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Abstract

Machine vision offers an excellent tool for critical real-world inspection in indus-
trial applications. In an automated vision-based system, image processing and, in
particular, image segmentation remain an essential task, for which automatic ex-
traction of local maxima is an important process not only to extract the foreground
for post processing but also to separate objects from the background for identi-
fication and classification. Addressing this topic, the current thesis presents two
algorithms. First, a novel peak detection algorithm, the Summit Navigator, is de-
veloped to detect true peaks from gray-scale histograms of images. Here, inspired by
experience of mountain explorers in strategic planning, two location-based parame-
ters, namely the offset distance and observability index, are formulated to search for
all possible dominant peaks. Notably, this approach does not require any a priori
knowledge of the number of modes or distance between the modes in process. The
false positives of the searching phase are recursively filtered by means of unimodal
and linear fitting. Experiments on time series data and natural images are conducted
to demonstrate the advantages of the proposed algorithm in terms of accuracy and
consistency. Second, a binarised version of Summit Navigator is proposed for de-
tection of possible defects in built infrastructure. Based on the initial segmentation
of Summit Navigator, a new binarisation algorithm is proposed for surface inspec-
tion by extracting potential defect information from the background of gray-scale
images. To incorporate the idea of multi-level thresholding into a binarisation so-
lution, a contrast-based region merging technique is developed. This approach is
based on the observation that the defect-like regions notably appear darker than
the surrounding areas. Hence, recursively combining regions with similar intensity
can result in two most distinguished areas in terms of contrast difference. A data

processing scheme is introduced to extract training data from some reputable image
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database. Then, the Bootstrap Aggregation (Bagging) technique is employed using
the decision trees method to train a classification model for automatic parameter
selection. Two unmanned systems are also put forward to support the data collec-
tion and the feasibility validation of the method in surface inspection. Experiments
on natural image binarisation and defect detection tasks are carried out to evaluate

the effectiveness of the proposed algorithm over state-of-the-art techniques.

Dissertation directed by Associate Professor Quang Ha

School of Electrical and Data Engineering
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