ S(H). We thus choose (1, PW) to be the saddle-point of F (r, P )
for P /∈ Pr(X ), subsequently. Define

Br(P,W) :=
∑

x∈X
P (x)Evx,α⋆

r,P

[
log

px
qx

]
; (101)

Vr(P,W) :=
∑

x∈X
P (x)Evx,α⋆

r,P

[∣∣∣∣log
px
qx

− Evx,α⋆
r,P

[
log

px
qx

]∣∣∣∣
2
]

; (102)

Tr(P,W) :=
∑

x∈X
P (x)Evx,α⋆

r,P

[∣∣∣∣log
px
qx

− Evx,α⋆
r,P

[
log

px
qx

]∣∣∣∣
3
]
, (103)

where (px, qx) is the Nussbaum-Szko la distribution [62] of (Wx, σ
⋆
r,P ), and the tilted distribution is

vx,α(i, j) :=
pαx(i, j)q1−α

x (i, j)∑
ı, p

α
x(ı, )q1−α

x (ı, )
, α ∈ [0, 1].

Inspired by Ref. [67, Lemma 62], we show the following continuity property, which are crucial for
establishing the large deviation bounds in finite blocklength regime.

Proposition 18 (Uniform Continuity). Fix R ∈ (C0,W, C1,W). For every R ∈ (C0,W, R], Br(P,W),
Vr(P,W), and Tr(P,W) are jointly continuous functions of (r, P ) on [R,R] × P(X ).

Remark C.1. When R ≥ I
(2)
1 (P,W) = I(P,W), Proposition 4-(a) implies that (α⋆

R,P , σ
⋆
R,P ) = (1, PW).

In this case, VR(P,W) equals to the information variance V (P ) introduced by Tomamichel and Tan [48,
Appendix B.3], and so does TR(P,W) = T (P ). The established Proposition 18 covers the special case of
the continuities of V (P ) and T (P ) in P , and provides a rigorous proof for [48, Lemma 29]. We emphasize
that such a continuity property is a critical step to ensure that the third-order term in the asymptotic
expansion of coding rate (see e.g. [67], [48]) independent of all codeword sequences.

Proof of Proposition 18. Inspecting the definitions given in Eqs. (C), (C), and (C). it is not hard to see
that the quantities Br(P,W), Vr(P,W), and Tr(P,W) are sums of finitely many terms. We thus prove that
each term is a continuous function in (r, P ). In the following, we first show the continuity of Br(P,W).
The proof for Vr(P,W) and Tr(P,W) follow similarly.

Fix an arbitrary x ∈ X onwards. Let (Rk, Pk)k∈N be an arbitrary sequence such that (Rk, Pk) ∈
[R,R] × P(X ), and limk→+∞(Rk, Pk) = (R0, P0) ∈ [R,R] × P(X ). To ease the burden of notation, we let

αk := α⋆
Rk ,Pk

, and σk := σ⋆
Rk,Pk

, ∀k ∈ N.

Note that the joint continuity proved in Proposition 3-(d) guarantees that

lim
k→+∞

αk = α⋆
R0,P0

=: α0,

lim
k→+∞

σk = σ⋆
R0,P0

=: σ0.
(104)

Given the eigenvalue decompositions Wx =
∑

i λi|ei〉〈ei| and σk =
∑

j µj(σk)|fk
j 〉〈fk

j |, Nussbaum-Szko la

distributions are px(i, j) = λi|〈ei|fk
j 〉|2 and qx(i, j) = µj(σ

⋆
Rk ,Pk

)|〈ei|fk
j 〉|2. Here, we write fk

j and µj(σk)
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to emphasize the dependence on Pk. To prove the continuity of Br(P,W), it suffices to show

Pk(x)
λαk
i µ1−αk

j (σk)|〈ei|fk
j 〉|2∑

ı, λ
αk
ı µ1−αk

 (σk)|〈eı|fk
 〉|2

log
λi

µj(σk)

−→ P0(x)
λα0
i µ1−α0

j (σ0)|〈ei|f0
j 〉|2∑

ı, λ
α0
ı µ1−α0

 (σk)|〈eı|f0
 〉|2

log
λi

µj(σ0)
.

(105)

In the following, we first exclude some trivial cases. If λi = 0, then the convergence is obvious (recalling
that the power function is only acting on the support). We assume λi > 0 onwards. If Pk(x) > 0 only
for finite number of k, then the convergence in Eq. (C) is also trivial. We may assume Pk(x) > 0 for all
k ∈ N (switching to a subsequence if necessary). Further, Proposition 3-(b) implies that Wx ≪ σk for all
k ∈ N. We have λi|〈ei|fk

j 〉|2 = 0 whenever µj(σk)|〈ei|fk
j 〉|2 = 0 by the absolute continuity, which in turn

implies the convergence of Eq. (C). We may assume µj(σk)|〈ei|fk
j 〉|2 > 0 for all k ∈ N.

With the above assumptions, we study two cases: P0(x) = 0 or not, separately. If P0(x) > 0, then
Wx ≪ σ0. The absolute continuity again implies that µj(σ0) > 0 by the previous argument. Hence,
we can deduce that µj(σk) is bounded away from zero. Using the continuity given in Eqs. (C) and the
continuity of logarithm, log λi/µj(σk) tends to log λi/µj(σ0), which shows the convergence in Eq. (C).

It remains to show the case of P0(x) = 0. Observe that the convergence in Eq. (C) holds when
µj(σk) 6→ 0. We thus consider the circumstance that µj(σk) → 0. To achieve our goal, we will show that

the log-likelihood ratio log λi
µj(σk)

does not diverge too fast.

In what follows we inspect the eigenvalue µj(σk). The saddle-point property given in Proposition 3-(a)
and Proposition 2-(b) indicate that σk must satisfy

σk =

(
∑

x̄∈X
Pk(x̄)

Wαk
x̄

Tr [Wαk
x̄ (σk)1−αk ]

) 1
αk

.

Further, since α⋆
r,P ∈ (0, 1] for all (r, P ) ∈ (C0,W,∞] × P(X ), the continuity of P 7→ α⋆

r,P given in

Proposition 3-(d) and the compactness of []P(X ) imply that

αR := min
P∈P(X )

α⋆
R,P > 0 (106)

By the convexity of r 7→ E
(2)
sp (r, P ) and Proposition 4-(c), we have αk ∈ [αR, 1] for all k ∈ {0} ∪N.

