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Abstract—A knowledge graph (KG) represents a collection of
interlinked descriptions of entities. It has become a key focus for
organising and utilising this type of data for applications. Many
graph embedding techniques have been proposed to simplify the
manipulation while preserving the inherent structure of the KG.
However, scant attention has been given to the investigation of
the importance of the entities (the nodes of KGs). In this paper,
we propose a novel entities importance learning framework
that investigates how to weight the entities and use them as a
prior knowledge for solving multi-stream regression problems.
The framework consists of KG feature extraction, multi-stream
correlation analysis, and entity importance learning. To evaluate
the proposed method, we implemented the framework based
on Wikidata and applied it to Australian retail fuel price
forecasting. The experiment results indicate that the proposed
method reduces prediction error, which supports the weighted
knowledge graph information as a means for improving machine
learning model accuracy.

Index Terms—data stream, regression, knowledge graph

I. INTRODUCTION

In today’s setting, where data is available in abundance,
ensuring that information is organised and structured is vital.
A knowledge graph (KG) is a knowledge base for structured
knowledge representation that has an intuitive and interrelated
architecture [1]. Structured data is a requirement for applica-
tions and can assist in information retrieval, enhanced query
accuracy and knowledge integration [2]. KGs have enabled a
range of applications, including domain-specific information
portals for query answering [3], [4] and knowledge manage-
ment for the increasing proliferation of information [5], [6].
However, many applications remain unexplored such as KG
application in multi-stream regression models.

In the current Big Data era, huge amounts of streaming
data are generated by government and industry from multiple
sources, known as multiple streams (multi-stream), such as

sensors and marketing activities [7]. Many time series and data
stream mining techniques have been applied for modelling and
solving related problems. However, most of these consider
that streaming data from different devices are isolated and
have not investigated the correlation between them. In this
paper, we focus on utilizing KGs for solving multiple data
stream regression problems (multi-stream regression). The
intuitive idea is to create a multi-stream network to capture
and maintain the interrelationship between streams, where the
nodes in the network are the dynamic data streams and the
edges are the interrelationships between streams. With a multi-
stream network, collaborative stream learning can be achieved.

However, how to learn the interrelationship between streams
is still an open problem. Current regression model advance-
ments have involved algorithm improvement [8], [9], and
even though algorithm improvements have achieved improved
performance, the approach is limited by the data available
to the model. KGs provide a contextual understanding of
an entity, which is traditionally a missing aspect in the
majority of data streams [10]. It is hypothesised that providing
the regression model with semantic knowledge will result
in enhanced regression model accuracy. In other words, the
interrelationship between streams can be acquired by the KG-
based stream similarity learning.

The motivation of this study is to exploit KG semantics to
improve the accuracy of multi-stream regression rather than
only using the correlation retrieved from historical data. In
this paper, we focus on multi-stream forecasting which is
based on our proposed multi-stream regression model. The
main contributions of this paper are:

1) A framework for learning KG entity importance via KG
semantic feature extraction and multi-stream correlation
analysis.



2) An algorithm for utilising KG information for collabo-
rative multi-stream regression and forecasting.

3) An application based on the proposed framework for
Australian retail fuel price forecasting.

To evaluate the performance of the proposed regression model,
we apply the algorithm to the task of forecasting Australian
fuel prices. The results demonstrate that the proposed algo-
rithm is beneficial to forecasting accuracy.

The rest of this paper is organized as follows. The current
advancements in KG, data stream forecasting and regression
models are introduced in Section II. In Section III, we propose
our KG based multi-stream regression framework. In Section
IV, we apply the algorithms to a multi-stream forecasting
problem: Australian retail fuel price forecasting. Finally, we
present our conclusions and recommendations for future work
in Section V.

II. LITERATURE REVIEW

In this section, we formally present the definition of the
KG. Then the data stream forecasting problem and the state-
of-the-art regression algorithms are discussed.

