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Heat-bath algorithmic cooling provides algorithmic ways to improve the purity of quantum states. These
techniques are complex iterative processes that change from each iteration to the next and this poses a
significant challenge to implementing these algorithms. Here, we introduce a new technique that on a
fundamental level, shows that it is possible to do algorithmic cooling and even reach the cooling limit
without any knowledge of the state and using only a single fixed operation, and on a practical level, presents
a more feasible and robust alternative for implementing heat-bath algorithmic cooling. We also show that
our new technique converges to the asymptotic state of heat-bath algorithmic cooling and that the cooling
algorithm can be efficiently implemented; however, the saturation could require exponentially many
iterations and remains impractical. This brings heat-bath algorithmic cooling to the realm of feasibility and
makes it a viable option for realistic application in quantum technologies.
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Many quantum effects and quantum technologies rely
on fragile quantum fluctuations that can easily be over-
whelmed by thermal fluctuations. This is why often
techniques for suppressing thermal fluctuations such as
cooling in a cryostat or a dilution fridge are required. There
are, however, dynamical cooling techniques that more
surgically extract energy from subsystems of interest and
can lower the temperature beyond what would be feasible
with conventional cooling of the entire system.
Heat-bath algorithmic cooling (HBAC) are techniques

that operate on an ensemble of qubits and effectively cool
down and purify a target subset of qubits. HBAC drives the
system out of equilibrium by transferring the entropy from
the target qubits to the rest of the ensemble. This is often
referred to as “compression” since it uses information
theoretical techniques to compress the entropy to the
nontarget elements of the ensemble and effectively cools
down the target qubits. The target and the refrigerant qubits
are often referred to as the “computation” and the “reset”
qubits, respectively.
HBAC can be seen as an extension of techniques like

dynamic nuclear polarization (DNP) or Insensitive nuclei
enhanced by polarization transfer (INEPT) [1] to situations
where there is access to more than two spin species and
thus could in principle go beyond the purity of the reset
qubit. While applications of HBAC go beyond a specific
implementation like nuclear magnetic resonance (NMR),
it could be combined with techniques known in each

implementation; e.g., DNP can be used to provide the
source polarization of HBAC in NMR.
Algorithmic cooling was first introduced in [2] for a

closed system, for which, the cooling is limited by the
Shannon bound for information compression. This process
heats up the reset qubits beyond their initial temperature. It
was later proposed to use a heat bath to recycle the reset
qubits and enhance the cooling beyond the Shannon bound
[3]. In this setting, the reset qubits, through the interaction
with a heat bath, are cooled down to the heat-bath temper-
ature again. This is known as the “reset step.”
Similar settings have been investigated in the context

of quantum thermodynamics (QT) and dynamic cooling
[4–9]. The cooling limit, the corresponding resource
theories, and generalizations of the third law of thermo-
dynamic are among topics that have attracted a lot of
attention in QT [5,7–11]. It turns out that some of these
results, like the existence of a cooling limit, apply to HBAC
too. Interestingly, even with the help of a heat bath, it is not
possible to extract all the entropy from the target qubits
[12]. The optimal technique was introduced by Schulman
et al. in [12] and is known as the partner pairing algorithm
(PPA). The existence of the limit was proved by Schulman
et al. in [12]. Later Raeisi and Mosca [13] established the
asymptotic limit of PPA, with the corresponding asymp-
totic state, and proved that the process asymptotically
approaches the cooling limit. We refer to the optimal
asymptotic cooling state as OAS.
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One of the main challenges with HBAC techniques,
especially the ones that converge to OAS, is that they are
highly complex. The operations change from each iteration
to the next and in many cases, there is no recipe for
implementing the operations in each step.
For instance, PPA sorts the diagonal elements of the

density matrix in each iteration. But this means not only
that one needs to know the state in each iteration, but also
that the operation for implementing the sort would change
in each iteration as the state changes.
An obvious question is whether or not it would be

possible to reach the OAS and the cooling limit with a fixed
state-independent operation in each iteration. Note that the
state is constantly changing through the cooling process,
and naturally, the compression should change too, as is the
case with PPA. Reaching the OAS with a fixed operation
seems even more nontrivial. In other words, for a HBAC
technique with fixed operation, the compression should be
tuned such that without knowing the state, not only can it
extract entropy from the state, but through the repetition of
the process, it would push the state into the OAS. In the
language of QT, this translates to finding a periodic
evolution that would make an optimal cyclic cooling
process. The typical complex nonperiodic evolutions of
the HBAC process make it challenging to draw direct
connections between QT and HBAC. The existence of a
cyclic HBAC technique with fixed iteration would go a
long way in bridging this gap.
Here, we answer this question and show that this is in

