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Abstract

In this paper, a generalized fractional central difference Kalman filter for

nonlinear discrete fractional dynamic systems is proposed. Based on the

Stirling interpolation formula, the presented algorithm can be implemented

as no derivatives are needed. Besides, in order to estimate the state with un-

known prior information, a maximum a posteriori principle based adaptive

fractional central difference Kalman filter is derived. The adaptive algorithm

can estimate the noise statistics and system state simultaneously. The unbi-

asedness of the proposed algorithm is analyzed. Several numerical examples

demonstrate the accuracy and effectiveness of the two Kalman filters.

Keywords: Fractional calculus, Adaptive filter, Fractional Kalman filter,

Central difference Kalman filter, Maximum a posteriori principle.

1. Introduction

The optimum Kalman filter is a recursive state estimation algorithm for

integer order linear state space systems. It is widely used in numerous en-

∗Corresponding author. E-mail: yongwang@ustc.edu.cn

Preprint submitted to Signal Processing August 12, 2018



gineering applications, such as aerospace, navigation [1], econometrics, com-

puter vision [2], autopilots [3] and many others where estimation is relevant.

The accuracy of the Kalman filter depends largely on certain assumptions,

such as noise statistics. The problem is observed that the noise prior knowl-

edge is unknown or time-varying in circumstances. The adaptive Kalman

filter is a common tool to deal with this problem.

The classical Kalman filter was applied to the estimation problem for dis-

crete dynamic systems [4]. Then based on the Taylor series approximation,

Bucy and Sunahara put forward the extended Kalman filter (EKF) [5, 6].

Although the EKF is widely used for various engineering fields, there still

exist some theoretical limitations, fox example, nonlinear functions must be

continuously differentiable and the filter is required to calculate the Jacobian

matrix. Following the intuition that “it is easier to approximate a probabil-

ity distribution than it is to approximate an arbitrary nonlinear function or

transformation”, using the unscented transformation, Julier and Uhlmann

et al. presented a new approach to approximate the posterior mean and the

posterior error covariance [7]. The corresponding filter is known as the un-

scented Kalman filter (UKF). The UKF ensures an accuracy of at least the

second order Taylor series approximation. But the implementation of a UKF

is more computationally expensive than an EKF. Therefore, Biswas et al.

proposed a new single propagated unscented Kalman filter and an extrap-

olated single propagated unscented Kalman filter to reduce computational

complexity [8].

For nonlinear Gaussian systems, Ito et al. presented the systematic for-

mulation of Gaussian optimal recursive filters, and obtained a novel central
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difference filter [9]. At the same time, NøRgaard et al. utilized the Stirling

interpolation formula to approximate the posterior mean and the posterior

covariance. Then the divided difference filter is developed [10]. Those two

filters are essentially identical and can be referred to as the central difference

Kalman filter (CDKF) [11].

The performance of the KF depends largely on prior information of noise

statistics. The use of imprecise information will result in estimation errors or

even filtering divergence. Adaptive filtering is an effective way to solve this

problem. Most of the adaptive filtering methods are applied to linear sys-

tems. It can be divided into four categories: Bayesian, maximum likelihood,

correlation and covariance matching [12]. Based on the maximum a poste-

riori (MAP) principle, the popular Sage-Husa AKF (SHAKF) [13], which

estimates the noise statistics and state recursively , also can be considered

as a covariance matching method. Besides, the variational Bayesian based

AKF is also an approximation of the Bayesian method [14]. For nonlinear

systems, several approaches are investigated.

On the other hand, thanks to that many systems can be described ac-

curately with the introduction of fractional calculus, fractional systems have

attracted much attention from engineering and physics fields. Besides, the

application of fractional calculus in control systems also has rapidly devel-

opment, especially in stability analysis [15, 16], controller design [17, 18],

adaptive filtering [19, 20], etc. An important class of theoretical and prac-

tical problems is how to obtain the exact state when state variables cannot

be measured directly. Motivated by this, the fractional Kalman filter (FKF)

and the fractional extended Kalman filter (FEKF) are proposed [21]. The
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FKF algorithm is used for state estimation in the systems with ultracapaci-

tor [22], fractional nonlinear systems in a chaotic communication scheme [23]

and over networks with packet losses [24], etc. The prime difference between

the FKF and the integer Kalman filter is that the integer order dynamic sys-

tems can be considered as a Markov process, but fractional dynamic systems

can not. Because of the existence of the fractional differential operator, the

estimated state xt of the FKF depends on all of the previous state, which

leads to significant complexity. Meanwhile the defects of the integer order

EKF also exist in the FEKF.

Motivated by the previous discussions, a generalized fractional central

difference Kalman filter (FCDKF) is presented. Based on the conventional

CDKF, the proposed FCDKF is also a derivative-free filtering algorithm.

Furthermore, considering that the prior information is hard to obtain, an

adaptive fractional central difference Kalman filter (AFCDKF) is addressed,

which can evaluate the system state and noise statistics simultaneously. The

main contributions are concluded as follows

• A FCDKF and an AFCDKF are addressed to estimate the system state

for different prior information conditions;

• The unbiasedness of the AFCDKF algorithm is analyzed and then an

unbiased recursive algorithm is developed;

• The approximate accuracy and numerical complexity of proposed algo-

rithms are analyzed.

The rest of this paper is organized as follows. Section 2 reviews the

fundamental knowledge of fractional calculus and CDKF. The FCDKF and
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AFCDKF for fractional discrete nonlinear systems with stochastic perturba-

tion are designed in Section 3. Section 4 provides several illustrative numer-

ical examples. Finally, Section 5 draws some conclusions.