A. Knowledge graph

A knowledge graph (KG) is a data structure that is used
to contextualise entities and their relationships. In the KG
framework, entities are represented as nodes and the rela-
tionship between entities as edges. The structure describes an
interconnected web of information that is also highly intuitive.
KG can be produced from a variety of corpora including
unstructured text such as web articles and semi-structured text.
KGs have also been built from existing knowledge bases [11].
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BP p.l.c. is a British multinational oil and gas company

Fig. 1. A example of the basic elements of a knowledge graph. The textual
representation of the KG (left) and the graphical representation of the KG
(right)

In a typical KG, knowledge is described as relational data
represented as triples, i.e. (subject, predicate, object). The
subject is the source entity that is joined to an object entity
via a specified relationship, the predicate. Fig. 1 illustrates
the textual and graphical representation of two entities: BP
(BP p.l.c. is a British multinational oil and gas company)
and New York Stock Exchange related by the relationship,
TRADES ON. Thus, a KG is fundamentally a collation of
knowledge triples.

In recent years, advances in the KG field have been driven
by the efforts of projects such as NELL [12], Google KG and
WikiData that continue to shape the approach of online data
extraction and promote interest in KG research. Ongoing re-
search efforts focus on entity and relation extraction techniques
such as OpenIE [13], OntoILPER [14] and DIG [15]. Such

techniques present increasingly efficient and accurate methods
of extracting useful data for KG.

As research in KG extraction and creation mature, so do
the opportunities for KG applications. KG-based applications
require domain-specific KGs or data for use. Current appli-
cations include knowledge retrieval and search enhancement
[16]. However, applications beyond this remain unexplored.

B. Data stream forecasting

Data stream forecasting is closely related to time series
analysis and multivariate time series analysis. A time series is
a set of observations xt, each one being recorded at a specific
time t. A multivariate time series is considered as a vector-
valued (multivariate) time series that has Xt = {xt1, . . . , xtk}
at each time t. They not only have serial dependence within
each component series xti but also interdependence between
the different component series xti and xtj , i 6= j [17].

From a data-level perspective, both time series and mul-
tivariate time series can be considered as a type of data
stream. However, a data stream contains much uncertainty
regarding time information t, as in the data stream, the t
might be missing and only the order of the data is preserved,
or the data received in a time slot might have no order
information but the time slot order is available. From the
learning task perspective, multivariate time series assumes that
for all xti ∈ Xt is available and the task is to predict the Xt+1,
while a data stream considers that some xti ∈ Xt could be
missing. Therefore, data stream algorithms may need to infer
the missing values first and then predict the Xt+1.

Time series regression models are widely used for forecast-
ing in business and econometric applications [18], however,
research in multi-stream regression is much more limited.
Multi-stream data may reveal trends beyond the patterns recog-
nised in a single stream, and thus multi-stream models can
outperform single-stream models [19], [20]. As an example, in
relation to Australian local fuel prices, the multi-stream view is
significant as gas stations encounter local market competition
while also being affected by global variables such as exchange
rates and stock market indices.

C. Regression analysis

Regression analysis is a statistical process to estimate the
relationships among variables and has been widely used for
prediction and forecasting [17]. A regression model is a func-
tion that describes the relationships between the independent
variables X , and the dependent variable y, with some unknown
parameters w. denoted as y = f(X,w).

Bayesian regression is a regression model defined in prob-
abilistic terms, with explicit priors on the parameters. The
Bayesian probabilistic model is given below, where the output
y is assumed to be Gaussian distributed around Xw:

p(y|X,ω, ε) = N (y|Xw, ε),

where w is the coefficient vector that w = (w1, . . . , wd), and
ε is treated as a random variable that is to be estimated from
the data. The priors can have regularising effects, such as L1



regularisation (i.e. Lasso) or L2 regularisation (i.e. Ridge),
which stabilise the predicted values by reducing variance. It
is precisely this ability to penalise over-complex models that
makes the Bayesian approach highly effective [21].

