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Abstract 24 

Purpose of Review 25 

Cyanobacteria, commonly known as blue-green algae, are often seen as a problem. Their 26 

accumulation (bloom) in surface water can cause toxicity and aesthetic concerns. Efforts have 27 

been made in preventing and managing cyanobacterial blooms. By contrast, purposeful 28 

cultivation of cyanobacteria can create great opportunities in food, chemical and biofuel 29 

applications. This review summarises the current stage of research and the socio-economic 30 

impacts associated with both the problems and opportunities induced from the presence of 31 

cyanobacteria in surface water.     32 

Recent Findings 33 

Insightful knowledge of factors that trigger cyanobacterial blooms has allowed for the 34 

development of prevention and control strategies. Advanced technologies are utilised to detect, 35 

quantify and treat cyanobacterial biomass and cyanotoxins in a timely manner. Additionally, 36 

understanding of cyanobacterial biochemical properties enables their applications in food and 37 

health industry, agriculture and biofuel production. Researchers have been able to genetically 38 

modify several cyanobacterial strains to obtain a direct pathway for ethanol and hydrogen 39 

production.  40 

Summary  41 

Cyanobacterial blooms have been effectively addressed with advances technologies and 42 

cyanobacterial research.  However, this review identified a knowledge gap regarding 43 

cyanotoxin synthesis and the relevant environmental triggers. This information is essential for 44 

developing measures to prevent cyanobacterial blooms. Additionally, this review affirms the 45 

promising opportunities that cyanobacteria offer in the food, cosmetics, pigments and 46 

agriculture. Biofuel production from cyanobacterial biomass presents an immense potential but 47 

is currently constrained by the cultivation process. Thus, future research should strive to 48 

achieve effective mass harvesting of cyanobacterial biomass and obtain a profound 49 

understanding of cyanotoxin production.  50 

Keywords: Cyanobacteria; Cyanotoxins; Cyanobacterial bloom; Biofuels; Cyanobacterial 51 

bloom impacts 52 
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1 Introduction 53 

Cyanobacteria are a type of photosynthetic green-looking or blueish bacteria [1]. They 54 

possess chlorophyll a and release oxygen as a product of photosynthesis. The green pigment 55 

chlorophyll a together with other accessory pigments often cause a masking effect on the cyan 56 

(blue-green) hue of cyanobacterial pigment phycocyanin [2]. Cyanobacteria possess the oldest 57 

known fossils, dated back to 3.5 billion years ago. They have a significant contribution to the 58 

evolution and ecological change throughout the earth’s history [3].  59 

Harmful cyanobacterial blooms are a global problem. Found in a range of water 60 

environments (freshwater, coastal and marine), they have bloom-forming capabilities which 61 

pose significant concerns to the community. Cyanobacterial blooms are a threat to the drinking 62 

water supply due to their potential toxicity and the release of taste and odour compounds (e.g. 63 

Geosmin and 2-Methyl-Isoborneol). Cyanotoxins produced from several common 64 

cyanobacteria are extreme risks to public health. Human or wildlife exposure to cyanotoxins 65 

can lead to severe illness, including death [4-6]. Additionally, harmful cyanobacterial blooms 66 

incur significant damage to the economy by disrupting the tourism and agricultural industry. 67 

Millions of dollars are spent every year to manage and control the impacts of cyanobacterial 68 

blooms [7].  69 

New tools and technologies have been developed for managing cyanobacteria in surface 70 

water. For example, smart satellite imaging technique allows for early detection of 71 

cyanobacterial blooms [8]. Data collected from this system enables the authorities to develop 72 

real-time cyanobacterial bloom alerts useful for the general public and water suppliers. Types 73 

of cyanobacteria species and cyanotoxins can then be identified and possibly quantified from 74 

several approaches such as genetic techniques (e.g. quantitative polymerase chain reaction), 75 

biochemical assays and liquid chromatography [9, 10].  76 

Apart from those aforementioned problems, cyanobacteria and their biomass also present 77 

great opportunities for the production of sustainable and valuable commodities. Cyanobacteria 78 

(e.g. Spirulina) are rich in proteins, vitamins and bioactive compounds [11]. Some 79 

cyanobacteria and their products are thus suitable to be consumed as food or health supplement. 80 

Useful bioactive compounds extracted from cyanobacteria were also shown to have natural 81 

antioxidant and water retention properties [12]. These make them great replacements for 82 

synthetic compounds often used in cosmetic formulations. Some cyanobacteria are capable of 83 

nitrogen-fixing, thus, cyanobacterial biomass from these species can be used as biofertilisers 84 
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and soil conditioners [13]. Cyanobacterial biomass has also been actively explored as a 85 

potential feedstock to produce biofuels. Several studies have reported the production of 86 

ethanol, isobutanol and clean hydrogen from engineered cyanobacterial strains [14-16].  87 