2. Preliminaries

2.1. Problem statement

The fractional discrete nonlinear system with stochastic perturbation can

be described as follow

Definition 2.1 The fractional discrete nonlinear system with stochastic per-

turbation can be described as
∇αxk = fk−1(xk−1) + ωk−1,

xk =∇αxk −
∑k

j=1(−1)jγjxk−j,

zk = hk(xk) + νk,

(1)

where ∇α = [∇α1 , · · · ,∇αn ]T and γj = diag
[(
α1

j

)
, · · · ,

(
αn

j

)]
.

Here k denotes the time index, xk ∈ Rn, α ∈ Rn, and zk ∈ Rm are

the system state, orders of difference and measurement value, respectively.

fk : Rn → Rn and hk : Rn → Rm are the nonlinear state transform function

and measurement function. ωk ∈ Rn and νk ∈ Rm mean the system noise

and measurement noise. Moreover, x̂i|j = E{xi | Zj} indicates the state

mean conditioned on Zj , where Zj = [z1, · · · , zj] is the the observed value.

∇ is the nabla operator, and its definition is given by Definition 2.2.

Definition 2.2 The fractional backward difference of the order α is given by

∇αf(k) =
∑k

j=0(−1)j
(
α
j

)
f(k − j), (2)
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where k ∈ N+ and the corresponding binomial coefficient can be defined as(
α
j

)
= α(α−1) ··· (α−j+1)

j!
.

The same as the integer order EKF, the FEKF has been proposed to esti-

mate the system state. But the Jacobian matrix of nonlinear functions is also

required in FEKF, which is one of the major constraints. Furthermore, the

performance of state estimation is positively related to the accuracy of prior

noise information. In most situations, those statistics are inexactly known or

even completely unknown. This will lead to large estimation errors or even

to filtering divergence. Therefore, the objective of this paper is to design a

derivative-free FKF algorithm to estimate the system state exactly. In addi-

tion, the adaptive FKF with unknown prior information is also investigated,

which aims to evaluate the system state and noise statistics concurrently.

To simplify the analysis, the following common assumptions are carried

out [25].

Assumption 2.3 The two noise vectors subject to Gaussian distribution
E{ωk} = qk, Cov(ωi,ωj) = Qiδij,

E{νk} = rk, Cov(νi,νj) = Riδij, ∀ i, j, k,

Cov(ωi,νj) = 0,

(3)

where δij is the Kronecher-δ function, R is a positive definite matrix and Q

is a positive semidefinite matrix.

Assumption 2.4 The initial state x0 obeys Gaussian distribution, and is

uncorrelated with both the system and measurement noises.

Assumption 2.5 E{xi | Zj} = E{xi | Zi} = x̂i, ∀ i ≤ j.
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Assumption 2.6 E{(xi − x̂i)(xj − x̂j)
T} = 0, ∀ i 6= j.

2.2. Fundamental knowledge

First, the Stirling interpolation formula is introduced.

Definition 2.7 Assuming that x ∈ Rn, z = f(x) is a multidimensional

differentiable function, applying the Stirling interpolation formula around the

point x = x̄ yields

z = f(x) = f(x̄ + ∆x) = f(x̄) + D̃∆xf + · · · , (4)

where D̃∆xf = 1
}

(∑n
i=1 ∆xiµiδi

)
f(x̄) and ∆x = x− x̄ .

Here, } denotes a selected interval length, and µi and δi are the locally

difference operators (see [10]).

Next, the so-called Cholesky factorization is introduced. Considering the

function z = f(x), the stochastic state x takes on a Gaussian distribution,

denoted as x ∼ N (x̄,Px). Based on the Stirling interpolation formula, the

probability distribution of z ∼ N (z̄,Pz) can be deduced. Based on the

Cholesky factorization, we derive Px = SxS
T
x . Next, the following transfor-

mation of x is introduced:

y = S−1
x x, (5)

f̃(ȳ) = f(Sxȳ) = f(x̄). (6)

The following results can be derived [10]

ȳ = E{y} = S−1
x x̄, (7)

E{(y − ȳ)(y − ȳ)T} = I, (8)
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E{(yi − ȳi)(yj − ȳj)
T} = 0, ∀ i 6= j. (9)

Using the linear transformation, each element of stochastic state y is

independent. Similarly, each element of ∆y is also irrelevant.

3. Main Results

3.1. Fractional central difference Kalman filter

In this section, the proposed FCDKF algorithm is deduced. Furthermore,

the approximate accuracy and numerical complexity are analyzed briefly.

3.1.1. Implementation of FCDKF

To simplify, the nonlinear function will be replaced by a first-order Stir-

ling interpolation approximation (Def 2.7). The estimated state x̂k−1 and

covariance Pk−1 are known.

Firstly, the predicted state x̂k|k−1 is given by

x̂k|k−1 = E{xk | Zk−1}

= E{f(xk−1) + ωk−1 −
∑k

j=1(−1)jγjxk−j | Zk−1}

≈ E{[f(x̂k−1) + D̃∆xk−1
f ] | Zk−1}+ E{ωk−1 | Zk−1}

−
∑k

j=1(−1)jγjE{xk−j | Zk−1}.

(10)

Considering Assumption 2.3 and Assumption 2.5, it can be obtained that

E{ωk−1 | Zk−1} = q and E{xk−j | Zk−1} = x̂k−j. Then, substituting (6) into

(10) yields

x̂k|k−1 ≈ E{[̃f(ŷk−1) + D̃∆yk−1
f̃ ] | Zk−1} −

∑k
j=1(−1)jγjx̂k−j + q

= f̃(ŷk−1) + E{1
}(
∑n

i=1 ∆yik−1µiδi)f̃(ŷk−1) | Zk−1}

−
∑k

j=1(−1)jγjx̂k−j + q.