Decision tree regression is a non-parametric supervised
learning method that infers simple decision rules from data for
prediction. The model is obtained by recursively partitioning
the data space such that the samples with the same labels are
collated. The model creates nodes which are partitioned based
on an impurity function H(X). For regression, a common
criterion is the mean squared error (MSE):

ȳm =
1

Nm

∑
i∈Nm

yi,

H(Xm) =
1

Nm

∑
i∈Nm

(yi − ȳm)2,

where Xm is the training data in node m, and Nm is the
number of data instances in the node. The simplicity of the
method means that the speed of predictions is faster than other
methods. Despite its simplicity, the predictive performance of
decision tree applications is maintained [22].

Support vector regression is an application of support vector
machines which employs kernels to solve regression problems.
A kernel function is used to map the original space into a
higher dimensional space and vice versa. Using kernels allows
a model to learn a linear function in the kernel-induced space
and map the function back into the original space. Due to the
flexibility of this method, it remains a highly researched topic
for application and model optimisation [23], [24].

In addition to the above regression models, nearest neigh-
bors regression, perceptron and neural network regression,
least absolute shrinkage and selection operator (LASSO) are
also well-established regression models. Most of these can
be adapted as autoregressive models for handling multivariate
time series focusing tasks. However, very few consider se-
mantic information as prior knowledge for variable correlation
analysis.

III. KNOWLEDGE GRAPH-BASED MULTI-STREAM
REGRESSION FRAMEWORK

In this section, we formally present the proposed KG-based
multi-stream regression model. The model includes knowledge
graph feature extraction, multi-stream correlation analysis and
entity importance learning. The overall framework is shown in
Fig. 2. The intuitive idea is to measure the similarity between
two streams from both KG semantic similarity (knowledge-
level) and data numerical value correlation (data-level), and
then use machine learning algorithms to optimize the semantic
information (the entities in the KG) so that the KG semantic
similarity and the data value correlation can be synchronized.

A. Knowledge graph feature extraction

The first stage is to extract semantic information from
the KG to describe the streams. KGs contain repositories of
interrelated facts which suggests the quantifiable significance

between entities. Leveraging this similarity measurement re-
quires the transformation of a KG into feature space through
feature extraction. This stage involves graph representation and
graph embedding. The intuitive idea is to consider the stream
as an entity in the KG and to use the correlated edges and
nodes in the KG to describe the stream entity. For example, the
feature in Fig. 1 is ’TRADES ON New York Stock Exchange’.
As previously described, a KG is constructed on knowledge
triples, i.e. (subject, predicate, object), thus, a KG feature can
be described as a unique predicate object combination. The
set of features XKG

i of Streami from the KG is the feature
space, denoted as

XKG
i = {fj}(j∈1,...,n), wherefj ∈ (predicate, object).

Accordingly, the features to describe the similarity between
stream1 and stream2 can be formulated as follows.

XKG
1,2 = SimFeat(XKG

1 , XKG
2 ). (1)

One naive similarity feature function is the indicator function
of the union of XKG

1 and XKG
2 . Since feature exploration is

a critical problem for graph-related tasks [25]–[27], how to
control the details of the semantic information extracted from
KG is still an open problem. In the application section, we
discuss how to control semantic information extraction for the
case study.

After extracting the features, it is possible to create an m×n
feature matrix, where m is the number of subject entities and
n is the number of KG features. In this way, it is possible to
merge multiple KG entities into a single feature matrix.

For a given feature matrix, the similarity is measured by
considering the intersection of two entities. Conceptually, this
is a comparison of the number of adjacent entities between the
target entity and the object entity against the total number of
entities neighbouring the target entity. The learned similarity
for multiple streams is applied as a weighting or threshold for
multi-stream regression problems. In this way, better correlated
streams have a more significant impact on the target values.

B. Multi-stream correlation analysis

The second stage is to analyse the correlation between
multiple streams. For any two streams Stream1 and Stream2,
their historical data, denoted as S1, S2, can be used to estimate
the correlation. How to define the correlation to maximize the
accuracy of the regression model is a challenging problem.
In this section, we apply statistical evaluation to study the
strength of a relationship between S1 and S2. Statistical
analysis is useful to determine if there are possible connections
between variables. To allow for the possibly unpredictable
change in future observations, it is natural to suppose that
each observation s1t is a realized value of a random variable
S1t [17]. The unpredictable change in future observations is
also known as concept drift [28], [29].