Global warming is likely to exacerbate harmful cyanobacterial bloom in both intensity and 88 

frequency [2]. The result can be both a threat of severe consequences of harmful cyanobacterial 89 

blooms and an opportunity to utilise them for beneficial applications. Several independent 90 

studies have underlined the problems or benefits of cyanobacteria and corresponding 91 

management strategies [2, 17-19]. Each of them was able to deliver useful and novel insights 92 

on a particular aspect of the topic. However, a complete overview on cyanobacteria in surface 93 

water and its impacts is inadequate.  This paper aims to provide a full perspective of the topic, 94 

highlighting the current problems and opportunities associated with cyanobacteria in surface 95 

water, as well as the technologies used for cyanobacterial detection, control and harvesting.  96 

The knowledge gaps regarding cyanobacterial properties, cyanotoxins production and 97 

harvesting methods are also delineated through reviewing recent publications. This information 98 

is useful for the effective management of cyanobacteria and converting cyanobacterial biomass 99 

into valuable products.  100 

2 Cyanobacteria  101 

2.1 Cyanobacterial classification and phenotype  102 

Cyanobacteria are photosynthetic prokaryotes which can grow in fresh, brackish and 103 

seawater [20]. There are about 2,000 cyanobacterial species in 150 genera [21] such as 104 

Chroococcales , Anabaena, and Nodularia. Cyanobacterial cells are identified to be more 105 

elaborated and larger than regular bacteria (0.5 to 60 µm in diameter). They are commonly 106 

found in unicellular, colonial and filamentous forms (Fig. 1) [22]. Their photosynthetic features 107 

and oxygen production set them apart from other bacteria. Several accessory pigments (e.g. 108 

chlorophyll a, phycocyanin and allophycocyanin) in the cells are light-harvesting antennae that 109 

capture the sunlight for energy in cyanobacterial photosynthesis. 110 

  111 
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 112 

Figure 1: The three common morphologies of cyanobacteria. Image courtesy of Landcare 113 

Research [23] 114 

Most surface water cyanobacteria species have cells that contain gas vacuoles consisting of 115 

multiple gas vesicles. These gas vacuoles give cyanobacteria the buoyancy ability i.e. the 116 

ability to remain in suspension and float to the water surface [24]. In highly stratified water or 117 

waters with great fluctuations in vertical mixing and optical depth, cyanobacteria with 118 

buoyancy-assisted vertical movements are favoured [25]. They are able to float to the water 119 

surface for optimal nutrients and light availability. Thus, their bloom forming capacity is 120 

enhanced and causes difficulty in removing cyanobacteria biomass from water (Section 4.3).   121 

Cyanobacteria possess CO2-concentrating mechanisms (CCMs) which consist of five 122 

inorganic carbon uptake systems. These enable the cells to increase the CO2 substrate for 123 

photosynthesis as well as the CO2 concentration in the cellular micro-compartments for 124 

efficient enzyme operation [2]. The use of cyanobacteria for CO2 sequestration has been found 125 

to be very effective due to the presence of these CCMs [26, 27].    126 

Another notable phenotype of many cyanobacteria is to fix atmospheric nitrogens (e.g. 127 

nitrogen-fixing cyanobacteria includes Anabaena, Nostoc and Nodularia). Their cell structures 128 

(i.e. heterocyst) are thick wall which is impermeable to oxygen but permeable to nitrogen [28]. 129 

Nitrogen fixation is a competitive advantage for these filamentous cyanobacteria in a nitrogen-130 

limited environment.  131 

2.2 Cyanobacterial bloom triggers  132 

Cyanobacterial blooms are the result of rapid and excessive growth as well as accumulation 133 

of cyanobacterial biomass on the water surface [2]. Because of the photosynthetic activity, 134 

environmental conditions include nutrient availability, temperature, light exposure and CO2 are 135 
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key factors to cyanobacterial growth [29, 30]. When these conditions are combined (e.g. often 136 

in summertime), cyanobacterial blooms will occur. Common harmful bloom-forming genera 137 

are Aphanizomenon, Cylindrospermopsis, Dolichospermum, Microcystis, Nodularia, 138 