(11)
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Because ∆yk−1 = yk−1 − ŷk−1 = S−1
k−1(xk−1 − x̂k−1) = S−1

k−1∆xk−1, one

has E{∆yk−1 | Zk−1} = S−1
k−1E{∆xk−1 | Zk−1} = 0. So the predicted state

can be described by

x̂k|k−1 ≈ f̃(ŷk−1) + 1
}
∑n

i=1 µiδif̃(ŷk−1)E{∆yik−1 | Zk−1}

−
∑k

j=1(−1)jγjx̂k−j + q

= f(x̂k−1)−
∑k

j=1(−1)jγjx̂k−j + q.

(12)

Here, Sk−1 = [s1
k−1, s

2
k−1, · · · , snk−1] represents the Cholesky factor, which

can be obtained by Pk−1 = Sk−1S
T
k−1.

Next, the prediction error covariance Pk|k−1 can be formulated as

Pk|k−1 = E{(xk − x̂k|k−1)(xk − x̂k|k−1)T}. (13)

Using (11) yields

xk − x̂k|k−1 = f(xk−1) + ωk−1 −
∑k

j=1(−1)jγjxk−j − f(x̂k−1)

+
∑k

j=1(−1)jγjx̂k−j − q

= D̃∆xk−1
f −

∑k
j=1(−1)jγj∆xk−j + ωk−1 − q.

(14)

Substituting (14) into (13) results in

Pk|k−1 = E{[D̃∆xk−1
f + ωk−1 −

∑k
j=1(−1)jγj∆xk−j − q]

×[D̃∆xk−1
f + ωk−1 −

∑k
j=1(−1)jγj∆xk−j − q]T}

= E{[D̃∆yk−1
f + ωk−1 −

∑k
j=1(−1)jγjSk−j∆yk−j − q]

×[D̃∆yk−1
f + ωk−1 −

∑k
j=1(−1)jγjSk−j∆yk−j − q]T}

= E{[
∑k

i=1(−1)iγiSk−i∆yk−i][
∑k

j=1(−1)jγjSk−j∆yk−j]
T}

−E{D̃∆yk−1
f̃ [
∑k

j=1(−1)jγjSk−j∆yk−j]
T}

−E{[
∑k

j=1(−1)jγjSk−j∆yk−j](D̃∆yk−1
f̃)T}

+E{D̃∆yk−1
f̃(D̃∆yk−1

f̃)T}+ Q.

(15)
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The fourth term in (15) has already been resolved in [10]. Here, the result

is given directly as follow

E{D̃∆yk−1
f̃(D̃∆yk−1

f̃)T}

= 1
4}2
∑i=1

n [f(x̂k−1 + }sik−1)− f(x̂k−1 − }sik−1)]

×[f(x̂k−1 + }sik−1)− f(x̂k−1 − }sik−1)]T.

(16)

Then for the first term, we have

E{[
∑k

i=1(−1)iγiSk−i∆yk−i][
∑k

j=1(−1)jγjSk−j∆yk−j]
T}

=
∑k

i=1,j=i γiSk−iE{∆yk−i(∆yk−j)
T}ST

k−jγ
T
j

+
∑k

i=1

∑k
j=1,i 6=j γiSk−iE{∆yk−i(∆yk−j)

T}ST
k−jγ

T
j .

(17)

Employing (8) and (9) into (17) yields

E{[
∑k

i=1(−1)iγiSk−i∆yk−i][
∑k

j=1(−1)jγjSk−j∆yk−j]
T}

=
∑k

j=1 γjPk−jγ
T
j .

(18)

For the second and third terms, defining Gk−1

f̃
= [µ1δ1f̃(ŷk−1), µ2δ2f̃(ŷk−1),

· · · , µnδnf̃(ŷk−1)] and ∆yk−1 = yk−1 − ŷk−1 = [∆y1
k−1,∆y

2
k−1, · · · ,∆ynk−1]T,

so D̃∆yk−1
f̃ = 1

}G
k−1

f̃
∆yk−1, one has

E{[
∑k

j=1(−1)jγjSk−j∆yk−j](D̃∆yk−1
f̃)T}

= E{[
∑k

j=1(−1)jγjSk−j∆yk−j](
1
}G

k−1

f̃
∆yk−1)T}

= −1
}γ1Sk−1(Gk−1

f̃
)T.

(19)
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In total, (13) can be reformulated as

Pk|k−1 = E{(xk − x̂k|k−1)(xk − x̂k|k−1)T}

= E{D̃∆yk−1
f̃(D̃∆yk−1

f̃)T} − 1
}G

k−1

f̃
ST
k−1γ

T
1

−1
}γ1Sk−1(Gk−1

f̃
)T +

∑k
j=1 γjPk−jγ

T
j + Q

= 1
4}2
∑n

i=1[f(x̂k−1 + }sik−1)− f(x̂k−1 − }sik−1)]

×[f(x̂k−1 + }sik−1)− f(x̂k−1 − }sik−1)]T − 1
}G

k−1

f̃
ST
k−1γ

T
1

−1
}γ1Sk−1(Gk−1

f̃
)T +

∑k
j=1 γjPk−jγ

T
j + Q.

(20)

The deduction of measurement update is similar to the integer order

central difference Kalman filter. The output prediction is given by

ẑk|k−1 = E{h(xk) + νk | Zk−1}

= E{h̃(ŷk|k−1) + D̃∆yk|k−1
h̃ + νk | Zk−1}

= h(x̂k|k−1) + r,

(21)

and the covariance

Pz̃k = E{(zk − ẑk|k−1)(zk − ẑk|k−1)T}

= E{(D̃∆xk|k−1
h + νk − r)(D̃∆xk|k−1

h + νk − r)T}

= 1
4}2
∑n

i=1[h(x̂k|k−1 + }sik|k−1)− h(x̂k|k−1 − }sik|k−1)]

×[h(x̂k|k−1 + }sik|k−1)− h(x̂k|k−1 − }sik|k−1)]T + R.