A straightforward method to estimate the correlation be-
tween two streaming data S1 and S2 is the Pearson correlation
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Fig. 2. A KG-based multi-stream regression framework. The fundamental idea of the proposed framework is to utilize knowledge graph data as a prior
knowledge to select the most relevant streams for regression. In Stage 1, any two streams, Stream1 and Stream2, can be presented as a feature vector based
on the KG entities, denoted as XKG

1 , XKG
2 . Uniting the XKG

1 , XKG
2 , a new feature vector that presents the similarity between Stream1 and Stream2 can

be acquired, denoted as X = SimFeat(XKG
1 , XKG

2 ). For Stage 2, the actual data values (data streams S1, S2) can be collected from the historical data,
and the correlation between S1 and S2 is measurable. One can consider the correlation as the target variable, denoted as y = corr(S1, S2). As a result, a
learning model can be built to estimate the correlation between two streams from the KG perspective.

coefficient (PCC). In our case, the PCC is calculated as
follows,

ρS1,S2 =
cov(S1, S2)

σS1σS2

, (2)

where cov is the covariance and σ is the standard deviation.
To remark, the range of PCC is between +1 and −1, negative
correlation is important as long as we assign it with a proper
parameter w.

The intuitive idea of stage 2 is to select the most
relevant streams for building the regression model for
the target stream. For example, given a multi-stream set
S = {S1, S2, S3, S4}, assume the correlations ρS1,S2=0.8,
ρS1,S3=−0.6, ρS1,S4=0.05. If we want to build a regression
model for S1, the data from S2 and S3 is more useful than
S4. Cross-correlation could also be helpful. Since the main
focus of this paper is to embed the data-level correlation into
the semantic knowledge, how to select the best correlation
function is considered to be future study.

C. Knowledge graph-based entity importance learning

The third stage is KG entity importance learning, that is,
acquiring the weights of KG entities via machine learning
techniques based on historical data. To make the learning
process explainable, we apply linear regression to train the
model. The cost function is as follows

yρS1,S2
= wXKG

1,2 + ε.

where XKG
1,2 is acquired by Eq. (1), yρS1,S2

is the PCC of two
streams shown in Eq. (2), w is the parameter vector or the
importance of XKG

1,2 , and ε is the error term.
With the entity importance model, for any two given

streams, the system can easily calculate their correlation even

if the historical data is missing. This model could also be
helpful for stream clustering and outlier stream detection.

D. The implementation of the KG-based multi-stream regres-
sion and forecasting

This section presents the implementation details of the
proposed multi-stream regression and forecasting algorithms.
The pseudocodes are shown in Algorithms 1 and 2.

Algorithm 1: KG-based Multi-stream Regression
Input : knowledge graph database, KG

multi-stream training data, S
random training stream size, n

Output: the KG entity importance learning model

1 Randomly select n streams as sample stream set S′;
2 for Si in S′ do
3 for Sj in S′ do
4 if i 6= j then
5 Extract the features from KG, XKG

i,j ;
6 Merge XKG

i,j as a matrix, denoted as
MXKG ;

7 Compute the PCC yρSi,Sj
;

8 Merge yρSi,Sj
as a vector, denoted as yρ;

9 Optimize the learning model yρ = wMXKG + ε;
10 return the learning model

To start with, the system needs a KG database for semantic
feature extraction, such as Freebase, DBpedia, YAGO, and
NELL as summarized in [1]. The historical data of the streams
is also required for data-level correlation analysis. Since the



number of available data streams could be very large, a
parameter n should be given to control how many streams
are used for building the regression model. From line 1 to 4,
the system randomly selects a subset of the multi-stream and
for looping to compare all pairs of streams to initialize the
yρSi,Sj

and XKG
1,2 for building the entity importance learning

model. KG semantic feature extraction is implemented in lines
5,6. The data-level correlation analysis is in lines 7,8, and the
learning stage is in line 9. Line 10 returns the learning result.

