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Abstract—Image object co-segmentation aims to segment com-
mon objects in a group of images. This paper proposes a novel
neural network, which extracts multi-scale convolutional features
at multiple layers via a modified VGG network and fuses them
both within and across images as the intra-image and the inter-
image features. Then these two kinds of features are further
fused at each scale as the multi-scale co-features of common
objects, and finally the multi-scale co-features are summed up
and upsampled to obtain the co-segmentation results. To simplify
the network and reduce the rapidly rising resource cost along
with the inputs, the reduced input size, less downsampling
and dilation convolution are adopted in the proposed model.
Experimental results on the public dataset demonstrate that the
proposed model achieves a comparable performance to the state-
of-the-art co-segmentation methods while the computation cost
has been effectively reduced.

Index Terms—Image co-segmentation, object co-segmentation,
multi-scale, multi-layer, dilated convolution.

I. INTRODUCTION

Image object co-segmentation aims to segment the common
objects in a group of images that contain the same or similar
objects, and researchers have paid sustained attention to it and
the related research areas such as image co-saliency detection
[1]–[5] and image object co-localization [6]. Generally, the
common object segmentation needs both intra-image object
probability computation and inter-image object probability
computation, as the common object regions not only get high
object probabilities but also share high inter-image similarities.

There have been quite a few methods for image co-
segmentation [7]–[14]. Most of the methods are unsuper-
vised, and the common objects are discovered based on some
low-level handcrafted features such as luminance, colors or
textures. The similarities among the common objects are
computed based on the pixels or regions. In [7], the objects are
segmented from the background by clustering the image pixels
into two clusters that can be maximally distinguished. In [1]–
[3], [9], [10], region similarities are computed among all the
images of the group, while in [8], regions are compared only
within the selected images which share the most similarities
with the target image. In [12], regions are compared only
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Fig. 1. An overview of the proposed model. It can be viewed as three
parts. The input images are first passed through the modified VGG network,
which share exactly the same layer structure and parameters. Then, multi-
scale features are extracted at each layer (represented in colors and they are
stacked according to the scales). They are fused both within each image (in
grey) into intra-image features and across images (in colors) into inter-image
features, and then the intra-image features and the inter-image features are
further fused at each scale. The features at different scales are represented in
the corresponding colors. At last, the fused multi-scale features are summed
up and upsampled to obtain the coarse co-segmentation results and final co-
segmentation results.

within the selected simple images. In [11], guided by quality
measurement, saliency maps are fused from different images
using the dense correspondence.

Some methods utilize not only the low-level features but
also the high-level semantic features from some pre-trained
convolutional neural networks (CNNs). In the recent decade,
CNNs have been successfully applied in various research areas
and applications, such as image classification, image recogni-
tion [15], [16] and image semantic segmentation [17], [18]. In
[4], [13], the similarities between regions are computed both
by traditional low-level features and high-level CNN features.
In [6], a deep descriptor transformation (DDT) method is
proposed to evaluate the correlations of deep descriptors gen-
erated from pre-trained models and then locate the common
category-consistent objects in a set of unlabeled images. In
[14], the common objects are optimized to be separated from
the backgrounds, to achieve the highest similarities among
the objects and the lowest similarities between the objects
and backgrounds, based on the high-level pre-trained CNNs



features.
There are also some methods that are fully supervised and

trained based on deep CNNs. In [5], the networks are trained
with the shared branches to extract intra-image features for
each input image as well as a combined branch to extract
inter-image features (co-features), and the two features are
combined to final segmentation predictions.

In image co-segmentation area, deep CNNs have not been
fully explored. Thus, in this paper, a novel neural network
with multi-scale feature fusion is proposed. In this network,
first, multi-scale convolutional features at multiple layers are
extracted through the modified VGG network. Then, they
are fused across images as the common inter-image features
of the objects as well as within each image as intra-image
features, and they are further fused to predict the coarse
co-segmentation results. At last, the coarse co-segmentation
results are refined via grab-cut based method to obtain the
final segmentation results.

When training a neural network with multiple input images
simultaneously, the cost of resources will increase rapidly with
the inputs. To reduce the resource cost, the reduced input size,
less downsampling and dilation convolution are jointly adopted
in the proposed model.