(22)

According to (14), the predicted error cross-covariance can be written as

Px̃k z̃k = E{(xk − x̂k|k−1)(zk − ẑk|k−1)T}

= E{(Sk|k−1∆yk|k−1)(D̃∆yk|k−1
h̃ + νk − r)T}

= E{(Sk|k−1∆yk|k−1)[1
}(
∑n

i=1 ∆yik|k−1µiδi)h̃(ŷk|k−1)]T}

= 1
2}
∑n

i=1

{
sik|k−1[h(x̂k|k−1 + }sik|k−1)− h(x̂k|k−1 − }sik|k−1)]T

}
,

(23)

where the Cholesky factor Sk|k−1 = [s1
k|k−1, s

2
k|k−1, · · · , snk|k−1] is derived by

Pk|k−1 = Sk|k−1S
T
k|k−1.
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Then, the estimated state x̂k, Kalman filtering gain Kk, and the state

estimation covariance Pk can be deduced.

x̂k = x̂k|k−1 + Kk(zk − ẑk|k−1), (24)

Kk = Px̃kz̃kP
−1
z̃k
, (25)

Pk = Pk|k−1 −KkPz̃kK
T
k . (26)

Combining time updating (11), (20) and measurement updating (21)–

(26), the proposed FCDKF operates recursively, whose pseudocode is shown

in Algorithm 1.

Algorithm 1 Fractional central difference Kalman filter

Initialization:

1: Set the system initial values: x0,P0

2: Set the noise stochastic values: q, r,Q,R

3: Set the short memory principle length: L

4: Set the interval length: }

On-line updating:

5: for k = 1→ K do

6: Cholesky decomposition:

Pk−1 = Sk−1S
T
k−1 Sk−1 = [s1

k−1, s
2
k−1, · · · , snk−1]

7: time updating :

x̂k|k−1 = f(x̂k−1)−
∑k

j=k−L+1(−1)jγjx̂k−j + q . state prediction

Pk|k−1 = 1
4}2
∑n

i=1[f(x̂k−1 +}sik−1)− f(x̂k−1−}sik−1)][f(x̂k−1 +}sik−1)

−f(x̂k−1−}sik−1)]T +Q− 1
}G

k−1

f̃
ST
k−1γ

T
1 − 1

}γ1Sk−1(Gk−1

f̃
)T

+
∑k

j=k−L+1 γjPk−jγ
T
j

. state prediction error covariance
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8: Cholesky decomposition:

Pk|k−1 = Sk|k−1S
T
k|k−1 Sk|k−1 = [s1

k|k−1, s
2
k|k−1, · · · , snk|k−1]

9: measurement updating :

zk|k−1 = h(x̂k|k−1) + r . measurement value estimation

Pz̃k = 1
4}2
∑n

i=1[h(x̂k|k−1 + }sik|k−1)− h(x̂k|k−1 − }sik|k−1)]

×[h(x̂k|k−1 + }sik|k−1)− h(x̂k|k−1 − }sik|k−1)]T + R

. measurement prediction error covariance

Px̃k z̃k = 1
2}
∑n

i=1

{
sik|k−1[h(x̂k|k−1 + }sik|k−1)−h(x̂k|k−1− }sik|k−1)]T

}
. prediction error cross-covariance

x̂k = x̂k|k−1 + Kk(zk − ẑk|k−1) . state estimation

Kk = Px̃k z̃kP
−1
z̃k

. Kalman gain

Pk = Pk|k−1 −KkPz̃kK
T
k . state estimation error covariance

10: end for

Remark 3.1 As analyzed in [10], high order error terms between the Stirling

interpolation formula and the Taylor series formula are controlled by }. A

reasonable choice of } makes the Stirling interpolation more attractive than

the Taylor series. The selection of } depends on the approximated function.

Remark 3.2 In order to ensure that the measurement prediction error co-

variance Pz̃k is invertible, the case of Rk being positive definite is required.

Actually, the case that Rk is positive definite is a sufficient condition for the

statement that Pz̃k is invertible. Nevertheless, this condition does encompass

the vast majority of applications of practical interest [25], so Rk being pos-

itive definite is a common and standard assumption in most literatures as

well as in this paper.
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3.1.2. Performance analysis

First, the approximate accuracy is analyzed briefly. For convenience, the

fractional dynamic system (Def. 2.1) can be converted intoxk = fk−1(xk−1)−
∑k

j=1(−1)jγjxk−j + ωk−1,

zk = hk(xk) + νk.
(27)

The algorithm performance is mainly influenced by the short memory length

L and the approximate accuracy of nonlinear functions f(xk) and h(xk).

In [10], based on the Taylor series expansion, the second order Stirling

approximate accuracy for an arbitrary function z = f(x) is addressed. The

first Stirling approximation is given

f(x̄)≈ f(x̄) + f
′
(x̄)(x− x̄) + }2f (3)(x̄)

3!
(x− x̄)

+}4f (5)(x̄)
5!

(x− x̄) + }6f (7)(x̄)
7!

(x− x̄) + . . . .
(28)

It is clear that the first order Stirling interpolation formula ensures an

accuracy of at least the first order Taylor series approximation. Besides, a

reasonable } can make the remainder of the Stirling interpolation formula

more closer to the high order terms of Taylor series.

On the other hand, because of the long memory property of fractional

calculus, the estimated state xk is related to all of the previous state, so the

longer the memory length L, the better the filter’s estimation accuracy.