Algorithm 2: KG-based Multi-stream Forecasting
Input : knowledge graph database, KG

KG entity importance learning model, LKG
regression model for forecasting, Lreg
stream relevance threshold, default α = 0.5
lag selection range, default β ∈ Z+

≤10
Output: the forecasting result of the stream ŷ

1 for Si in S do
2 Extract the features from KG, XKG

i,tar;
3 Estimate the correlation ŷρSi,Star

= LKG(XKG
i,tar) ;

4 if |ŷρSi,Star
| ≥ α then

5 Store the data of Si as training data for
regression, denoted as M train

S ;

6 Initialize RMSEmax = 0;
7 for β ∈ Z+

≤10 do
8 Evaluate the ˆRMSE of Lreg on M train

S with lag β;
9 if RMSEmax < ˆRMSE then

10 RMSEmax = ˆRMSE;
11 βmax = β;

12 Forecast, ŷ = Lreg(M test
S , βmax);

13 return ŷ

Denote the target stream for forecasting as Streamtar.
For each stream, we estimate the semantic similarity via the
KG with the learned entity importance (LKG) and store the
strong relevant streams for regression in lines 1-5. The α is
a hyperparameter and we consider the streams with estimated
correlation greater than 0.5 as relevant streams. As a rule of
thumb, for the absolute value of PCC: 0.0-0.3: very weak;
0.30-0.5: weak; 0.5-0.7: moderate; 0.7-0.9: strong; 0.9-1.0:
very strong [30]. Admittedly, calculating the PCC of Si,
Star from the data-level to select strong relevant streams is
more accurate. However, as discussed in subsection II-B, data
streams require preprocessing which is a complicated task. If
the system can find the most relevant streams based on the
knowledge-level information, it could save the cost of data
stream preprocessing. From lines 6 to 11, we select the best
performing lag parameter based on a grid search with a range
β ∈ Z+

≤10. The best lag value βmax with the build regression
model Lreg will be applied for forecasting in line 12. The
forecasting result is returned in line 13.

IV. APPLICATION AND EXPERIMENT

This section presents an implementation of the proposed
framework in Section III. The chosen application is fuel price
forecasting for Australian gas retail stations. In Australia,
fuel is an essential resource for the continued expansion
and development of cities and remains a highly integrated
commodity that powers industries, businesses and day-to-day
lives. For this reason, the effects of the global production
and pricing of oil have significant impacts on the Australian
economy [31], [32], as well as motorists’ daily activities. It
follows that fuel price is a highly speculated resource due to
its significant effect on many economies.

The objective of this application is to analyse historical
petroleum prices and predict the price for the next seven days.
In Australia, fuel stations are in close proximity to one another,
hence factors such as convenience and price are pivotal in this
highly competitive market. Motorists choose convenience and
pricing as major factors in deciding which fuel station to go
to fill up their cars. Motorists can benefit from accurate fuel
price prediction, such as purchasing petroleum at the lowest
point in a price cycle. The evaluation metric is the root mean
square error (RMSE) of the predictions and the actual values.
According to the prediction results, it is envisioned that the
proposed KG-based multi-stream regression can improve the
accuracy of fuel price forecasts by utilising the contextual
knowledge between local entities. The original fuel price
dataset is available online1.

A. Dataset description

Wikidata KG dataset. Two domain-specific KGs are gen-
erated for feature extraction and entity learning. The first KG
knowledge base relates to the business domain to identify
relationships between business entities. The second KG knowl-
edge base relates to the geographic domain to determine the
relationships between suburb entities. The KGs were created
by extracting knowledge triples from the Wikidata knowledge
base from filtered entity sets. Filtered sets were produced from
the SPARQL query service to ensure the relevance of the
extracted data and are summarised in Table I. KG extraction
was implemented using the Python programming language
and purpose-built library, pywikibot, for data extraction from
Wikidata. For the predicates in the KGs, a custom defined
schema was used based on the Wikidata property. For example,
for the Wikidata property ’instance of’, the predicate used
was IS A. The predicate schema is summarised in Table II.
Finally, the feature matrix was extracted from each KG. The
KG statistics are summarised in Table III.