Overall, the main contributions of the proposed model are
twofold:

• A novel deep neural network with multi-scale feature
fusion is proposed for image co-segmentation, and the
experimental results demonstrate its comparable perfor-
mance with the state-of-the-art methods.

• The proposed network has successfully reduced the cost
of resources while achieving comparable results.

The rest of the paper is organized as follows. In section II,
the details of the proposed model are explained. In section
III, the experimental results are shown and analyzed, and the
conclusions are drawn in section IV.

II. THE PROPOSED MODEL

The proposed model overall contains three parts, as shown
in Fig. 1, the first part is a modified VGG network (the left to
the braces), the second part is feature extraction and fusion (in
the braces) in which multi-scale features at multiple layers are
extracted and fused, and the third part is upsampling (the right
to the braces), in which losses are computed and the coarse
co-segmentation results and final co-segmentation results are
obtained.

For a group of input images {I1, I2, ...Ik, ..., IK}, they are
first passed through the modified VGG network, where K
denotes the number of input images. Then, multi-scale features
Fm,n
k , m = {1, 2, ..., 4}, n = {1, 2, ..., 5} are extracted at

multiple layers, where m denotes the scale and n denotes the
layer. Then, Fm,n

k are fused both within each image into intra-
image features, denoted as Fintra

m
k , and across images into

inter-image features, denoted as Finter
m. And then Fintra

m
k

and Finter
m are further fused at each scale into co-features

Fco
m
k . At last, Fco

m
k are summed up into Fcok and upsampled

to obtain the coarse co-segmentation results Scok and final
co-segmentation results Rcok.

A. The modified VGG network

The modified VGG network is modified from the standard
VGG-16 network. We modify the parameters in some layers,
and the modification details are shown in Table I, the param-
eters that are not mentioned remain the same as the original
network.

The main purpose to modify these layers is that when input
images are far small (such as 128× 128), the feature blobs in
the network should maintain their functions, thus, the pooling
layers and the last two convolutional layers Conv5 2 and
Conv5 3 are modified as Table I shows.

TABLE I
THE IMPLEMENTATION DETAILS OF THE LAYERS IN II-A.

layers params layers params

Max pooling 3
Max pooling 4

Kernel: 3× 3
Pad: 1

Stride:1
Conv5 2

Dilation: 2
Pad: 2

Output: 256
Conv4 1
Conv4 2
Conv4 3
Conv5 1

Output: 256 Conv5 3
Dilation: 5

Pad: 5
Output: 256

B. Feature extraction and fusion

As shown in Fig. 1, after images are passed through
the modified VGG network, the multi-scale features (scale1,
scale2, scale3, scale4) at multiple layers Fm,n

k are ob-
tained (features at conv1 2, conv2 2, conv3 3, conv4 3 and
conv5 3 are in cyan, pink, powder blue, green and blue,
respectively) via dilated convolution. Then, they are fused at
each scale within each image into intra-image features Fintra

m
k

and across the images into inter-image features Finter
m. To

make it clear in Fig. 1, the fusions in different scales are
represented in different colors (arrows in purple, red, dark
green, and cyan, respectively). And then, Fintra

m
k and Finter

m

are further fused and upsampled at each scale to obtain Fco
m
k .

In this part, the structure of each image branch is the same
and the parameters are shared. The details are shown in Table
II.

C. Upsampling

In this part, the multi-scale co-features Fco
m
k are summed up

and upsampled to predict the coarse co-segmentation results
Scok and then to obtain the refined final co-segmentation
results Rcok. For the loss function, we use the cross-entropy as
the loss in each branch to train our network, as same as in [18].
The difference is that our model simultaneously computes K
losses for K inputs correspondingly. In this part, the structure
of each image branch is the same and the parameters are
shared. The details are shown in Table III.

The coarse co-segmentation results Scok may fail to obtain
accurate object boundaries, due to the small input sizes of the
training images. To refine the blurry Scok, we use grab-cut
method [19] to segment the coarse co-segmentation results.