Planktothrix and Trichodesmium [2].  139 

  Significant research efforts have been devoted to exploring the optimal growth conditions 140 

of cyanobacteria, which lead to blooms  [31]. These conditions provide intuitive information 141 

to prevent and control cyanobacterial blooms (Section 4). For example, the eutrophic condition 142 

with low nitrogen to phosphorous ratio ranging from 10 to 15 is suggested to be optimal for 143 

cyanobacterial growth [22]. Literature data also indicates that phosphorus-rich water supports 144 

the dominance of cyanobacteria over other phytoplankton communities [32-34]. Smith (1983) 145 

hypothesised that by modifying the total nitrogen to total phosphorous ratio, cyanobacterial 146 

growth could be controlled [29]. This is due to the low count of cyanobacteria at nitrogen – 147 

phosphorous ratio greater than 29 to 1 by weight [29]. Light exposure (i.e. light intensity and 148 

duration) is another significant factor in determining the formation and duration of blooms 149 

[35]. Cyanobacteria contain a range of pigments such as chlorophyll a, allophycocyanin and 150 

phycocyanin which harvest light in the green, yellow and orange part of the spectrum. This 151 

range is much wider than that used by other phytoplankton species, giving cyanobacteria an 152 

advantage in terms of absorbing light for photosynthesis [22]. However, Montechiaro F. and 153 

Giordano M. (2006) had reported that some cyanobacteria (e.g. Phormidium autumnale) can 154 

hypernate without virtually any light for months and are able to thrive immediately following 155 

light exposure [36]. This emphasises the specific response and flexibility of individual 156 

cyanobacteria to light exposure. Water temperature (25oC or above) is also favourable for 157 

cyanobacterial growth, thus more severe blooms are observed in late spring throughout 158 

summer. In recent years, cyanobacterial blooms appear to occur earlier and last longer possibly 159 

as the result of climate change. Warm temperature reduces water viscosity, thus stimulating 160 

the sedimentation of competing larger, non-motile phytoplankton with weak floating ability 161 

[31]. O’Niel et. al. [31] suggest that cyanobacteria have better competitiveness when 162 

stratification of water body occurs due to insular heating. The warmer upper water layer is 163 

more abundant in nutrients and light during stratification. Cyanobacteria can float upwards and 164 

utilise these factors for more rapid reproduction.   165 

Rising atmospheric CO2 due to global warming also contributes to the severity of 166 

cyanobacterial blooms [2, 37]. It forms a steeper concentration gradient with the dissolved CO2, 167 

which has been depleted by cyanobacterial development. This leads to a greater influx of CO2 168 
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into the water body to reach equilibrium with the atmosphere [37]. Higher dissolved CO2 169 

concentration intensifies bloom formation. Besides, the CO2 – concentrating mechanism 170 

(CCMs) can utilise this availability of CO2 to enhance the function and growth of 171 

cyanobacteria.  172 

Other factors influencing cyanobacterial blooms include water stratification and wind 173 

patterns [38, 39]. Stagnant water condition allows for a longer residence time of cyanobacterial 174 

cells. As a result, more nutrients, light radiation and CO2 are absorbed, increasing 175 

cyanobacterial growth rate.  Light winds can expand the area of cyanobacterial scums [39] by 176 

driving them closer together and towards shores and bays. This increases the chances of human 177 

or animal in contact with the blooms which may contain harmful cyanotoxins. Awareness of 178 

such potential toxicity and measures for prevention and control of cyanobacterial blooms to be 179 

put in place are extremely important for the community.  180 

3 Impact of cyanobacterial blooms 181 

3.1 Cyanotoxin production and its consequences  182 

Cyanotoxins are secondary products (metabolites) from the metabolism of several 183 

cyanobacteria, most commonly Microcystis, Anabaena and Planktothrix genera [40-42]. They 184 

possess a variety of biological structures and induce a range of negative effects on human and 185 

animal health (Table 1). Cyanotoxins are usually produced and contained within the 186 

cyanobacterial cells (intracellular) [41]. Environmental stress or chemical and mechanical 187 

processes applied to cyanobacterial bloom can cause cell death, stimulating the release of 188 

cyanotoxins into the waterbody (extracellular). Benthic cyanobacteria such as Nostoc and 189 

Lyngbia do not occupy surface water but their occurrence and release of extracellular 190 

cyanotoxins into the surrounding water contribute to the harmful impacts of cyanobacterial 191 

blooms.  192 

There are three main groups of cyanotoxins based on their chemical structure including 193 

cyclic peptides (e.g. microcystins and nodularins), alkaloids (e.g. neurotoxins and 194 

cylindrospermopsin) and lipopolysaccharides [4]. Cyanotoxins may also be classified into 195 

three groups according to their toxic effects: hepatotoxins, neurotoxins and dermototoxins 196 