Using the feature matrices extracted from the KGs, similar-
ity was correlated for 250 gas stations. The size of the resulting
correlation training matrix was 31,375 by 271, i.e. (gas sta-
tion combinations) by (number of features). The correlation
training matrix was implemented in the regression model by
imposing a threshold correlation value of α = 0.5 to data
streams. For regression modelling, fuel prices were gathered

1https://data.nsw.gov.au/data/dataset/fuel-check



for 1,580 gas stations twice daily over a 2-year period from
August 2016 to July 2018. The gas station dataset also includes
information such as address, suburb, postcode, brand and fuel
types. In this paper, the fuel type predicted was P98.

TABLE I
FILTERED SET CRITERIA (WIKIDATA QUERY SPARQL)

KG domain Set size SPARQL filter criteria

Business 400 Instance of (P31) business (Q4830453)
Industry (P452) petroleum industry (Q862571)

Geographic 600
Instance of (P31) suburb (Q188509), and
Located in the administrative territorial entity
(P131) New South Wales (Q3224).

TABLE II
PREDICATE SCHEMA FOR KG. EXAMPLES (PREDICATE OBJECT

COMBINATION)

Wikidata property predicate Example

instance of (P31) IS A IS A business

industry (P452) IN INDUSTRY IN INDUSTRY
petroleum industry

follows (P155) WAS PREVIOUSLY WAS PREVIOUSLY
Enterprise Oil

owned by (P127) OWNED BY OWNED BY BlackRock

owner of (P1830) OWNER OF OWNER OF
Showa Shell Sekiyu

country (P17) IS LOCATED IN IS LOCATED IN
Australia

population (P1082) HAS POPULATION HAS POPULATION
7111

postal code (P281) HAS POSTCODE HAS POSTCODE 2007

TABLE III
KG STATISTICS

KG domain No. Entities No. Relationship No. Features

Business 592 1401 227
Geographic 891 1847 44

Australian fuel price dataset. For prediction, 8 gas stations
were randomly chosen, as summarised in Table IV. Due to the
absence of available data for some petrol stations in August,
each data stream was truncated to match the length of the
shortest data stream. The data was truncated to ensure sets
were comparable and all data points were genuine and would
not produce misleading results. After pre-processing, each data
stream had 1254 data points equating to 628 days of actual
data.

B. Forecasting parameter settings

The regression models, Bayesian ridge regression (BRR)
and decision tree regression (DTR) were implemented for
evaluation. Each model was initially trained with the 8 selected
stations with an initial window of 360 data points (i.e. 6
months) for a prediction period of 14 units ahead (i.e. 7 days).
Models were evaluated over 10 regressive lags for stream S1

to determine the lag which minimised the prediction error. In

TABLE IV
SELECTED GAS STATIONS STREAMS

Stream ID Gas station Suburb Fuel type

S1 7-Eleven Adamstown P98
S2 7-Eleven Albion Park Rail P98
S3 7-Eleven Argenton P98
S4 BP Connect Caringbah P98
S5 BP Connect Mortdale P98
S6 Coles Express Alexandria P98
S7 Coles Express Ultimo P98
S8 Coles Express Waterloo P98

Fig. 3, the mean square error (MSE) is plotted against each
lag.

The lag which minimised MSE was used to perform sliding
window prediction over the following 730 data points (i.e. 1
year). Regression models were implemented using the Python
programming language and machine learning library scikit-
learn. The model parameters are summarised in Table V.