fact possible. We introduce a compression operation that
can push the state to the OAS and reach the cooling limit
of HBAC and makes a state-independent cycle process.
Further, we show that it can be implemented efficiently and
give a recipe for building the quantum circuit.
Besides the fundamental significance, this result could

have a critical impact on the feasibility of HBAC tech-
niques. First, in contrast to techniques such as PPA, our
algorithm can be efficiently implemented. We, however,
show that reaching the OAS would require exponentially
many iterations. Second, the state independence of oper-
ations makes our algorithm simple and more robust and
turns HBAC to a viable option for generating large scale
supplies of high-purity quantum states.
We start by introducing our algorithm and then present

the complexity analysis. Next, we compare it against PPA.
We then investigate the robustness of the two techniques.
We assume an ensemble of nþ 1 qubits, with the first n

as the computation and the last as the reset qubits. We
use the subscript R and C to refer to the reset and the
computation qubits. We also assume that the Hilbert space
is ordered as HC ⊗ HR; the first part is the computation
qubits and the last part is the reset qubits.
In our technique, instead of sorting the diagonal ele-

ments, we apply the following unitary for compression in
each iteration:

UTS ¼

0
BBBBBB@

1

X

. .
.

X

1

1
CCCCCCA
; ð1Þ

where X is the Pauli X operator and the first and the last
elements of the matrix are one. The matrix is 2nþ1 × 2nþ1

and acts on both the computation and the reset qubits. We
refer to the unitary UTS as the two-sort operator and to our
technique as two-sort algorithmic cooling (TSAC). The
unitary UTS swaps every two neighboring elements on
the diagonal of the density matrix, except for the first and
the last elements. Intuitively, this is a partial sort that acts
locally on the density matrix. This is the golden operation
that makes it possible to reach the cooling limit without
knowing the state.
After compression, the reset qubit is reset which is

equivalent toR½ρ� ¼ TrRðρÞ ⊗ ρR, where TrR is the partial
trace over the reset qubit and ρR is the “reset state”

ρR ¼ 1

z

�
eϵ 0

0 e−ϵ

�
; ð2Þ

with z ¼ ðeϵ þ e−ϵÞ. The parameter ϵ is called the polari-
zation. Our method does not make any nontrivial
assumption about ϵ nor n.
Mathematically, each iteration applies the following

channel on the full density matrix

CTS½ρ� ¼ U†
TS½TrRðρÞ ⊗ ρR�UTS: ð3Þ

This process is clearly independent of the iteration or
the state and it can be described by a time-homogeneous
Markov process. We find the transfer matrix and use its
spectrum to prove that the process converges to the OAS
and to give an upper bound for the required number of
iterations.
The sequences of the elements on the diagonal of the

density matrix form a Markov chain. We use a vector with
2nþ1 elements fλtg to represent the state after the tth
iteration. We use a similar notation for the density matrix of
the computation qubits (without the reset qubit) and use
fptg instead.
Figure 1 gives a pictorial description of the process in

each iteration. It starts with the sequence fλtg, the diagonal
elements of the density matrix of the n computation, and
one reset qubit in the tth iteration. First, there is the reset
step which takes the reset qubit to the state in Eq. (2).
This takes every two neighboring elements λt2kþ1 and λ

t
2kþ2

to pt
k ¼ λt2kþ1 þ λt2kþ2 and then splits them into ζt2kþ1 ¼

pt
ke

ϵ=z and ζt2kþ2 ¼ pt
ke

−ϵ=z. Now the two-sort unitary is
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applied and rearranges the array to fλtþ1g such that λtþ1
2k ¼

ζt2kþ1 and λtþ1
2kþ1 ¼ ζt2k.

For simplicity, we focus on the computation qubits and
trace out the reset qubit. This gives the following update
rule for the diagonal elements of the computation qubits:

ptþ1
i ¼ pt

i−1
e−ϵ

z
þ pt

iþ1

eϵ

z
: ð4Þ

for 1 < i < 2n.
Similarly, for the first and the last elements, the

update rules are ptþ1
1 ¼ ðpt

1 þ pt
2Þðeϵ=zÞ and ptþ1

2n ¼
ðpt

2n−1 þ pt
2nÞðe−ϵ=zÞ.