Next, to analyze the numerical complexity of the proposed algorithm, the

number of required floating-point operations (flops) is computed. Here, ba-

sic arithmetic operations such as addition, subtraction, multiplication, divi-

sion, comparison, or square root are counted as one floating-point operation.

The number of flops for vector-vector operations, matrix-vector product, and

matrix-matrix product is shown in Table 1 [26].
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Table 1 Computational requirements of different operations

operation description flops

A±B A ∈ Rn×m, B ∈ Rn×m nm

AB A ∈ Rn×m, B ∈ Rm×l 2nml − nl

A−1 A ∈ Rn×n n3

chol(A) Cholesky factorization, A ∈ Rn×n 1
3
n3

Ax

A ∈ Rn×m, x ∈ Rm (2m− 1)n

m = n, A ∈ Rn×m diagonal, x ∈ Rn n

m = n, A ∈ Rn×m lower triangular, x ∈ Rn n(n+ 1)

However, two nonlinear functions f(xk) and h(xk) affect the time com-

plexity significantly, so it is hard to evaluate the exactly computational com-

plexity. Therefore, we assume that the required flops of two functions f and

h associated with the n-dimensional vector are F (n) and H(n,m), respec-

tively. The specific flops of each step are shown in Table 2. Totally, the costs

of the FCDKF are given by

TFCDKF = 14
3
n3 + (19 + 3L)n2 + (2L+ 1)n+ (4n+ 1)F (n)

+nm+ 8nm2 + 2n2m+ 2m+m3 + (6n+ 1)H(n,m),
(29)

so max{O(n3), O(m3), O(nF (n)), O(nH(n,m))} is the numerical complexity

of the proposed algorithm.

3.2. Adaptive fractional central difference Kalman filter

Assuming that α represents the estimated noise parameters q, Q, r, R.

In order to estimate the system state xk and parameter α simultaneously,

based on the MAP principle [27], the AFCDKF is presented.
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Table 2 Time requirements of each step

step flops step flops

ˆxk|k−1 (2L+ 1)n+ F (n) Sk−1
1
3
n3

Pk|k−1 4n3 + (12 + 3L)n2 + 4nF (n) Sk|k−1
1
3
n3

Pz̃ 4n2 + 2nm+ 2nm2 + 4nH(n,m) zk|k−1 H(n,m) +m

Px̃z̃ 2n2 + 2n2m+ 2nH(n,m) x̂k 2nm+m

Pk n2 + 4nm2 − 2nm Kk m3 + 2nm2 − nm

3.2.1. Noise statistics estimator

Using the Bayesian theorem, the posterior probability density is given by

p[Xk,α | Zk] =
p[Xk,α,Zk]

p[Zk]
, (30)

where Xk = [x0,x1, · · · ,xk] and Zk = [z0, z1, · · · , zk].

p[Zk] is unrelated to the parameters and system state. Thus the problem

can be transformed into optimizing the following objective function

J = p[Xk,α,Zk] = p[Zk | Xk,α] p[Xk | α] p[α], (31)

where p[α] can be considered as a constant.
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Exploiting Assumptions 2.3 and 2.6, p[Xk | α] is formulated as

p[Xk | α] = p[x0 | α] p[x1 | x0,α] p[x2 | X1,α] · · · p[xk | Xk−1,α]

= 1

(2π)
n
2 |P0|

1
2

exp[−1
2
(x0 − x̂0)TP−1

0 (x0 − x̂0)]
k∏
j=1

{
1

(2π)
n
2 |Q|

1
2

× exp{−1
2
[xj − f(xj−1) +

∑j
i=1(−1)iγixj−i − q]TQ−1

×[xj − f(xj−1) +
∑j

i=1(−1)iγixj−i − q]}
}

= 1

(2π)
n(k+1)

2 |P0|
1
2 |Q|

k
2

exp
{
− 1

2
(x0 − x̂0)TP−1

0 (x0 − x̂0)

−1
2

∑k
j=1{[xj − f(xj−1) +

∑j
i=1(−1)iγixj−i − q]TQ−1

×[xj − f(xj−1) +
∑j

i=1(−1)iγixj−i − q]}
}
,

(32)

where |·| means to the determinant, denoted as |A| = det(A).

Similarly, p[Zk | Xk,α] can be updated as

p[Zk | Xk,α]

=
k∏
j=1

p[zj | Xk,α]

=
k∏
j=1

1

(2π)
m
2 |R|

1
2

exp
{
− 1

2
[zj − h(xj)− r]TR−1[zj − h(xj)− r]

}
= 1

(2π)
mk
2 |R|

k
2

exp
{
− 1

2

∑k
j=1{[zj − h(xj)− r]TR−1[zj − h(xj)− r]}

}
.

(33)

Employing (32) and (33) into (31), the objective function J can be refor-

mulated as

J = p[Zk | Xk,α] p[Xk | α] p[α]

= 1

(2π)
(n+m)k+n

2 |P0|
1
2 |Q|

k
2 |R|

k
2

exp[−1
2
(x0 − x̂0)TP−1

0 (x0 − x̂0)]

× exp
{
− 1

2

∑k
j=1{[zj − h(xj)− r]TR−1[zj − h(xj)− r]

+[xj − f(xj−1) +
∑j

i=1(−1)iγixj−i − q]TQ−1

×[xj − f(xj−1) +
∑j

i=1(−1)iγixj−i − q]}
}
p[α].

(34)

17



Maximizing the objective function J is equivalent to maximizing ln J ,

and then the objective function can be reformulated as

ln J = −1
2

∑k
j=1

{
[zj − h(xj)− r]TR−1[zj − h(xj)− r]− k

2
ln |Q|

−k
2

ln |R|+ [xj − f(xj−1) +
∑j

i=1(−1)iγixj−i − q]TQ−1

×[xj − f(xj−1) +
∑j

i=1(−1)iγixj−i − q]
}

+ C,

(35)

where C = −1
2

ln |P0| − (n+m)k+n
2

ln 1
2π

+ ln p[α]− 1
2
(x0− x̂0)TP−1

0 (x0− x̂0) is

a constant.