Therefore,

µj(σk) = 〈fk
j |σk|fk

j 〉

≥
(
∑

x̄

Pk(x̄)
〈fk

j |Wαk
x̄ |fk

j 〉
Tr [Wαk

x̄ (σk)1−αk ]

) 1
αk

(107)

≥
(
Pk(x)

〈fk
j |Wαk

x |fk
j 〉

Tr [Wαk
x (σk)1−αk ]

) 1
αk

=

(
Pk(x)

∑
ı λ

αk
ı |〈eı|fk

j 〉|2∑
ı, λ

αk
ı µ1−αk

 (σk)|〈eı|fk
 〉|2

) 1
αk

≥
(
Pk(x)

λαk
i |〈ei|fk

j 〉|2∑
ı, λ

αk
ı µ1−αk

 (σk)|〈eı|fk
 〉|2

) 1
αk

≥ λic
1

αR

k , (108)

30



where inequality (C) follows from Jensen’s inequality9 for the convex function (·)
1
αk with 1

αk
∈ (0, 1], and

we denote by ck := Pk(x)
|〈ei|fk

j 〉|2
∑

ı, λ
αk
ı µ

1−αk
 (σk)|〈eı|fk

 〉|2
in the last line. Note that µj(σk) ≤ 1. Eq. (C) then

implies
∣∣∣∣log

λi

µj(σk)

∣∣∣∣ ≤ log
1

λi
− log

(
λic

1
αR

k

)

= 2 log
1

λi
− 1

αR
log ck. (109)

Since we assume µj(σk) → 0 and λi > 0, Eq. (C) guarantees that

ck → 0. (110)

Using Eqs. (C), (C), (C), and the fact that λαk
i µ1−αk

j (σk) ∈ [0, 1] for all k ∈ N, we are able show that

the left-hand side of Eq. (C) converges to 0:

Pk(x)
λαk
i µ1−αk

j (σk)|〈ei|fk
j 〉|2∑

ı, λ
αk
ı µ1−αk

 (σk)|〈eı|fk
 〉|2

∣∣∣∣log
λi

µj(σk)

∣∣∣∣

≤ ck

∣∣∣∣log
λi

µj(σk)

∣∣∣∣

≤ 2ck log
1

λi
− 1

αR
ck log ck

→ 0,

which proves the joint continuity of (r, P ) 7→ Br(P,W).
Next, we show the continuity of Vr(P,W) and Tr(P,W). Denote by Br(Wx‖σk) := Evx,αk

[log px/qx] for

convenience. For P0(x) > 0, µj(σk) is bounded away from zero. Then, log λi/µj(σk) tends to log λi/µj(σ0),
and it is not hard to see that BRk

(Wx‖σk) → BRk
(Wx‖σ0). It suffices to prove the convergence when

Pk(x) → 0 and µj(σk) → 0 as mentioned before. Eq. (C) immediately implies that

BRk
(Wx‖σk) =

∑

i,j

λαk
i µ1−αk

j (σk)|〈ei|fk
j 〉|2∑

ı, λ
αk
ı µ1−αk

 (σk)|〈eı|fk
 〉|2

log
λi

µj(σk)

≤ 2 log
1

λi
− 1

αR
log ck. (111)

Using the inequality |a + b|2 ≤ 2(|a|2 + |b|2), we obtain

Pk(x)
λαk
i µ1−αk

j (σk)|〈ei|fk
j 〉|2∑

ı, λ
αk
ı µ1−αk

 (σk)|〈eı|fk
 〉|2

∣∣∣∣log
λi

µj(σk)
−BRk

(Wx‖σk)

∣∣∣∣
2

≤ 2ck

∣∣∣∣log
λi

µj(σk)

∣∣∣∣
2

+ 2ckB
2
Rk

(Wx‖σk). (112)

Combining Eqs. (C), (C), (C), and (C), we prove the continuity of Vr(P,W).
Similarly, using the inequality |a + b|3 ≤ 4(|a|3 + |b|3) gives

Pk(x)
λαk
i µ1−αk

j (σk)|〈ei|fk
j 〉|2∑

ı, λ
αk
ı µ1−αk

 (σk)|〈eı|fk
 〉|2

∣∣∣∣log
λi

µj(σk)
−Bαk

(Wx‖σk)

∣∣∣∣
3

≤ 4ck

∣∣∣∣log
λi

µj(σk)

∣∣∣∣
3

+ 4ckB
3
Rk

(Wx‖σk). (113)

9For every Hermitian matrix B with eigenvalue decomposition B =
∑

i λi|ui〉〈ui|, it follows that for every unit vector |v〉

and positive convex function f , f(〈v|B|v〉) ≤ f(
∑

i λi|〈v|ui〉|
2) ≤

∑

i f(λi)|〈v|ui〉|
2 = 〈v|f(B)|v〉.
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Further, Eq. (C) implies
∣∣∣∣log

λi

µj(σk)

∣∣∣∣
3

≤ −4 log3 λi −
4

αR
log3 ck. (114)

Combining Eqs. (C), (C), (C), and (C), proves the continuity of Tr(P,W). �

Appendix D. Proof of Proposition 2

Proposition 2 (Properties of order α Augustin Information and Radius). Given any classical-quantum
channel W : X → S(H) with |X | < ∞, the following hold:

(a) For every P ∈ P(X ), α 7→ I
(2)
α (P,W) is monotone increasing on [0, 1], and I

(2)
α (P,W) ≤ log |X |

for all α ∈ [0, 1].
(b) For every (α,P ) ∈ (0, 1] × P(X ), there exists a unique σα,P ∈ S(H), termed Augustin mean, such

that

I(2)α (P,W) = Dα (W‖σα,P |P ) ,

and

Tα,P (σ) = σ and σ ≫ PW if and only if σ = σα,P ,

where the map Tα,P : SP,W(H) → S(H) is defined as

Tα,P (σ) =
∑

x∈X
P (x)

σ
1−α
2 Wα

x σ
1−α
2

Tr [Wα
x σ

1−α]
.

(c) For every α ∈ [0, 1], the map P 7→ I
(2)
α (P,W) is concave on P(X ).

(d) For every P ∈ P(X ), α 7→ 1−α
α I

(2)
α (P,W) is concave on (0, 1].

(e) For every P ∈ P(X ), α 7→ I
(2)
α (P,W) is continuous on [0, 1].

(f) The family of functions {I(2)α (P,W)}α∈[0,1] is uniformly equicontinuous in P ∈ P(X ). Moreover,

The map (α,P ) 7→ I
(2)
α (P,W) is jointly continuous on [0, 1] × P(X ).

(g) The map (α,P ) 7→ σα,P is jointly continuous on (0, 1] × P(X ).
(h) The map α 7→ Cα,W is continuous and monotone increasing on [0, 1].