(Table 1). Microcystins and nodularins are hepatotoxic cyclic peptides containing specific 197 

amino acids such as Adda (2S, 3S, 8S, 9S)-3-amino-9-methoxy-2, 6, 8-trimethyl1-10-198 

pheny1deca-4, 6-dienoic acid) [2]. Microcystins and nodularins inhibit the function of protein 199 
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phosphatases, resulting in severe liver damage in human [2, 4]. Other health impacts could 200 

involve kidney and colon malfunctions, gastroenteritis, allergic and irritation reactions [42].  201 

The alkaloid cyanotoxins include cylindrospermopsin, saxitoxins and anatoxins [4, 43, 44]. 202 

Cylindrospermopsin is a well-known hepatotoxin with the primary target of toxic effects being 203 

liver and kidney. Saxitoxins are representative neurotoxins of a large toxin family responsible 204 

for paralytic shellfish poisoning [45]. Saxitoxins are among the most potent toxins known. 205 

They can cause rapid paralysis by impairing the neuron systems and inhibiting muscle 206 

contraction [46]. Similarly, anatoxins and its variants anatoxin-a, anatoxin-a(s) are neurotoxins 207 

affecting the central nervous system. They can cause paralysis and asphyxiation (being oxygen-208 

deprived) [47, 40]. Aplysiatoxins and lyngbyatoxin are representative of the dermatotoxin 209 

alkaloids. They can cause inflammation and severe dermatitis to people in contact with the 210 

filaments. These toxins are found in marine blue-green algae such as Planktothrix and 211 

Oscillatoria [48, 49]. They are potent tumour promoters and protein kinase C activators [50]. 212 

Lipopolysaccharides is the last group of cyanotoxins classified by chemical structure. 213 

Lipopolysaccharides helps to determine and maintain the shape and size of the cell [48]. 214 

Lipopolysaccharides trigger irritant and allergenic responses in mammals and tissues in contact 215 

with the toxins. They pose a significant concern for exposure due to their universal presence 216 

on the cell wall of a wide variety of cyanobacteria [4].  217 

The distribution of cyanobacteria and cyanotoxins varies temporally and spatially. This 218 

could be due to the variations in the characteristics of cyanobacterial species and their preferred 219 

blooming conditions. Tropical Africa and Asia are abundant in bloom-forming genus 220 

Microcystis while Cylindrospermopsis is the most prevalent in Australia [17].  Both of these 221 

genera have occurred frequently in tropical America. As a result, there are differences in the 222 

cyanotoxins presented in these areas. The most common toxins in general are microcystis [41]. 223 

Cylindrospermopsin is the most frequently encountered cyanotoxin in Australia and anatoxin 224 

is commonly found in Africa produced by blooms of Anabaena species [17].  225 

Evidence on chronic health effects caused by exposure to recreational water infected with 226 

cyanobacterial bloom has been well documented in many parts of the world [4]. In the Paulo 227 

Afonso region of Brazil's Bahia State, there were 2,000 reported cases of gastroenteritis and 88 228 

deaths over a period of 42 days in 1988. This was the result of Anabaena and Microcystis 229 

blooms in the newly constructed Itaparica Dam's reservoir [6]. Lake Taihu, the third-largest 230 

freshwater lake in China supplying water for potable use has also long been infected with 231 
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harmful cyanobacterial blooms [5]. The presence of high concentration microcystin toxin from 232 

Microcystis spp. in untreated water (4.8 – 44.00 μg/L) in Lake Taihu have impaired the drinking 233 

water supplies. This concentration is higher than the upper limit of safe value for human 234 

exposure recommended by WHO (1 μg/L) (Table 1). Toxin residue was also detected in the 235 

treated tap water, which has been suggested to contribute to the prevalence of liver cancer in 236 

cities along Lake Taihu [51].  237 

Concentration of cyanotoxins detected in a cyanobacterial bloom event is unpredictable and 238 

often exceeds the drinking water guidelines (Table 1). The guideline values represent the 239 

concentration at which the water is safe to drink over a lifetime consumption.  For example, a 240 

provisional guideline value of 1.0 µg/L is recommended by WHO for microcystin-LR upper 241 

limit concentration in water [52]. Guideline calculation is based on the daily water intake, body 242 

weight and the concentration of toxins [52].  243 

Table 1: Common cyanotoxins produced by cyanobacteria and their effects on human health 244 

Cyanotoxins Health effects  
Genera of main 

producers  

Bloom 

concentration 

(µg/L) 

Drinking 

water 

Guideline 

(µg/L) 