TABLE V
REGRESSION MODEL PARAMETERS FOR SCIKIT-LEARN PYTHON PACKAGE

Model Function Parameters

BRR linear model.BayesianRidge α1=1e-06, α2=1e-06,
λ1=1e-06, λ2=1e-06

DTR tree.DecisionTreeRegressor criterion=mse, max depth=10

C. Forecasting results

To quantitatively evaluate the performance of the proposed
multi-stream regression model for forecasting tasks, the fore-
cast error is measured by the difference between the actual
value and the forecast value for the corresponding period:
Et = Yt−Ft where E is the forecast error at period t, Y is the
actual value at period t, and F is the forecast for period t. The

root mean square error is calculated by RMSE =

√∑N
t+1 E

2
t

N .
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Fig. 3. Lag selection for BRR and DTR

Fig. 4 shows the prediction results for the three regres-
sion models, BRR, DTR and the collaborative multi-stream
regression models KG-BRR, KG-DTR. From the results, we
observe that there is a large discrepancy between the predicted
results between regression models. The reason for this is
that simple regression models such as DTR are more readily
operational than parameter heavy models such as BRR. The
dependency on parameters is further exemplified from the
MSE trend for the BBR and DTR lag selection plot in Fig.
3. From Table VI we observe that collaborative multi-stream
regression methods outperform baseline regression models.
This indicates that entity similarity learned from the KG is



TABLE VI
RMSE SUMMARY OF EVALUATION RESULTS. SINGLE-BRR AND SINGLE-DTR ARE THE FORECASTING RESULTS ONLY BASED ON THE TARGET STREAM.
BRR AND DTR ARE THE FORECASTING RESULTS BASED ON MULTI-STREAMS WITHOUT CONSIDERING THE RELEVANCE BETWEEN STREAMS. KG-BRR

AND KG-DTR ARE THE FORECASTING RESULTS BASED ON THE KG ESTIMATED CORRELATION.

Single-BRR BRR KG-BRR Single-DTR DTR KG-DTR

S1 221.48 228.02 228.79 163.90 167.37 174.26
S2 312.60 282.06 287.7 274.42 215.44 192.97
S3 183.59 188.76 189.56 180.22 171.39 160.17
S4 302.74 275.14 270.65 259.21 171.74 176.83
S5 298.31 285.74 282.38 297.43 181.73 190.4
S6 279.78 253.63 250.05 230.76 153.87 155.3
S7 301.99 268.41 267.3 277.93 196.83 196.15
S8 281.97 252.01 247.25 233.90 161.95 167.59

Aver.
rmse 272.81 254.22 252.96 239.72 177.54 176.71
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Fig. 4. Prediction plots for 8 gas stations using BRR, DTR, KG-BRR and KG-DTR prediction models for Feb, Mar, Apr 2018. Parameters: tahead = 14,
BRRlag = 7, DTRlag = 8

useful and improves regression accuracy. It is manifest that
multi-stream forecasting is more accurate than single stream.
However, the improvement due to using KG is marginal. This
is reasonable because we only use the selected eight streams
to build the regression model. The KG estimated correlation
only detected one or two streams as not relevant. This problem
could be resolved by increasing the stream pool. In other
words, the results could be further improved by involving more
streams, and this will be our next step in multi-stream related
research.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a framework for collabora-
tive multi-stream regression using correlations learned from
KGs. The framework detailed KG feature extraction, multi-
stream correlation analysis, entity importance learning and
was applied to predict fuel prices in Australian gas stations
from real-world datasets. In the experiments, multi-stream
forecasting was evaluated against existing regression models

BRR and DTR. The experiment results show that the proposed
algorithms improved the performance, which indicates the
potential of the framework to improve multi-stream regression
accuracy.

The following research directions are suggested for future
work: (1) The current implementation only considered a
threshold condition from the learned similarity. A weighting
method for sample selection could be explored to enhance the
results. (2) The current implementation work of the correlation
information is applied to data that is external to the regression
models. Exploring an integration of the KG into the regression
algorithm itself would enhance the results and allow the
approach to be more accessible. (3) We verify the effectiveness
of the method for three regression models only. The framework
can be extended to more sophisticated regression models
(e.g. ARIMA) to further demonstrate the applicability of the
model. (4) The RMSE results were marginal for some streams.
Thus, undertaking further optimisation of regression models is
suggested to consolidate the results.
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