Proof of Proposition 2-(a). Recalling the definition of I
(2)
α given in Eq. (2.1). The statement immediately

follows from Lemma 1-(a) (see also [50, Lemma 4.6]) because the minimization over σ ∈ S(H) preserves

the monotonicity. Hence, we have I
(2)
α (P,W) ≤ I1(P,W) ≤ log |X |, where the last inequality follows from

the well-known upper bound for the Holevo quantity (see e.g. [69, Chapter 12]). �

Proof of Proposition 2-(b). We first note that the infimum in Eq. (2.1) can be attained. This can be
verified by the following argument. Lemma 1-(c) shows that Dα is lower semi-continuous in its second ar-
gument. Hence, the linear combination, i.e. Dα (W‖σ|P ), is also lower semi-continuous on S(H). Further,
S(H) is compact owing to the assumption of the finite-dimensional Hilbert space H. Thus, the extreme
value theorem [84, Chapter 30§12.2] guarantees that the infimum can be attained

For α = 1, it is well-known that (see e.g. [83]) σ1,P = PW. Using the fact PW ≫ Wx for all
x ∈ supp(P ), the statements immediately follow.

We fix an arbitrary (α,P ) ∈ (0, 1) × P(X ) subsequently. Without loss of generality, we may further
assume ⋃

x∈supp(P )

supp(Wx) = 1H,

and hence PW has full support. We first show that the minimizer σα,P has full support too. Second, we
prove the fixed-point property Eq. ((b)). Finally, we establish the uniqueness of σα,P . We remark that
the uniqueness has been proven by Dalai and Winter [18, Appendix D]. Here, we provide an alternative
proof for the completeness. Our approach follows closely from Hayashi and Tomamichel [56, Appendix
C].
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Define

Mα(H) := arg min
σ∈S(H)

Dα (W‖σ|P ) = arg max
σ∈S(H)

gα(σ) = arg max
σ∈SP,W(H)

gα(σ)

where

gα(σ) :=
∑

x∈X
P (x) log Tr

[
Wα

x σ
1−α
]
.

To show that the optimizer of gα(·) has full support, we observe that the directional derivative on the
boundary of S(H) where at least one eigenvalue is zero in a direction that increases its rank diverges to
positive infinite. Namely, it suffices to show

lim
t→0

gα((1 − t)σ + tσ⊥) − gα(σ)

t
= +∞, (115)

where σ ∈ SP,W(H) is some singular density operator, and σ⊥ := (1H−σ)
Tr[1H−σ] . For x ∈ supp(P ) with

Wx ≪ σ, we have Wx ⊥ σ⊥. It is not hard to see that

lim
t→0

P (x)
log Tr

[
Wα

x

(
(1 − t)σ + tσ⊥)1−α

]
− log Tr

[
Wα

x σ
1−α
]

t

= lim
t→0

P (x)
log Tr

[
Wα

x

(
(1 − t)1−ασ1−α + t1−α(σ⊥)1−α

)]
− log Tr

[
Wα

x σ
1−α
]

t
(116)

= lim
t→0

P (x)
(1 − α) log(1 − t)

t
(117)

= lim
t→0

P (x)
−(1 − α)

1 − t
(118)

= −P (x)(1 − α)

> −∞ (119)

where Eq. (D) holds because σ ⊥ σ⊥; Eq. (D) is due to Wx ⊥ σ⊥; and Eq. (D) is owing to L’Hôspital’s
rule.

On the other hand, since σ is singular, there must be some x ∈ supp(P ) such that Wx 6≪ σ. Hence, by

denoting c :=
Tr[Wα

x (σ⊥)1−α]
Tr[Wα

x σ1−α]
> 0, Eq. (D) leads to

lim
t→0

P (x)
log
{

(1 − t)1−α + t1−αc
}

t

= lim
t→0

P (x)
−(1 − α)(1 − t)−α + (1 − α)t−αc

(1 − t)1−α + t1−αc
(120)

= +∞, (121)

where Eq. (D) is by L’Hôspital’s rule again. Combining Eqs. (D) and (D) concludes Eq. (D).
Next, we show the fixed-point property: Mα(H) = Fα(H), where Fα(H) := {σ ∈ S>0(H)} denotes

the fixed-points of the map: Tα,P : SP,W(H) → S(H). A necessary and sufficient condition for σ to be an
optimizer is

∂ωgα(σ) := Dgα(σ)[ω − σ] = 0,

for all ω ∈ S(H), where Dgα(σ) denotes the Fréchet derivative of the map gα (see e.g. [56, Appendix C]).
Using the chain rule of Fréchet derivatives, it follows

∂ωgα(σ) = Tr

[
∑

x∈X
P (x)

Wα
x

Tr [Wα
x σ

1−α]
∂ωσ

1−α

]
(122)

= Tr

[
∑

x∈X
P (x)

σ
−α
2 Wα

x σ
−α
2

Tr [Wα
x σ

1−α]
σ

α
2 ∂ωσ

1−ασ
α
2

]
.
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We claim that the operators
{

∆ω = σ
α
2 ∂ωσ

1−ασ
α
2 : ω ∈ S(H)

}

span the space of traceless Hermitian operators on S(H). Let σ =
∑

i λi|i〉〈i| with λi > 0 be the eigenvalue
decomposition. One can verify [77, Theorem 3.25] that

〈i|∆ω|j〉 =





(λiλj)
α
2

λ1−α
i − λ1−α

j

λi − λj
〈i|ω − σ|j〉, if λi 6= λj

(1 − α)〈i|ω − σ|j〉, if λi = λj

.

Therefore, ∆ω is Hermitian and Tr [∆ω] = 0 for all ω ∈ S(H). Moreover, the basis of the traceless
Hermitian operators is given by the operators

{
Γij = |i〉〈j| + |j〉〈i|, Γ′

ij = i|i〉〈j| − |j〉〈i|, Γ′′
ij = |i〉〈i| − |j〉〈j|

}
i 6=j

.

For every tuple (i, j) with i 6= j there exists an ε > 0 such that the state ω = σ + εΓij is still in S(H).
For this state, we find that ∆ω = ηΓij for some real η > 0. The similar argument applies to Γ′

ij and Γ′′
ij.