References  

Hepatoxins      

Microcystis  

Acute exposure: 

abdominal pain, 

headache, nausea, 

skin irritation 

Ingestion of 

significant levels: 

liver damage and 

dysfunction 

Anabaena 

Planktothrix  

Microcystis 

15 – 100 000 

1.0 (WHO) 

1.3 

(Australia) 

[53, 52, 54] 

Nodularins 

Skin and eye 

irritation, allergic 

reaction 

Disruption to liver 

structure 

Nodularia  

0 – 2.2  

Highest record: 

42 300 

1.0 

Microcystis 

– LR 

(WHO) 

[52, 55, 56] 
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 245 

3.2 Water quality  246 

Cyanobacterial blooms affect and alter the characteristics and quality of the waterbody. 247 

These include the changes in the water colour, pH, dissolved oxygen (DO) level and the 248 

presence of unpleasant odours. In the long-term, cyanobacterial blooms can have significant 249 

impacts on the ecosystems within the waterbody. The aesthetic value of recreational water 250 

bodies is reduced when cyanobacterial blooms occur. Accumulation of cyanobacterial scums 251 

on the water surface and along the shoreline is aesthetically displeasing. It can cause clear water 252 

to appear green and murky. Blooms can also result in earthy or musty odours and poor taste. 253 

This is caused by the production of taste and odour compounds (i.e. Geosmin and 2-methyl-254 

isoborneol from cyanobacterial biomass. Anabaena, Planktothrix, Oscillatoria, 255 

Aphanizomenon, Lyngbia, and Symploca are common species that contain known geosmin and 256 

2-methyl-isoborneol [65, 66]. Human taste-and-odour detection threshold for these compounds 257 

are as low as 10 ng/L [67], making the presence of these in water for recreational use an 258 

unpleasant issue.   259 

Cylindrospermo

psins 

Acute exposure: 

fever, headache, 

vomiting, bloody 

diarrhea  

Inhibition of 

protein synthesis, 

kidney damage, 

liver necrosis 

Cylindrospermo

psis raciborskii, 

Aphanizomenon 

ovalisporum, Ap

hanizomenon 

zflos-aquae 

Commonly 10 – 

100 

High record 589 

- 800 

1.0 [43, 57-59] 

Neurotoxins       

Anatoxin-a and 

a(s) group  

Neurotransmitter 

inhibitor i.e. 

overexcite muscle 

cells causing 

exhaustion, 

paralysis  

Anabaena 

Aphanizomenon 

Planktothrix 

154 - 1000 

3.7 

(Quebec) 

6 (New 

Zealand) 

[44, 60-62] 

Dermatotoxin      

Lyngbyatoxin-a 

Aplysiatoxin 

Skin irriation 

Rashes, blisters 

Planktothrix 

Lyngbia  
209 - 279 N/A [49, 63, 64] 
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The water pH and DO level also significantly affected by cyanobacterial blooms. During 260 

photosynthesis, cyanobacteria uptake carbon dioxide and consequently raise the pH by 261 

increasing the level of hydroxide. On the other hand, during the cyanobacteria cell lysis, pH 262 

level is reduced [68]. An increase or reduction in pH can be unfavourable for the ecosystems 263 

since many aquatic species prefer a stable pH range [69, 70]. Cyanobacteria uptake oxygen for 264 

their aerobic respiratory activities during the night time [71], causing the DO level to decrease. 265 

Degradation of dead cyanobacterial cells after blooms also requires oxygen [68]. The increase 266 

in biochemical oxygen demand (BOD) and oxygen depletion caused by cyanobacteria make it 267 

more competitive for other aquatic species to thrive.   268 

3.3 Socio-economic impacts  269 

Cyanobacterial blooms can disrupt the socio-economic stability due to their potential 270 

toxicity and impacts on water quality. Significant impacts are reported on industries such as 271 

tourism, agriculture, real estate and public health sector [72, 73]. Unfortunately, recent cost-272 

analysis of these impacts are limited while available documents are dated back to the 1990s 273 

and 2000s. An example of a comprehensive report on financial damage caused by several 274 

cyanobacterial blooms were reviewed by Steffensen [7] for Australia in 2008 (Table 2). The 275 

impact on tourism was mainly due to the prohibition of recreational activities (e.g. fishing, 276 

camping, swimming) near bloom affected areas [7]. A study on cyanobacterial blooms from 277 

1990 to 1999 in England and Wales  [74] reported the damage costs to be $105−160 million 278 

per year. Dodds et al.  estimated an annual economic loss of more than one billion dollars in 279 

the United States due to harmful cyanobacterial blooms in 2008 [75]. Due to the rapid change 280 

in economic condition, the monetary values of socio-economic impacts in the event of 281 

cyanobacterial blooms is expected to be significantly higher for the recent years.   282 