These update rules give the following 2n × 2n transition
matrix for the Markov process:

T ¼ 1

z

0
BBBBBB@

eϵ eϵ 0 � � � 0

e−ϵ 0 eϵ � � � 0

0 e−ϵ 0 � � � 0

0 0 � � � . .
. ..

.

0 0 � � � e−ϵ e−ϵ

1
CCCCCCA
: ð5Þ

It is easy to verify that ⃗fptþ1g ¼ T ⃗fptg and gives
the update rules above. The matrix T has a unique
eigenvalue 1 and the remaining eigenvalues are ϒk ¼
f½2 cos ðkπ=2nÞ�=zg for k ¼ 1; 2;…; 2n − 1. The eigenstate
corresponding to eigenvalue one is

ρ ¼ p0f1; e−2ϵ; e−4ϵ;…g; ð6Þ

which is the OAS and p0 is the normalization factor [13].
For the detailed calculation of the eigensystem, see the
Supplemental Material (SM) [14]. Since all the other

eigenvalues lie in the interval ð1;−1Þ, the Markov chain
asymptotically converges to ρ. This proves that our
technique asymptotically achieves the cooling limit
of HBAC.
We give a Oðn2Þ circuit for the implementation of the

two-sort unitary in the SM [14]. We first shift the basis by

one, which transforms it to Toffðnþ 1Þσðnþ1Þ
x . Then a Pauli

σx on the reset qubit turns the matrix to a multiple-control
Toffoli gate (see SM [14] for details). This shows that our
technique can be efficiently implemented. However, to
reach the OAS, we need to investigate how many iterations
would be required. The mixing time of a Markov chain is
the number of iterations required to get within distance ξ
of the asymptotic state (i.e., to achieve jρt − ρOASj ≤ ξ).
We can upper bound this number of iterations as a function
of the spectral gap Δ, i.e., the difference between 1 and the
second largest eigenvalue,

tmixðξÞ ≤ log

�
1

ξl

�
1

Δ
; ð7Þ

where l ¼ p0e−ð2
n−1Þϵ is the smallest element of the array in

Eq. (6) [17].
The spectral gap is Δ ¼ 1 − ½2 cosðπ=2nÞ�=ðeϵ þ e−ϵÞ ≥

½ðz − 2Þ=z�. This gives

tmixðξÞ ≤
�
log

�
1

ξp0e−ð2
n−1Þϵ

��
z

z − 2

��
: ð8Þ

It is easy to check that tmix ∈ Oð2nÞ which yields Oðn22nÞ
for the overall complexity of TSAC.
Now, we compare our technique with PPA. The key

ingredient of PPA is sorting the diagonal elements of the
density matrix in each iteration. This transfers as much
entropy as possible from the computation elements to the
reset qubit [12]. Then the reset qubit is reset back to its
equilibrium state.
Even assuming that finding the operation for sorting a

2nþ1 array is easy, we need to find quantum circuits to
implement them which has at least OðenÞ classical com-
plexity. Note that this is only the classical cost of the
algorithm. Without this, it would not be even possible to
start implementing PPA. For systems as large as 20–40
qubits, e.g., the experiment in [18], not only is it chal-
lenging to implement PPA, but it also seems difficult to
find the required permutations. This is in contrast to our
technique, where each iteration is already known and there
is a specific circuit for implementing it.
Next is the gate complexity of PPA. Typically only the

number of iterations is counted, ignoring the complexity
of the sort operations. In fact, due to the complexity of the
sort operations, it is difficult to bound the number of gates
required for PPA. Naively, there are ð2nÞ! permutation
matrices of size 2n. Assuming a finite number of one- and
two-qubit gates, there are only ½polyðnÞ�d circuits with at

FIG. 1. The pictorial description of an iteration. The input is the
list of the diagonal elements of the full density matrix, fλtg. The
reset step first merges every two neighboring elements (partial
trace) and then replaces the reset qubit with ρR which splits each
element into two elements again. Next, the UTS swaps all the
neighboring elements except for the first and the last one.
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most d gates on n qubits. Taking d to be polyðnÞ, one can
see that only a small fraction of permutations can be
implemented efficiently. Here, we provide a more rigorous
bound on the gate complexity of PPA.
The permutation operations can be decomposed into

separate cycles that form disjoint blocks in the permutation
matrix. These cycles could have different sizes and the size
of each cycle determines the number of states it permutes
cyclically. These are known as k cycles, where k is the size
of the block.
Assume that for all the k cycles in the permutation, we