Hence, we have verified that the operators {∆ω}ω∈S(H) span the space of traceless Hermitian operators.
Armed with the above discussion, the condition that ∂ωgα(σ) = 0 for all ω ∈ S(H) is equivalent to the

condition that the operators

∑

x∈X
P (x)

σ
−α
2 Wα

x σ
−α
2

Tr [Wα
x σ

1−α]

must be proportional to the identity. Thus, the optimum must be a fixed point of the map Tα,P (·).
Lastly, to prove the uniqueness of the optimizer, it remains to show ∂2

ωgα(σ) : D2gα(σ)[ω−σ, ω−σ] < 0
for all ω 6= σ and σ > 0. Continuing on Eq. (D), we have

∂2
ωgα(σ) = −Tr

[
∑

x∈X
P (x)

Wα
x

Tr2 [Wα
x σ

1−α]
∂ωσ

1−α

]
+ Tr

[
∑

x∈X
P (x)

Wα
x

Tr [Wα
x σ

1−α]
∂2
ωσ

1−α

]

< Tr

[
∑

x∈X
P (x)

Wα
x

Tr [Wα
x σ

1−α]
∂2
ωσ

1−α

]
, (123)

where Eq. (D) holds by noting that ∂ωσ
1−α 6= 0 for all ω 6= σ. Further, ∂2

ωσ
1−α ≤ 0 since u 7→ u1−α is

operator concave. Thus, ∂2
ωgα(σ) < 0, item (b) is proved. �

Proof of Proposition 2-(c). Recall the definition given in Eq. (2.1). The assertion follows because the
pointwise infimum of linear functions is concave. �

Proof of Proposition 2-(d). This assertion was proved by Mosonyi and Ogawa [50, Corollary B.2]. �

Proof of Proposition 2-(e). The idea of the proof originate from Nakiboğlu [41, Lemmas 16, 17].

Recalling item (d), the map α 7→ 1−α
α I

(2)
α (P,W) is concave on (0, 1]. Since any concave function is

continuous in its interior [81, Corollary 6.3.3], the map α 7→ I
(2)
α (P,W) is continuous on (0, 1). The

continuity at α = 0 can be verified as follows. Let σ0,P ∈ S(H) be any state such that I
(2)
0 (P,W) =

D0 (W‖σ0,P |P ). Then, the monotonicity in item (a) and the definition of I
(2)
α given in Eq. (2.1) imply

that

I
(2)
0 (P,W) ≤ I(2)α (P,W) ≤ Dα (W‖σ0,P |P ) , ∀α ∈ (0, 1].

The continuity of α 7→ Dα on [0, 1], Lemma 1-(a), thus implies limα↓0 Iα (P,W) = I0(P,W).
It remains to show the continuity at α = 1. We claim the following fact about the Augustin mean.

Lemma 19. Given α ∈ (0, 1] and P ∈ P(X ), we let σα,P ∈ S(H) be the Augustin mean, i.e. I
(2)
α (P,W) =

Dα (W‖σα,P |P ). The following hold.
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• For any α ∈ [1/2, 1],

Dα (Wx‖σα,P ) ≤ log
1

P (x)
.

• For any α ∈ [1/2, 1],

σα,P ≤
(

min
x:P (x)>0

P (x)

)α−1
α

σ1,P . (124)

Then, Eq. (19) and Lemma 1-(b) imply that

Dα (W‖σα,P |P ) ≥ Dα (W‖σ1,P |P ) +
1 − α

α
log

(
min

x:P (x)>0
P (x)

)
, ∀α ∈ [1/2, 1] .

Moreover, the fact Dα (W‖σα,P |P ) = I
(2)
α (P,W) in item (b) and the monotonicity in item (a) show that

Dα (W‖σ1,P |P ) +
1 − α

α
log

(
min

x:P (x)>0
P (x)

)
≤ I(2)α (P,W) ≤ I

(2)
1 (P,W), ∀α ∈ [1/2, 1] .

It is clearly that Dα (W‖σ1,P |P ) < +∞ by the fact that σ1,P ≫ Wx for all x ∈ supp(P ). Then, the

continuity of α 7→ Dα on [0, 1], Lemma 1-(a), together with the fact D1 (W‖σ1,P |P ) = I
(2)
1 (P,W) imply

the continuity of I
(2)
α at α = 1.

In the following, we prove Lemma 19 to complete the proof of item (e).

Proof of Lemma 19. Proposition 2 (b) implies that the Augustin mean satisfies

σα,P =

(
∑

x∈X
P (x)Wα

x e(1−α)Dα(Wx‖σα,P )

) 1
α

. (125)

Using the operator monotonicity of (·) 1−α
α for α ∈ [1/2, 1] (see e.g. [71, 77]), we have

σ1−α
α,P ≥ P (x)

1−α
α W 1−α

x e
(1−α)2

α
Dα(Wx‖σα,P ) . (126)

Then, Eq. (D) and Lemma 1-(b) imply that

Dα (Wx‖σα,P ) =
1

α− 1
log Tr

[
Wα

x σ
1−α
α,P

]

≤ − log P (x)
1
α − 1 − α

α
Dα (Wx‖σα,P ) ,

which proves the first claim.

For any α ∈ [1/2, 1], the map (·) 1
α is operator convex. Then, Eq. (D) yields

σα,P ≤
∑

x∈X
P (x)Wx e

1−α
α

Dα(Wx‖σα,P ) . (127)

Note that PW = σ1,P . Applying Eq. (D) on (D) gives the desired result in Eq. (19). �

�

Proof of Proposition 2-(f). To prove the equicontinuity, we need the following inequality:

I(2)α (α,Pβ) ≤ βI(2)α (α,P1) + (1 − β)I(2)α (α,P0) + H(β) (128)

for any P1, P0 ∈ P(X ), Pβ = βP1 + (1 − β)P0, β ∈ (0, 1), α ∈ [0, 1]; and we shorthand H(β) :=
−β log β − (1 − β) log(1 − β) the binary entropy function.
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Let σα,P ∈ S(H) be the Augustin mean10 as in item (b) for α ∈ [0, 1]. Lemma 1-(b) implies that, for
every α ∈ [0, 1],

∑

x∈X
Pβ(x)Dα (Wx‖βσα,P1 + (1 − β)σα,P0)

= β
∑

x∈X
P1(x)Dα (Wx‖βσα,P1 + (1 − β)σα,P0) + (1 − β)

∑

x∈X
P0(x)Dα (Wx‖βσα,P1 + (1 − β)σα,P0)

≤ β
∑

x∈X
P1(x)Dα (Wx‖σα,P1) − β log β + (1 − β)

∑

x∈X
P0(Wx)Dα (Wx‖σα,P0) − (1 − β) log(1 − β)

= βI(2)α (P1,W) + (1 − β)Iα(P0,W) + H(β).

Let s∧, s1, s0 be

s∧ =
P1 ∧ P0

‖P1 ∧ P0‖1
,

s1 =
P1 − P1 ∧ P0

1 − ‖P1 ∧ P0‖1
,

s0 =
P0 − P1 ∧ P0

1 − ‖P1 ∧ P0‖1
.

Here, ‖ · ‖1 denotes the ℓ1-norm. One can verify that (see e.g. [41])

P1 =

(
1 − ‖P1 − P0‖1

2

)
s∧ +

‖P1 − P0‖1
2

s1,

P0 =

(
1 − ‖P1 − P0‖1

2

)
s∧ +

‖P1 − P0‖1
2

s0.