 283 

 284 

 285 

 286 

 287 

 288 
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Table 2: Economic impact of previous cyanobacterial blooms in Australia [7] 289 

Year Location 
Type of 

blooms 

Cost to 

social/tourism 

revenue 

Impact on 

agriculture/industries  

1997 Darling River  Anabaena $1.5 million 1600 livestock death 

1991/1992 
Hawkesbury Nepean 

River 
Non-toxin $6.7 million N/A 

1987-1992 
Water reserviors in New 

South Wales 

Anabaena 

Nodularia 
$1.2 million N/A 

Monitoring measures to identify the presence and prevent the progression of cyanobacterial 290 

blooms also induce immediate costs. For example, Hamilton City Council in New Zealand 291 

spent $1,000 a day in early 2003 to treat the city’s drinking water with powdered activated 292 

carbon in response to a potential saxitoxins bloom [76].  For cyanotoxin detection, toxicity 293 

tests may cost over $1000 per sample [7], although this cost will depend on the size of the 294 

blooms and facilities available for assessing.  295 

The cost for the actions taken subsequently to control and remove the blooms (e.g. artificial 296 

mixing and algicides) is site-specific and could involve extra expenses. For example, $1 million 297 

is spent each year by South Australia Water to treat cyanobacterial blooms using copper-based 298 

algicide. This includes the dispose of the copper contaminated water treatment sludge as many 299 

aquatic organisms could be negatively impacted by copper [7]. Pretty et al. [74] also reported 300 

an expense of $77 million per year to address the damages from cyanobacterial blooms in 301 

England and Wales.  302 

4 Cyanobacterial bloom control and treatment 303 

Effective cyanobacterial bloom control requires a holistic approach with well-integrated 304 

management and technology measures as well as a focus on the prevention strategies to 305 

minimise impact costs. Technologies are incorporated to effectively detect and control the 306 

development of cyanobacterial blooms and cyanotoxins (Fig. 2).  307 
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 308 

 309 

Figure 2: Cyanobacterial management response cycle.  310 

4.1 Prevention strategies 311 

The focus of preventive measures for cyanobacterial blooms includes (i) restricting the 312 

nutrient availability for cyanobacterial growth, (ii) facilitating changes in hydrodynamics that 313 

are unflavoured for blooms and (iii) making improvements towards climate change. Nutrient 314 

management tackles the root of the problem by limiting nutrient availability in the water bodies 315 

[2, 77]. Phosphorus has been identified as a key bloom promoting factor [78-80]. Recent studies 316 

have also highlighted the importance of nitrogen in supporting biomass and toxigenicity [81-317 

83]. Measures to reduce external phosphorus inputs such as bans on phosphates in detergents, 318 

minimising the use of synthetic fertilisers and improved sewage treatment have been effective 319 

[2, 81]. In-lake methods such as hypolimnetic aeration and oxygenation to reduce internal 320 

phosphorus loading from sediments have succeeded in some cases [84-86]. In the 1990s, 321 

Australian CSIRO had developed lanthanum modified bentonite (commercially known as 322 

Phoslock®), an innovative phosphorous binding clay [87, 88]. Phoslock has proved to 323 

effectively remove total and soluble reactive phosphorus [89].  Meanwhile, due to its complex 324 

gaseous atmospheric cycle, nitrogen loading is more difficult to manage and can be costly [81, 325 

90]. Construction of wetlands and vegetative riparian buffers are effective ways to reduce non-326 
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diffuse sources of both phosphorus and nitrogen (e.g. agricultural and stormwater runoff) [91, 327 

92]. These systems can also limit light availability to the surface cyanobacteria by shading the 328 

water, thus mitigate bloom development near shore.  329 

Mixing can effectively mitigate cyanobacterial growth. Stagnant water allows buoyant 330 

cyanobacteria to remain stable in the upper layer abundant of light and warmth, thus promoting 331 

bloom development. By applying mixing, the stability of the water column is decreased while 332 

the mixing water depth is increased. As a result, cyanobacteria entrained in turbulence 333 

experience lower light availability, higher light fluctuation and shorter residence time. This 334 

leads to a decrease in cyanobacterial growth [18]. Some examples include introducing plumes 335 

of bubbles near the bottom of the reservoir or installing a propeller in/near the dam wall.  336 

Sonication has emerged as a promising technique to control cyanobacterial bloom [93, 94]. 337 