As mentioned before, the estimated parameter α includes q, Q, r, R.

Let
∂ ln J

∂α
= 0. (36)

The following equations can be obtained.

∂ ln J
∂q

= 1
2

∑k
j=1 Q−1[xj − f(xj−1) +

∑j
i=1(−1)iγixj−i − q] = 0, (37)

∂ ln J
∂Q

= 1
2
(QT)−1

∑k
j=1[xj − f(xj−1) +

∑j
i=1(−1)iγixj−i − q]

×[xj − f(xj−1) +
∑j

i=1(−1)iγixj−i − q]T(QT)−1 − k
2
(QT)−1

= 0,

(38)

∂ ln J
∂r

= 1
2
R−1

∑k
j=1[zj − h(xj)− r] = 0, (39)

∂ ln J
∂R

= 1
2
(RT)−1

∑k
j=1[zj − h(xj)− r][zj − h(xj)− r]T(RT)−1 − k

2
(RT)−1

= 0.
(40)

In the previous formulas, the real state and parameters cannot be ob-

tained, so the estimated x̂j, x̂j|j−1 are employed to replace the real value xj.

Then, the estimated noise parameters are given by

q̂k = 1
k

∑k
j=1[x̂j − f(x̂j−1) +

∑j
i=1(−1)iγix̂j−i], (41)
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Q̂k = 1
k

∑k
j=1[x̂j − f(x̂j−1) +

∑j
i=1(−1)iγix̂j−i − q]

×[x̂j − f(x̂j−1) +
∑j

i=1(−1)iγix̂j−i − q]T,
(42)

r̂k = 1
k

∑k
j=1[zj − h(x̂j|j−1)], (43)

R̂k = 1
k

∑k
j=1[zj − h(x̂j|j−1)− r][zj − h(x̂j|j−1)− r]T. (44)

3.2.2. Unbiased analysis

As we can see, the noise parameters can be obtained by solving (41)–(44).

For integer order nonlinear systems with accurate posterior information, it

has been proved that the output error εj = zk − ẑk|k−1 subjects to zero-

mean Gaussian white noise sequence [27, 25]. Similar conclusions can be

generalized to systems described by Definition 2.1. Then

E{q̂k} = 1
k

∑k
j=1 E{x̂j − f(x̂j−1) +

∑j
i=1(−1)iγix̂j−i}

= 1
k

∑k
j=1 KjE{εj}+ q

= q,

(45)

E{r̂k} = 1
k

∑k
j=1 E{zj − h(x̂j|j−1)} = 1

k

∑k
j=1 E{εj}+ r = r. (46)

Therefore, q̂k and r̂k are unbiased. Next, the unbiased analysis of noise

covariance estimation Q̂k and R̂k is discussed. Employing (11) and (24) into

(42) yields

E{Q̂k} = 1
k

∑k
j=1 KjE{εjεT

j }KT
j = 1

k

∑k
j=1 KjPz̃jK

T
j , (47)

and substituting (20), (22) and (26) into (47) results in

E{Q̂k} = 1
k

∑k
j=1(Pj|j−1 −Pj) 6= Q. (48)
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The measurement noise covariance estimation R̂k can be formulated as

E{R̂k} = 1
k

∑k
j=1 E{[zj − h(x̂j|j−1)− r][zj − h(x̂j|j−1)− r]T}

= 1
k

∑k
j=1 E{εjεT

j }.
(49)

Utilizing (22), (49) can be reformulated as

E{R̂k} = 1
k

∑k
j=1

{
1

4}2
∑n

i=1[h(x̂j|j−1 + }sij|j−1)− h(x̂j|j−1 − }sij|j−1)]

×[h(x̂j|j−1 + }sij|j−1)− h(x̂j|j−1 − }sij|j−1)]T + R
}

6= R.

(50)

Then we can obtain the unbiased noise covariance estimation directly,

Q̂k = 1
k

∑k
j=1

{
Kjεjε

T
j K

T
j − 1

}G
j−1

f̃
ST
j−1γ

T
1 − 1

}γ1Sj−1(Gj−1

f̃
)T

− 1
4}2
∑n

i=1[f(x̂j−1 + }sij−1)− f(x̂j−1 − }sij−1)]

×[f(x̂j−1 + }sij−1)− f(x̂j−1 − }sij−1)]T

−
∑j

m=1 γmPj−mγ
T
m + Pj

}
,

(51)

R̂k = 1
k

∑k
j=1

{
− 1

4}2
∑n

i=1[h(x̂j|j−1 + }sij|j−1)− h(x̂j|j−1 − }sij|j−1)]

×[h(x̂j|j−1 + }sij|j−1)− h(x̂j|j−1 − }sij|j−1)]T + εjε
T
j

}
.

(52)

To further reduce the computation complexity, the recursive formulas are

developed.

q̂k = 1
k
[(k − 1)q̂k−1 + x̂k − f(x̂k−1) +

∑k
j=1(−1)jγjx̂k−j], (53)

Q̂k = 1
k

{
(k − 1)Q̂k−1 − 1

4}2
∑n

i=1[f(x̂k−1 + }sik−1)− f(x̂k−1 − }sik−1)]

×[f(x̂k−1 + }sik−1)− f(x̂k−1 − }sik−1)]T −
∑k

m=1 γmPk−mγ
T
m

+Kkεkε
T
kK

T
k − 1

}G
k−1

f̃
ST
k−1γ

T
1 − 1

}γ1Sk−1(Gk−1

f̃
)T + Pk

}
,

(54)
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r̂k = 1
k
[(k − 1)r̂k−1 + zk − h(x̂k|k−1)], (55)

R̂k = 1
k

{
(k − 1)R̂k−1 + εkε

T
k

− 1
4}2
∑n

i=1[h(x̂k|k−1 + }sik|k−1)− h(x̂k−1 − }sik|k−1)

×[h(x̂k|k−1 + }sik|k−1)− h(x̂k|k−1 − }sik|k−1)]T
}
.