Then, the concavity of P 7→ I
(2)
α (P,W) given in item (c) together with Eq. (D) yield

I(2)α (P0,W) − I(2)α (P1,W) ≤ H

(‖P1 − P0‖1
2

)
+

‖P1 − P0‖1
2

(
I(2)α (s0,W) − I(2)α (s1,W)

)

≤ H

(‖P1 − P0‖1
2

)
+

‖P1 − P0‖1
2

I(2)α (s0,W)

for all α ∈ [0, 1]. Thus,
∣∣∣I(2)α (P0,W) − I(2)α (P1,W)

∣∣∣ ≤ H

(‖P1 − P0‖1
2

)
+

‖P1 − P0‖1
2

log |X |

since α 7→ I
(2)
α is monotone increasing by item (a). The above inequality implies the desired equicontinuity.

The joint continuity of (α,P ) 7→ I
(2)
α (P,W) follows from the continuity of α 7→ I

(2)
α (P,W) given in (e)

and uniform equicontinuity.
�

Proof of Proposition 2-(g). Let (αk, Pk)k∈N be an arbitrary sequence such that αk ∈ (0, 1], Pk ∈ P(X ),
and limk→+∞(αk, Pk) = (α0, P0) ∈ (0, 1]×P(X ). Further, let (σαk,Pk

)k∈N be the sequence of the Augustin
mean corresponding to (αk, Pk). Since S(H) is compact, there exists a convergent subsequence {kl}l∈N
such that liml→+∞ σαkl

,Pkl
= σ0 for some σ0 ∈ S(H).

The joint continuity of (α,P ) 7→ I
(2)
α (P,W) in item (f) thus implies

lim
k→+∞

I(2)αk
(Pk,W) = Dα0(W‖σ0|P0) = I(2)α0

(P0,W) = Dα0(W‖σα0,P0 |P0).

Then, the uniqueness of the minimizer σα,P in item (b) guarantees that σ0 = σα0,P0 . Hence,

lim
k→+∞

σαk ,σk
= σ0 = σα0,σ0 ,

10For α = 1, the Augustin mean is not unique. We note that the proof of item (f) does not require the uniqueness.
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which proves item (g). �

Proof of Proposition 2-(h). Berge’s maximum theorem [72, Section IV.3], [73, Lemma 3.1] shows that the

continuous map (α,P ) 7→ I
(2)
α (P,W) maximized over the compact set P ∈ P(X ) is still continuous for

α ∈ [0, 1]. �

Appendix E. Proof of Proposition 3

Proposition 3 (Saddle-Point). Consider a classical-quantum channel W : X → S(H), any R ∈ (C0,W, CW),
and P ∈ P(X ). Let

SP,W(H) := {σ ∈ S(H) : ∀x ∈ supp(P ), Wx 6⊥ σ} .
Define

FR,P (α, σ) :=





1 − α

α
(Dα (W‖σ|P ) −R) , α ∈ (0, 1)

0, α = 1
, (129)

on (0, 1] × S(H), and denote by

PR(X ) :=

{
P ∈ P(X) : sup

0<α≤1
inf

σ∈S(H)
FR,P (α, σ) ∈ R>0

}
. (130)

The following holds

(a) For any P ∈ P(X ), FR,P (·, ·) has a saddle-point on (0, 1] × SP,W(H) with the saddle-value:

min
σ∈S(H)

sup
0<α≤1

FR,P (α, σ) = sup
0<α≤1

min
σ∈S(H)

FR,P (α, σ) = E(2)
sp (R,P ).

(b) Fix P ∈ PR(X ). Any saddle-point (α⋆
R,P , σ

⋆
R,P ) of FR,P (·, ·) satisfies α⋆

R,P ∈ (0, 1) and

σ⋆
R,P ≫ Wx, ∀x ∈ supp(P ).

(c) For P ∈ PR(X ), the saddle-point is unique.
(d) For any R ∈ (C0,W, R], both α⋆

r,P and σ⋆
r,P are jointly continuous functions of (r, P ) on [R,R] ×

P(X ).

Proof of Proposition 3-(a). Fix arbitrary R > C0,W and P ∈ P(X ). In the following, we prove the
existence of a saddle-point of FR,P (·, ·) on (0, 1] × SP,W(H). Ref. [75, Lemma 36.2] states that (α⋆, σ⋆) is
a saddle point of FR,P (·, ·) if and only if the supremum in

sup
α∈(0,1]

inf
σ∈SP,W(H)

FR,P (α, σ) (131)

is attained at α⋆ ∈ (0, 1], the infimum in

inf
σ∈SP,W(H)

sup
α∈(0,1]

FR,P (α, σ) (132)

is attained at σ⋆ ∈ SP,W(H), and the two extrema in Eqs. (E), (E) are equal and finite. We first claim
that, ∀α ∈ (0, 1],

inf
σ∈SP,W(H)

FR,P (α, σ) = inf
σ∈S(H)

FR,P (α, σ). (133)

To see this, observe that for any α ∈ (0, 1), Eqs. (2.1) and (2.1) yield

∀σ ∈ S(H)\SP,W(H), Dα (W‖σ|P ) = +∞, (134)

which, in turn, implies

∀σ ∈ S(H)\SP,W(H), FR,P (α, σ) = +∞. (135)

Further, Eq. (E) holds trivially when α = 1. Hence, Eq. (E) yields

sup
α∈(0,1]

inf
σ∈SP,W(H)

FR,P (α, σ) = sup
α∈(0,1]

inf
σ∈S(H)

FR,P (α, σ)
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Owing to the fact R > C0,W and Eq. (2.1), we have

E(2)
sp (R,P ) = sup

α∈(0,1]
inf

σ∈S(H)
FR,P (α, σ) < +∞, (136)

which guarantees the supremum in the right-hand side of Eq. (E) is attained at some α ∈ (0, 1]. Namely,
there exists some ᾱR,P ∈ (0, 1] such that

sup
α∈(0,1]

inf
σ∈SP,W(H)

FR,P (α, σ) = max
α∈[ᾱR,P ,1]

inf
σ∈S(H)

FR,P (α, σ) < +∞. (137)

Thus, we complete our claim in Eq. (E). It remains to show that the infimum in Eq.(E) is attained at
some σ⋆ ∈ SP,W(H) and the supremum and infimum are exchangeable. To achieve this, we will show that(
[ᾱR,P , 1],SP,W(H), FR,P

)
is a closed saddle-element (see Definition 20 below) and employ the boundness

of [ᾱR,P , 1] × SP,W(H) to conclude our claim.