Ultrasonic radiation in water can generate cavitation bubbles, causing localised regions of very 338 

high temperature and pressure [95]. This extreme environment disrupts the structure of the gas 339 

vacuoles in algal cells thus inhibiting the buoyancy of cyanobacteria. Without the competitive 340 

ability for buoyancy, the photosynthetic activity of cyanobacteria is limited. Simultaneously, 341 

the sedimentation of collapsed algal cells is stimulated [96]. This leads to a decline in 342 

cyanobacterial growth. Sonication is simple and easy to operate, with low impact on the 343 

ecosystems [93].  344 

Improvements towards climate change and global warming also contribute to minimising 345 

cyanobacterial blooms in the long term. Currently, climate change affects cyanobacterial 346 

development in many ways [2, 81]. Higher water temperature due to global warming stimulates 347 

vertically thermal stratification, which favours the growth of cyanobacteria.  Increased water 348 

variability (e.g. severe storms and rainfall) due to climate change may results in more nutrient 349 

runoff into the water bodies. Therefore, efforts in decelerating climate change can generate 350 

positive impacts on the long-term cyanobacterial bloom management. Successful prevention 351 

and management of cyanobacteria in surface water require the engagement of the wider 352 

community (e.g. water managers, users, scientists, engineers) [77]. Collaborations among these 353 

parties to develop a tailor-made and integrated solution for the water body of interest is 354 

encouraged.  355 
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4.2 Detection of cyanobacterial bloom development 356 

Remote sensing technologies (using satellite, drone, and hyperspectral cameras) 357 

accompanied by advanced modelling (e.g. artificial neural networks) offers cost-effective and 358 

efficient ways to forecast and monitor cyanobacterial blooms [97, 98]. These have been 359 

implemented by CSIRO and Australian water authorities (WaterNSW and Melbourne Water) 360 

to develop a harmful algal bloom early warning system [8]. Based on historical data and the 361 

information collected from the hyperspectral camera, changes in the physical environment 362 

(temperature and wind) that could lead to cyanobacterial blooms are detected. This together 363 

with satellite remote sensing imagery allows for risk assessment of cyanobacterial blooms and 364 

their potential spatial spread [8]. Prediction of cyanobacterial development seven to 14 days 365 

ahead can be achieved through these approaches. This allows adequate time for early 366 

intervention (e.g. chemical dosing, apply mixing) to minimise a further growth of 367 

cyanobacteria [8].  368 

Historical and current satellite data is also used to detect cyanobacterial blooms in U.S. 369 

freshwater systems in a project called Cyanobacteria Assessment Network (CyAN). This 370 

project was facilitated in 2015 by multiple agencies, including the EPA, NASA, the National 371 

Oceanic and Atmospheric Administration (NOAA), and the United States Geological Survey 372 

(USGS) [99]. CyAN seeks to develop an integrated and reliable system to predict and identify 373 

cyanobacterial blooms across the U.S. using satellites. The harmful level of these in various 374 

water storages can also be characterised using the data from colour satellites [99].  375 

Public alerts for cyanobacteria detection provide up-to-date information for all water 376 

suppliers and users and prevent undesirable accidents related to cyanobacterial blooms. These 377 

could include media statements, signage and direct advice from the authorities. An online 378 

cyanobacteria alert system is particularly effective in delivering real-time update on the bloom 379 

development. The data collected from remote sensing is a good input for this type of systems.  380 

An example of the online algal alert maps is provided by the Regional Algal Coordinating 381 

Committees (RACCs) across New South Wales, Australia [100]. Three colour-coded alert 382 

levels are used to represent the level of cyanobacteria in the water. They are declared once the 383 

algal cell numbers exceed the concentration in the Guidelines for Managing Risk in 384 

Recreational Waters [4] (Table 3).   385 

 386 
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Table 3: Algal alert modes managed by the RACCs across New South Wales, Australia [100] 387 

Alert mode Detected concentration Hazardous level 

cells/mL of Microcystis mm3/L of combined total 
cyanobacteria 

Green 500 - 5000  0.04 – 0.4 Lowa 

Amber 5000 - 50 000 0.4 – 4 Highb 

Red  50 000 4 Extremec 

a Cyanobacterial bloom at earlier stages do not pose any threats to recreational, stock or domestic use [4] 388 
b The water is no longer safe for potable use. Recreational uses are still suitable but should be taken with cautions 389 
as the cyanobacteria population can now change rapidly [100]. 390 
c The waterbody is prohibited for any primary recreational use. The public should be notified through media 391 
channels and signage around the location of blooms. 392 

4.3 Cyanobacterial biomass removal 393 

A range of techniques has been used for removing and harvesting cyanobacterial biomass 394 