(56)

Finally, the AFCDKF with unknown prior knowledge is derived. The

proposed AFCDKF can evaluate state and noise parameters simultaneously.

The recursively pseudocode is shown in Algorithm 2.

Algorithm 2 Adaptive fractional central difference Kalman filter

Initialization:

1: Set the system initial values: x0,P0

2: Set the noise stochastic initial values: q0, r0,Q0,R0

3: Set the short memory principle length: L

4: Set the interval length: }

On-line updating:

5: for i = 1→ k − 1 do

6: calculate Algorithm 1 on-line updating part

7: Noise statistics estimator :

q̂k = 1
k
[(k − 1)q̂k−1 + x̂k − f(x̂k−1) +

∑k
j=1(−1)jγjx̂k−j]

. estimated system noise mean

r̂k = 1
k
[(k − 1)r̂k−1 + zk − h(x̂k|k−1)]

. estimated measurement noise mean

Q̂k = 1
k

{
(k− 1)Q̂k−1 + Pk +Kkεkε

T
kK

T
k − 1

4}2
∑n

i=1[f(x̂k−1 + }sik−1)

−f(x̂k−1 − }sik−1)][f(x̂k−1 + }sik−1)− f(x̂k−1 − }sik−1)]T

−1
}G

k−1

f̃
ST
k−1γ

T
1 − 1

}γ1Sk−1(Gk−1

f̃
)T −

∑k
m=1 γmPk−mγ

T
m

}
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. estimated system noise covariance

R̂k = 1
k

{
(k − 1)R̂k−1 + εkε

T
k − 1

4}2
∑n

i=1[h(x̂k|k−1 + }sik|k−1)

−h(x̂k|k−1−}sik|k−1)][h(x̂k|k−1+}sik|k−1)−h(x̂k|k−1−}sik|k−1)]T
}

. estimated measurement noise covariance

8: end for

Remark 3.3 The numerical complexity of the AFCDKF is the same as the

proposed FCDKF. Without sacrificing time complexity, the merits of the p-

resented AFCDKF are summarized below

• Using the Stirling interpolation formula, the proposed FCDKF can es-

timate the system state as no derivatives are needed. When the order

α = 1, the FCDKF can be reduced to the CDKF.

• Based on the MAP principle, the AFCDKF algorithm can estimate

parameters and state concurrently. Besides, the MAP principle based

parameter estimation algorithm is unbiased.

Remark 3.4 The MAP principle based AFCDKF algorithm can estimate

parameters unbiasedly. In the future, we will further improve the proposed

adaptive algorithm to evaluate the noise covariance matrixes Q and R simul-

taneously.

4. Illustrative Examples

To demonstrate the performance of the FCDKF and AFCDKF, several

fractional discrete nonlinear dynamic plants are considered, including a s-

calar system and a multidimensional system. All algorithms are coded with

MATLAB R2017a. The simulations are carried out on a computer with Intel
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Core i3-2350M CPU @2.30GHz and RAM with 8.00 GB. Besides, the run-

ning time of program is computed by tic and toc in MATLAB to measure

the algorithm performance.

4.1. Scalar system

Consider the following scalar system, whose state space model can be

represented by ∇0.7xk = 3 sin(2xk−1)− xk−1 + ωk,

yk = xk + νk.
(57)

System state xk and measurement value yk are polluted by system noise ωk

and measurement noise νk respectively. ωk and νk are uncorrelated Gaussian

noise.

4.1.1. Fractional central difference Kalman filter

In this subsection, the proposed FCDKF is used to implement an on-line

real-time state estimation. Considering the plant mentioned before, noise dis-

tributions are respectively selected as ωk ∼ N (1, 0.81) and νk ∼ N (1, 0.25).

The algorithm parameters are set as: the initial state x0 = 0, the initial

covariance matrix P0 = 100, the short memory principle length L = 10, the

interval length } =
√

3.

To evaluate the accuracy of state, the square error (SE) and the root

mean square error (RMSE) are selected as performance indexes, which are

described as  SE
∆
= (xk − x̂k)2,

RMSE
∆
=
√

1
k

∑k
j=1(xj − x̂j)2.

(58)
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The estimated state of the fractional system is shown in Fig. 1. It can

be observed that the proposed FCDKF exhibits good performance in the

presence of noise.
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Fig. 1 State estimation of the FCDKF

Then, the effectiveness of the proposed FCDKF, FPF and FEKF present-

ed in [21] is compared. Fig. 2 shows SE of the FCDKF, FEKF and FPF.

To enhance the persuasion, 50 Monte Carlo experiments are conducted and

the corresponding results are presented in Table 3, where N indicates the

number of particles and estimation error e = x − x̂. From the simulation

results (Fig. 2 and Table 3), we can obtain that the proposed FCDKF per-

forms better estimation performance. Moreover, compared with the FPF,

the FCDKF performs better in terms of estimation accuracy and real-time.
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Fig. 2 Comparison between the FCDKF, FEKF and FPF

4.1.2. Adaptive fractional central difference Kalman filter

Next, the validity of the AFCDKF discussed in Section 3 is investigated.