Definition 20 (Closed Saddle-Element [74]). We denote by ri and cl the relative interior and the closure
of a set, respectively. Let A,B be subsets of a real vector space, and F : A×B → R∪ {±∞}. The triple
(A,B, F ) is called a closed saddle-element if for any x ∈ ri (A) (resp. y ∈ ri (B)),

(i) B (resp. A) is convex.
(ii) F (x, ·) (resp. F (·, y)) is convex (resp. concave) and lower (resp. upper) semi-continuous.
(iii) Any accumulation point of B (resp. A) that does not belong to B (resp. A), say yo (resp. xo)

satisfies limy→yo F (x, y) = +∞ (resp. limx→xo F (x, y) = −∞).

Fix an arbitrary α ∈ ri ([ᾱR,P , 1]) = (ᾱR,P , 1). We check that
(
SP,W(H), FR,P (α, ·)

)
fulfills the three

items in Definition 20. (i) The set SP,W(H) is clearly convex. (ii) Recall Lemma 1-(c) that σ 7→ Dα(Wx‖σ)
is convex and lower semi-continuous. Since convex combination preservers the convexity and the lower
semi-continuity, Eq. (E) yields that σ 7→ FR,P (α, σ) is convex and lower semi-continuous on SP,W(H). (iii)
Due to the compactness of S(H), any accumulation point of SP,W(H) that does not belong to SP,W(H),
say σo, satisfies σo ∈ S(H)\SP,W(H). Eqs. (E) and (E) then show that FR,P (α, σo) = +∞.

Next, fix an arbitrary σ ∈ ri
(
SP,W(H)

)
. Owing to the convexity of SP,W(H), it follows that ri

(
SP,W(H)

)

= ri
(
cl
(
SP,W(H)

))
(see e.g. [75, Theorem 6.3]). We first claim cl

(
SP,W(H)

)
= S(H). To see this, ob-

serve that S>0(H) ⊆ SP,W(H) since a full-rank density operator is not orthogonal with every Wx, x ∈ X .
Hence,

S(H) = cl (S>0(H)) ⊆ cl
(
SP,W(H)

)
. (138)

On the other hand, the fact SP,W(H) ⊆ S(H) leads to

cl
(
SP,W(H)

)
⊆ cl (S(H)) = S(H). (139)

By Eqs. (E) and (E), we deduce that

ri
(
SP,W(H)

)
= ri

(
cl
(
SP,W(H)

))
= ri (S(H)) = S>0(H), (140)

where the last equality in Eq. (E) follows from [76, Proposition 2.9]. Hence, we obtain

∀σ ∈ ri
(
SP,W(H)

)
and ∀x ∈ X , σ ≫ Wx. (141)

Now we verify that ([ᾱR,P , 1], FR,P (·, σ)) satisfies the three items in Definition 20. Fix an arbitrary
σ ∈ ri

(
SP,W(H)

)
. (i) The set (0, 1] is obviously convex. (ii) From Lemma 1-(a), the map α 7→ FR,P (α, σ)

is continuous on (0, 1). Further, it is not hard to verify that FR,P (1, σ) = 0 = limα↑1 FR,P (α, σ) from
Eqs. (E), (E), and (2.1). Item (d) in Proposition 2 and [50, Collorary B.2] implies that α 7→ FR,P (α, σ)
on [ᾱR, 1) is concave. Moreover, the continuity of α 7→ FR,P (α, σ) on [ᾱR,P , 1) guarantees the concavity
of α 7→ FR,P (α, σ) on [ᾱR,P , 1]. (iii) Since [ᾱR,P , 1] is closed, there is no accumulation point of [ᾱR,P , 1]
that does not belong to [ᾱR,P , 1].

We are at the position to prove item (a) of Proposition 3. The closed saddle-element, along with the
boundness of SP,W(H) and Rockafellar’s saddle-point result [74, Theorem 8], [75, Theorem 37.3] imply
that

−∞ < sup
α∈[ᾱR,P ,1]

inf
σ∈SP,W(H)

FR,P (s, σ) = min
σ∈SP,W(H)

sup
α∈[ᾱR,P ,1]

FR,P (s, σ). (142)
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Then Eqs. (E) and (E) lead to the existence of a saddle-point of FR,P (·, ·) on (0, 1] × SP,W(H). Hence,
item (a) is proved.

�

Proof of Proposition 3-(b). Fix arbitrary R ∈ (C0,W, CW) and P ∈ PR(X ). We have

sup
0<α≤1

min
σ∈S(H)

FR,P (α, σ) = min
σ∈S(H)

sup
0<α≤1

FR,P (α, σ) ∈ R>0 (143)

by the saddle-point property in item (a) and the definition of PR(X ) given in Eq. (E). First note that
(1, σ) for any σ ∈ S(H) will not be a saddle point of FR,P (·, ·) because FR,P (1, σ) = 0, ∀σ ∈ S(H),
contradicting Eq. (E).

Next, we assume (α⋆, σ⋆) is a saddle-point of FR,P (·, ·) with α⋆ ∈ (0, 1), it holds that

FR,P (α⋆, σ⋆) = min
σ∈S(H)

FR,P (α⋆, σ) =
α⋆ − 1

α⋆
R +

1 − α⋆

α⋆
min

σ∈S(H)
Dα⋆(W‖σ|P ). (144)

Since σ⋆ is the minimizer of minσ∈S(H) Dα⋆(W‖σ|P ), it is clear from Proposition 2-(b) that

σ⋆ ≫ Wx, ∀x ∈ supp(P ),

and thus item (b) is proved.
�

Proof of Proposition 3-(c). Continuing from item (b), we show the uniqueness of the saddle-point. Since
(1, σ) for σ ∈ S(H) will not be a saddle-point of FR,P (·, ·) as shown in item (b), we let α⋆ ∈ (0, 1) attain
the supremum in the left-hand side of Eq. (E). Proposition 2-(b) implies that the minimizer to the map
σ 7→ Dα⋆(W‖σ|P ) is unique, and thus it follows that the minimizer of Eq. (E) is unique as well.

Next, we will invoke Lemma 16 in Appendix A to show the uniqueness of the maximizer. Let σ⋆ ∈ S(H)
be the minimizer of right-hand side of the equality in Eq. (E), and let xn ∈ X n be an arbitrary sequence
with an empirical distribution P . Denote by pn, qn be two distributions with (pi, qi) being the Nussbaum-
Szko la mapping of (Wxi , σ

⋆), where xi is the i-th symbol of xn for i ∈ [n]. Further, item (b) guarantees
that pn ≪ qn.