TABLE II
THE IMPLEMENTATION DETAILS OF THE THE LAYERS IN II-B.

layers params layers params

Scale1

Kernel: 3× 3
Dilation: 2

Pad: 2
Output: 64

Fusion-intra
Fusion-inter

Kernel: 1× 1
Output: 256

Scale2

Kernel: 3× 3
Dilation: 4

Pad: 4
Output: 64

Deconv1 1 Kernel: 1× 1
Output: 256

Scale3

Kernel: 3× 3
Dilation: 8

Pad: 8
Output: 64

Deconv1 2
Kernel: 3× 3

Pad: 1
Output: 256

Scale4

Kernel: 3× 3
Dilation: 16

Pad: 16
Output: 64

Upsampling1 Kernel: 2× 2
Output: 256

Here we use four input images together in grab-cut for each
time, and this helps to suppress some common background
noise.

TABLE III
THE IMPLEMENTATION DETAILS OF THE LAYERS IN II-C

layers params layers params

Deconv2 1
Kernel: 3× 3

Pad: 1
Output: 128

Deconv3 2
Kernel: 3× 3

Pad: 1
Output: 32

Upsampling2 Kernel: 2× 2
Output: 128 Prediction

Kernel: 3× 3
Pad: 1

Output: 2

Deconv3 1
Kernel: 3× 3

Pad: 1
Output: 64

From the implementation details we listed above in Tables
I, II, and III, we can see that the cost of the proposed network
has been effectively reduced and its volume (about 224.6M
in total) is obviously much smaller than the standard-setting
network. Nonetheless, the proposed network still achieves
comparable performance.

III. EXPERIMENTS

A. Experimental settings

1) Datasets: To train our network, we use the Cosal2015
dataset [4] (50 image classes and 2015 images in total),
the PASCAL-VOC dataset [20] (20 image classes and 1037
images in total) and the Coseg-Rep dataset [21] (23 image
classes and 572 images in total) as the training dataset.
To obtain the training image samples that each contains K
images, we randomly rank the images belonging to a class,
then select every K images in order as one training sample.
In this paper, we set K = 5 and finally have 14496 training
samples.

In order to verify the effectiveness of the proposed model,
we choose the public image co-segmentation dataset [22] (38
image classes and 643 images in total, each class has 4 to 41
images) as the test dataset.

2) Implementation details: We implement our model based
on the Caffe toolbox [23]. The proposed network is initialized
randomly. In the training phase, we use the standard stochastic
gradient descent (SGD) method with batch size 8, momentum
0.9 and weight decay 0.005. The learning rate is set to 10−6.
The input size is set to 128× 128. The proposed model needs
about 80k training iterations for convergence.

3) Evaluation metrics: To have an overall performance
measurement, Intersection-over-Union (IoU) is used in our
experiments.

B. Experimental results

Fig. 3. Subjective evaluation results: (a) the original images, from (b) to
(d), the results of [12], the results of the proposed model and ground truths,
respectively.

Fig. 4. Subjective evaluation results: (a) the original images, from (b) to
(d), the results of [12], the results of the proposed model and ground truths,
respectively.

We present the experimental results in both objective and
subjective ways and compare the proposed model with a recent
state-of-the-art model [12]. The objective evaluation results in
terms of IoU are shown in Fig. 2. The proposed model obtains
an average score of 0.711 on IoU, better than 0.702 on IoU
by [12].

Fig. 5. Subjective evaluation results: (a) the original images, (b) the results
of the proposed model, (c) ground truths.

Some subjective evaluation results are shown in Fig. 3 and
Fig. 4. In Fig. 3, in the group of “skaters”, the results of
our model contain less background regions compared with



Fig. 2. Objective evaluation results.

the results of [12], while in “gymnastics” of Fig. 3, and in
“balloons” and “panda” as shown in Fig. 4, our model seg-
ments the common objects more completely. We attribute these
improvements to the successful utilization of deep network in
which deep features are extracted.

There are also some limitations of the proposed model. In
some cases, the common objects and noisy uncommon objects
share similar high-level semantic features and differ in some
low-level features such as color, and therefore it is difficult
for the proposed model to distinguish them clearly, e.g. the
group “woman soccer player 1”, as shown in Fig. 5, the noisy
objects are segmented as common objects. In the future work,
the scheme to define co-features should be rethought to address
this problem.

IV. CONCLUSION

In this paper, a novel deep neural network with multi-scale
feature fusion is proposed for image co-segmentation, and
it has successfully reduced the cost of the resources. The
experimental results demonstrate its effectiveness for image
object co-segmentation.
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