Considering the aforementioned plant, the real noise distributions are chosen

as ωk ∼ N (6, 10) and νk ∼ N (5, 0.25), the algorithm parameters are set as:

the initial state x0 = 0, the initial covariance matrix P0 = 100 and the short

memory principle length L = 10. The interval length is altered to } =
√

1.3.

First the convergence of the parameter estimation is verified. The results

are shown in Fig. 3. The two parameter estimation curves converge to the

real values with iteration times. The experimental results show that the

unbiased estimation by using the proposed method is indeed obtained.

To clarify the stochastic property of the proposed algorithm, we do 1000

Monte Carlo experiments, and estimated parameters are shown in Fig. 4.

25



Table 3 Performance analysis of algorithms

N running time (s) ‖e‖1 ‖e‖2

FCDKF - 0.2162 39.6251 4.9930

FEKF - 0.2080 40.1034 5.0530

FPF

50 0.2268 40.7246 5.4080

100 0.2635 39.0319 5.0036

200 0.3408 38.5439 4.8978
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Fig. 3 Convergence of estimated parameters

The red dot represents real parameters, the histogram below the scatter plot

represents the kernel density of the measurement noise mean r, and the left

indicates the kernel density of the system noise covariance Q. As we can

see, the estimated mean r̂ concentrates on the side of the true value, and the
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estimated covariance Q̂ deviates from the true value slightly. Therefore the

effectiveness of the AFCDKF is confirmed.
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Fig. 4 Estimated parameters in 1000 trials

Next, the state estimation accuracy of the AFCDKF is investigated. As-

suming that the system noise covariance Q and the measurement noise mean

r are unknown, the AFCDKF is utilized to evaluate the state and parameters

simultaneously. For comparison, the proposed FCDKF is also employed to

evaluate the same system state. For the FCDKF, due to the real parameters

r and Q are unknown, the system noise mean and the measurement noise

covariance employed in the FCDKF are set as 4 and 8, respectively. The

SE is shown in Fig. 5. When the prior information is unknown, the figure

exhibits that the AFCDKF outperforms the FCDKF.
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Fig. 5 Estimation errors of the FCDKF and the AFCDKF

4.2. Multidimensional system

In order to further verify the effectiveness of two algorithms, a multidi-

mensional system is considered
∇αxk =

[ cos(x2,k−1)

−0.1x2,k−1 + e−0.05x3,k−1 + uk−1

−x3,k−1 − 0.5|x1,k−1|

]
+ωk,

yk = 0.1x1,k + 0.2x2,k + νk,

(59)

where xk = [x1,k, x2,k, x3,k]
T.

4.2.1. Fractional central difference Kalman filter

The algorithm parameters are set as: fractional orders α = [0.7, 1.2, 0.5]T,

q = [0, 0, 0]T, r = 0, Q = diag[0.3, 0.3, 0.001], R = 0.3, } =
√

3, the initial re-

al state x0 = [0, 0, 0.2]T, the initial covariance matrix P0 = diag[100, 100, 100],
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the initial estimation state x̂0 = [0.1, 0.1, 0.1]T. Besides, the input signal is

the Gaussian random white noise with the distribution N (0, 1).
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Fig. 6 Comparison between the FCDKF and FEKF

According to (59), it is clear that the system function is continuous and

non-differentiable at x1,k = 0. From the simulation results (Fig. 6 and Table

4), when the estimated state x̂1,6 = 0, the Jacobian matrix of the system

function does not exist and several unexpected values (e.g. NaN) appear, so

the FEKF is out of effect. For the proposed FCDKF, it can still estimate

the system state effectively because it is a derivative-free filtering algorithm.

Therefore the effectiveness of the FCDKF is confirmed.

Remark 4.1 The numerical accuracy of MATLAB is so high that situations

where the state equals to 0 will hardly appear. However, most of algorithms
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Table 4 The partial state estimation results of a multidimensional system

iteration time k

state x 5 6 7 8

real value

x1 0.2648 –0.0285 –2.1050 –3.0517

x2 3.5304 3.1571 3.0850 4.6176

x3 –0.7253 0.1687 –0.1870 –1.0194

FCDKF

x̂1 0.5073 0 0.6444 0.7759

x̂2 2.8416 5.2236 5.2380 5.1037

x̂3 –0.8909 0.1342 –0.2010 –0.2951

FEKF

x̂1 0.2086 0 NaN NaN

x̂2 2.9267 5.4280 NaN NaN

x̂3 –0.8086 1.1573 NaN NaN

are carried out on microcontrollers with limited precision, so in this experi-

ment, when a state value is less than 0.01, the state value is set as 0.

4.2.2. Adaptive fractional central difference Kalman filter

Next, the AFCDKF for a multidimensional system is also considered. The

algorithm parameters remain the same. Assuming the measurement noise

expectation r is unknown, the initial estimated value of measurement noise

expectation r̂0 is set as 0.5. As shown in Fig. 7, the estimated parameter r̂

converges to the real value with iteration times. Besides, for comparison, the

FCDKF is also utilized to estimate the system state. The RMSE is shown

in Fig. 8. When the noise prior information is unknown, the AFCDKF

performs better than FCDKF.
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Fig. 7 Parameter estimation for the MIMO system

5. Conclusions

In this paper, the state estimation problem is investigated for nonlinear

discrete fractional dynamic systems. Two filtering algorithms have been

developed. The FCDKF algorithm can be implemented without derivative

signal. Furthermore, a recursive AFCDKF is achieved, which can evaluate

the parameters and state simultaneously. The approximate accuracy and

numerical complexity of the two algorithms are analyzed. Effectiveness of the

proposed algorithms is illustrated through several simulation examples where

the FCDKF has superior estimation performance and the AFCDKF gives

the unbiased parameters estimation. In addition, as the prior information is

unknown, the AFCDKF outperforms the FCDKD.
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