Now, we let pn and qn to be the hypotheses described in Eq. (A). It is not hard to observe that
sup0<α≤1 FR,P (α, σ⋆) = φn(R) given in Eq. (A). Items (b) and (d) in Lemma 16 then show that the
optimizer α⋆ ∈ (0, 1) of sup0<α≤1 FR,P (α, σ⋆) is unique, which completes the proof of item (c).

�

Proof of Proposition 3-(d). We first prove the joint continuity of (r, P ) 7→ α⋆
r,P on [R,R] × P(X ). To

that end, it suffices to show that P 7→ α⋆
r,P is continuous on P(X ) for every r ∈ [R,R], and the family

{α⋆
r,P }P∈P(X ) is uniformly equicontinuous in r on [R,R]. Moreover, it is equivalent to prove the joint

continuity of (r, P ) 7→ s⋆r,P on [R,R] × P(X ) by using the substitution s⋆r,P := (1 − α⋆
r,P )/α⋆

r,P . This will
ease the burden of notation.

In the following, we show the continuity of P 7→ s⋆r,P . The proof idea of such continuity is similar to

[35, Proposition 3.4]. Fix r ∈ [R,R], any P0 ∈ P(X ) and consider arbitrary {Pk}k∈N such that Pk ∈ P(X )
for all k ∈ N, and limn→+∞ Pk = P0. Following from Proposition 4-(c) that will be proved later in
Appendix F, we have11

s⋆r,Pk
= −∂E

(2)
sp (r, Pk)

∂r
∈ R≥0. (145)

Since r ≥ R > C0,W, the continuity of E
(2)
sp (r, ·) given in Proposition 4-(a) that will be proved later shows

that

lim
k→+∞

E(2)
sp (r, Pk) = E(2)

sp (r, P0).

Viewing (E
(2)
sp (r, Pk))k∈N as a sequence of functions that converges to E

(2)
sp (r, P0), Ref. [82, Corollary

VI.6.2.8] proved that the sequence of first-order derivatives of differentiable convex functions converses

11Here, for E
(2)
sp (r, P ) = 0, we adopt (1, PW) as the saddle-point in Eq. (3), which means s⋆r,P = 0.
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to the first-order derivative of the limit. Indeed, Proposition 4-(a) guarantees that E
(2)
sp (·, P ) is convex.

Therefore,

lim
k→+∞

s⋆R,Pk
= lim

k→+∞
− ∂E

(2)
sp (r, Pk)

∂r

∣∣∣∣∣
r=R

= − ∂E
(2)
sp (r, P0)

∂r

∣∣∣∣∣
r=R

= s⋆R,P0
,

which shows the continuity of P 7→ s⋆r,P for every r ∈ [R,R].

Next, we prove the equicontinuity. Let R1, R2 ∈ [R,R] be arbitrary. As will be shown later in

Proposition 4-(a), for every P ∈ P(X ), E
(2)
sp (·, P ) is convex and non-increasing on [0,+∞]. Using Eq. (E),

the absolute value of the difference between the first-order derivative of E
(2)
sp (·, P ) at R1 and R2 can be

calculated as follows
∣∣s∗R1,P − s∗R2,P

∣∣ ≤ s∗R1,P ∨ s∗R2,P = s∗R1∧R1,W ≤ s∗R,W, (146)

where s∗R,P = (1 − α⋆
R,P )/α⋆

R,P and α⋆
R,P is the optimizer of E

(2)
sp (R,P ) given in Eq. (2.1).

For all P ∈ P(X ) such that R ≥ I1(P,W), the right-hand side of Eq. (E) is zero since E
(2)
sp (R,P ) = 0 (see

Proposition 4-(a) again). On the other hand, for all P ∈ P(X ) such that R < I1(P,W), Proposition 4-(c)
shows that

I
(2)
α⋆
R,P

(P,W) > R. (147)

Further, since R ∈ (C0,W, C1,W), the continuous monotone increase of the map α 7→ Cα,W proved in
Proposition 2-(h) guarantees that there exists a αR ∈ (0, 1) such that

CαR
= R. (148)

Then, from Eqs. (E), (E), and the definition of the Rényi information radius given in Eq. (2.1), we have

I(2)αR
(P,W) ≤ CR,W = R < I

(2)
α⋆
R,P

(P,W), (149)

The above inequality (E) and the monotone increases of the map α 7→ I
(2)
α (P,W) further imply that

αR < α⋆
R,P . (150)

Both Eqs. (E) and (E) then yield

∣∣s∗R1,P − s∗R2,P

∣∣ ≤ 1 − αR

αR
< ∞

for all P ∈ P(X ) such that R < I1(P,W). This shows the equicontinuity of the family {α⋆
r,P }P∈P(X ) on

[R,R]. Together with the continuity of P 7→ s∗r,P for all r ∈ [R,R], the joint continuity of (r, P ) 7→ s∗r,P
on [R,R] × P(X ) is proved.

Lastly, we move on to prove the continuity of (r, P ) 7→ σ⋆
r,P on [R,R] × P(X ). Let (Rk, Pk) ∈ [R,R] ×

P(X ) for all k ∈ N be arbitrary such that limk∈N(Rk, Pk) = (R0, P0) ∈ [R,R] × P(X ). From Eq. (E), the
saddle-point property yields that

σ⋆
Rk,Pk

= σα⋆
Rk,Pk

,Pk
, (151)

where in the right-hand side of the above equality we denote the Augustin mean by σα,P := minσ∈S(H) Dα (W‖σ|P ).
Moreover, Proposition 2-(g) states that (α,P ) 7→ σα,P is jointly continuous on (0, 1] × P(X ). Hence, the
joint continuity of (r, P ) 7→ α⋆

r,P proved above together with Eq. (E) show that

lim
k→+∞

σ⋆
Rk,Pk

= lim
k→+∞

σα⋆
Rk,Pk

,Pk

= σlimk→+∞ α⋆
Rk,Pk

,limk→+∞ Pk

= σα⋆
limk→+∞(Rk,Pk)

,limk→+∞ Pk

= σα⋆
R0,P0

,P0

= σ⋆
R0,P0

,
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which completes the proof of item (d). �

Appendix F. Proof of Proposition 4

Proposition 4 (Properties of Error-Exponent Functions). Consider a classical-quantum channel W :
X → S(H) with C0,W < CW. We have

(a) Given every P ∈ P(X ), E
(2)
sp (·, P ) is convex and non-increasing on [0,+∞], and continuous on[

I
(2)
0 (P,W),+∞

]
. For every R > C0,W, E

(2)
sp (R, ·) is continuous on P(X ). Further,

E(2)
sp (R,P ) =





+∞, R < I
(2)
0 (P,W)

0, R ≥ I
(2)
1 (P,W)

.