can find an efficient circuit. Also assume that, given a
certain state jji, it is possible to efficiently determine which
block the state belongs to. Furthermore, we assume that
cycles of equal size can be implemented in parallel
efficiently. These assumptions may not be true, but any
lower bound established with these assumptions still holds
when any of these assumptions are weakened or dropped.
Under these assumptions, the cost would depend on the
number of k cycles with distinct k values. This is the
number of blocks in the permutation matrix that have a
different size. We refer to this quantity as NBDS.
Implementation of each sort operation requires the

implementation of all the blocks. Blocks of different size
cannot be fully parallelized and for switching between each
of two blocks of unequal size, some quantum operation
would be required. This sets the number of blocks of
different size NBDS as a lower bound for the complexity of
any sort operation.
Figure 2 shows the simulation results of PPA for a

different number of computation qubits n and indicates
that NBDS grows exponentially with n. This implies that
our lower bound for the gate complexity of PPA scales
exponentially with n. Here, for any value of n, we get a
sequence of permutation matrices and pick the permutation
that has the largest NBDS.
Last, there is the fragility to practical imperfections. The

sort operation of PPA requires the ordering of the diagonal
elements of the state. This means that techniques like

quantum state tomography are needed to monitor the state.
This process, however, cannot be perfect and usually there
are estimation errors. Figure 3 shows how sensitive the
process is to these imperfections. These simulations are
for HBAC with n ¼ 2 and one reset qubit and the reset
polarization of ϵ ¼ 0.02 with a zero-mean Gaussian noise
with variance σ. As σ increases, the process becomes
random and would not approach the cooling limit any
more. Figure 3 also shows the result for TSAC which,
regardless of the noise, would always converge to the OAS.
This is not a generic noise model, but is relevant for
techniques like PPA and shows that with noise, PPA can
heat the state. Next, we show that TSAC monotonically
pushes the state towards the OAS.
Theorem 1.—Given some state ρ and a reset state ρR

with polarization ϵ, if the polarization of the first compu-
tation qubit is less than the HBAC limit, each iteration of
TSAC, as in Eq. (3) would increase the polarization of the
first qubit.
Proof.—The polarization of the first qubit is determined

by the first half of the diagonal elements of ρ and we need
to show that TSAC would increase it. The assumption that
the state is hotter than the HBAC limit means

p2n−1e
−ϵ < p2n−1þ1e

ϵ: ð9Þ

After the iteration, these two are swapped by the UTS. This
increases the sum of the first half of the diagonal elements
and as a result, the polarization of the first qubit.
Note that this can be extended to other computation

qubits. It is just easier to show for the first qubit.
Since the process does not depend on the state, even

when the state is perturbed from the ideal one, the process
continues to cool it down. Note that this does not imply that
our algorithm is robust to all imperfections. Specifically,
with faulty operations, no algorithm can guarantee the
convergence to OAS.

FIG. 2. This plot shows that the maximum of the NBDS for
implementations of PPA grows exponentially with the number of
computation qubits n. The y axis is a logarithmic scale. Different
plots correspond to different reset polarizations ϵ.

FIG. 3. This plot shows the polarization of the first qubit vs
iterations. This is for the simulation of PPA for two computation
qubits and one reset qubit, with different amounts of the state
estimation errors σ.
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Table I gives a comparison between TSAC and PPA.
Here, the “noise sensitivity” is the sensitivity to deviations
from the expected state in the process. The table demon-
strates that TSAC outperforms PPA in almost every aspect
and presents a more realistic option in practice.
In conclusion, our work presents a novel viable tech-

nique for optimal HBAC which shows that optimal HBAC
is possible without any knowledge of the state and without
changing the operation through the process. From a QT
viewpoint, it means that the optimal cooling is possible to
do HBAC with a cyclic process. This opens new avenues
for examining HBAC in terms of QT. For instance,
resources required for reaching the cooling limit have been
extensively investigated in QT [5,7–11]. It is interesting to
map the required resources and their scaling to HBAC.
Our work also brings realistic applications of these

techniques to the realm of possibility. The new technique,
in contrast to PPA, uses a fixed operation in every iteration,
which addresses the fragility issues in previous works.
More precisely, the new technique is robust against
imperfections and noise in the state.
It is also possible to combine our work with other

dynamics cooling techniques to further reduce the costs.
However, it remains open to see how far the complexity
may be reduced. Results from QT on the analysis of the
resources for cooling and the extensions of the third law of
thermodynamics [5,7–9] could prove helpful for reducing
the complexity of cost.
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