(b) Esp(·) is convex and non-increasing on [0,+∞], and continuous on [C0,W,+∞]. Further,

Esp(R) =

{
+∞, R < C0,W

0, R ≥ C1,W
.

(c) Consider any R ∈ (C0,W, CW) and P ∈ PR(X ) (see Eq. (3)). The function E
(2)
sp (·, P ) is differen-

tiable with

s⋆R,P :=
1 − α⋆

R,P

α⋆
R,P

= − ∂E
(2)
sp (r, P )

∂r

∣∣∣∣∣
r=R

∈ R>0, (152)

where α⋆
R,P is the optimizer in Eq. (2.1). Moreover,

Iα⋆
R,P

(P,W) > R. (153)

Proof of Proposition 4-(a). Fix any arbitrary P ∈ P(X ). Item (a) in Proposition 2 shows that the map

α 7→ I
(2)
α (P,W) is monotone increasing on [0, 1]. Hence, from the definition in Eq. (2.1), it is not hard to

verify that E
(2)
sp (R,P ) = +∞ for all R ∈ (0, I

(2)
0 (P,W)); finite for all R > I

(2)
0 (P,W); and E

(2)
sp (R,P ) = 0,

for all R ≥ I
(2)
1 (P,W).

For every α ∈ (0, 1], the function 1−α
α (I

(2)
α (P,W) − R) in Eq. (2.1) is an non-increasing, convex, and

continuous function in R ∈ R>0. Since E
(2)
sp (R,P ) is the pointwise supremum of the above function,

E
(2)
sp (R,P ) is non-increasing, convex, and lower semi-continuous function for all R ≥ 0. Furthermore,

since a convex function is continuous on the interior of the interval if it is finite [81, Corollary 6.3.3], thus

E
(2)
sp (R,P ) is continuous for all R > I

(2)
0 (P,W), and continuous from the right at R = I

(2)
0 (P,W).

To establish the continuity of E
(2)
sp (R,P ) in P ∈ P(X ), we first claim that there exists some ᾱR ∈ (0, 1]

such that for every P ∈ P(X ),

sup
α∈(0,1]

1 − α

α

(
I(2)α (P,W) −R

)
= sup

α∈[ᾱR,1]

1 − α

α

(
I(2)α (P,W) −R

)
. (154)

Recall that R > C0,W = maxP∈P(X ) I
(2)
0 (P,W). The continuity, item (h) in Proposition 2, implies that

there exists an ᾱR > 0 such that

R ≥ I
(2)
ᾱR

(P,W), ∀P ∈ P(X ). (155)

Then, Eq. (F) and the monotone increases of the map α 7→ I
(2)
α (P,W) yield that,

1 − α

α

(
I(2)α (P,W) −R

)
< 0, ∀P ∈ P(X ), and α ∈ (0, ᾱR).

The non-negativity of E
(2)
sp (R,P ) ≥ 0 ensures that the maximizer α⋆ will not happen in the region (0, ᾱR),

and thus Eq. (F) is evident. Finally, Berge’s maximum theorem [72, Section IV.3], [73, Lemma 3.1], the
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compactness of [ᾱR, 1], and item (f) in Proposition 2 complete our claim:

P 7→ E(2)
sp (R,P ) = sup

α∈[ᾱR,1]

1 − α

α

(
I(2)α (P,W) −R

)
is continuous on P(X ).

�

Proof of Proposition 4-(b). The statement follows since item (a) holds for any P ∈ P(X ) and we invoke
the definition of Cα,W in Eq. (2.1). �

Proof of Proposition 4-(c). For any R ∈ (C0,W, CW) and P ∈ PR(X ), item (c) in Proposition 3 shows that
the optimizer α⋆

R,P is unique. Eq. ((c)) directly follows from item (d) in Lemma 16.

The saddle-point property in Proposition 3-(a) shows that

E(2)
sp (R,P ) =

1 − α⋆
R,P

α⋆
R,P

(
I
(2)
α⋆
R,P

(P,W) −R
)
.

Further, since E
(2)
sp (R,P ) > 0 and α⋆

R,P ∈ (0, 1) for P ∈ PR(X ), the above equality implies Eq. ((c)).
�
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[22] Y. Altuğ and A. B. Wagner, “A refinement of the random coding bound,” in 2012 50th Annual
Allerton Conference on Communication, Control, and Computing (Allerton). Institute of Electrical
and Electronics Engineers (IEEE), oct 2012.

[23] J. Scarlett, A. Martinez, and A. Guillén i F‘abregas, “Mismatched decoding: Error exponents, second-
order rates and saddlepoint approximations,” IEEE Transactions on Information Theory , vol. 60,
no. 5, pp. 2647–2666, may 2014.

[24] J. Scarlett, “Reliable communication under mismatched decoding,” PhD Thesis (University of Cam-
bridge), 2014.

[25] J. Honda, “Exact asymptotics for the random coding error probability,” arXiv:1506.03355 [cs.IT].
[26] R. R. Bahadur and R. R. Rao, “On deviations of the sample mean,” The Annals of Mathematical

Statistics, vol. 31, no. 4, pp. 1015–1027, dec 1960.
[27] A. Dembo and O. Zeitouni, Large Deviations Techniques and Applications. Springer, 1998.
[28] Y. Altuğ and A. B. Wagner, “Moderate deviations in channel coding,” IEEE Transactions on Infor-

mation Theory , vol. 60, no. 8, pp. 4417–4426, aug 2014.
[29] H.-C. Cheng and M.-H. Hsieh, “Moderate Deviation Analysis for Classical-Quantum Channels and

Quantum Hypothesis Testing,” IEEE Transactions on Information Theory , vol. 64, no. 2, pp.
1385–1403, feb 2018.

[30] C. T. Chubb, V. Y. F. Tan, and M. Tomamichel, “Moderate Deviation Analysis for Classical Com-
munication over Quantum Channels,” Communications in Mathematical Physics, vol. 355, no. 3, pp.
1283–1315, nov 2017.

[31] H.-C. Cheng, E. P. Hanson, N. Datta, and M.-H. Hsieh, “Non-Asymptotic Classical Data Compression
with Quantum Side Information,” arXiv:1803.07505 [quant-ph].

[32] H.-C. Cheng, E. P. Hanson, N. Datta, and M.-H. Hsieh, “Duality between source coding with quantum
side information and c-q channel coding,” arXiv:1809.11143 [quant-ph].

[33] H.-C. Cheng, E. P. Hanson, N. Datta, and M.-H. Hsieh, “Non-Asymptotic Joint Source-Channel
Coding with Quantum Side Information,” (in preparation).

[34] J. K. Omura, “A lower bounding method for channel and source coding probabilities,” Information
and Control , vol. 27, no. 2, pp. 148–177, feb 1975.
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