(and intracellular cyanotoxins) from a water suspension [101]. The most common techniques 395 

include coagulation and flocculation, flotation, membrane filtration and centrifugation (Table 396 

4). The deployment of these techniques often focuses on several factors i.e. ease of use, removal 397 

efficiency, operational cost, energy demand, operation scale and quality of harvested algal 398 

biomass. It is also common to combine two or more techniques to achieve desirable operation 399 

and efficiency [102].  400 

 401 

 402 

 403 

 404 

 405 

 406 

 407 

 408 

 409 
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Table 4: Advantages and disadvantages of common removal techniques for cyanobacteria 410 

biomass 411 

Removal 

Techniques 
Advantages Disadvantages References  

Coagulation/ 

Flocculation  

Fast and easy 

Less cell damages  

Suitable for wide range of 

species 

Less energy demand, Suitable 

for large scale 

High chemical cost  

Highly pH dependent 

Efficiency varies across types of 

flocculants 

End-product value is limited 

[103] 

Flotation (e.g. 

DAF) 

Suitable for large scale 

Low cost 

Short operation time 

Effective due to cyanobacteria 

cells’ buoyancy  

Addition of flocculants or 

surfactants is required 

pH dependent   

[103, 104, 

40] 

Membrane 

Filtration 

High recovery efficiency 

No chemical required  

Water can be recycled  

Membrane fouling leads to 

increased O&M cost 

Slow operation 

High energy demand 

[103, 40] 

Centrifugation 

High recovery efficiency 

Suitable for large scale 

Fast and continuous process 

High capital cost 

High energy demand   
[105, 106] 

 412 

4.4 Cyanotoxin detection and removal  413 

Identification of the toxicological potential of cyanobacterial blooms can be obtained 414 

through molecular techniques. These include polymerase chain reaction (PCR) - based methods 415 

and Desoxyribonucleic Acid (DNA) microarrays [107, 41]. Conventional and real-time 416 

polymerase chain reaction (qPCR) method are readily available and cost-effective ways to 417 

detect cyanotoxins, even at trace level [108]. Accurate detection is achieved through the 418 

amplification of the targeted toxin genes using primers if they are presented in the sample. The 419 

qPCR technique particularly allows for the indirect determination of the number of target genes 420 

[41, 108]. DNA microarrays are a recent technique used to detect and quantify cyanotoxins 421 
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using their genomic DNA. Microcystins and nodularins have been identified using this 422 

technique [109, 110]. Although DNA microarray requires a high cost, it can provide rapid toxin 423 

detection [41].    424 

Biochemical properties of cyanotoxins allow for the development of detection methods such 425 

as enzyme-linked immunosorbent assays (ELISA) and protein phosphatase inhibition assay 426 

(PPIA). Commercially available ELISA is an easy and inexpensive method for cyanotoxin 427 

testing [111]. ELISA relies on highly specific antibody-antigen interaction to detect 428 

cyanobacterial cells [112]. Currently, cyanotoxins that can be assessed and quantified by 429 

ELISA are microcystin, nodularin, cylindrospermopsin, saxitoxin and BMAA [112-114].  430 

PPIA was developed based on the ability of cyanotoxins to inhibit the activity of protein 431 

phosphatase enzymes [41]. In the PPIA test, inhibition of protein phosphatase indicates toxin 432 

concentration. However, PPIA cannot distinguish among microcystin variants or between 433 

microcystin and nodularin despite them having a different reaction with phosphatase. The 434 

results, therefore, are expressed as equivalent MC-LR/L [41]. 435 

A range of chemical methods such as liquid-based separations and mass spectrometry are 436 

available for identification and quantification of cyanotoxins in water. Common cyanotoxins 437 

(e.g. Microcystins) can be identified using reversed-phase high-performance liquid 438 

chromatography (RP-HPLC). This allows for the separation of cyanotoxin molecules on the 439 

basis of hydrophobicity [115]. On the other hand, hydrophilic interaction liquid 440 

chromatography (HILIC) is useful for detecting very polar cyanotoxins (e.g. Saxitoxins and β-441 

N-methylamino-L-alanine (BMAA)) [41].  The mechanism involves the interaction between 442 

polar cyanotoxins and the stationary aqueous phase at the packing surface [116]. Recently, a 443 

combined RP-HPLC and HILIC system has emerged as a potential approach to simultaneously 444 

separate lipophilic and hydrophilic cyanotoxins [117]. Combination of liquid chromatography 445 

(e.g. HPLC or HILIC) and mass spectrometry (MS) is also a powerful analytical technique that 446 

delivers sensitive and selective results for toxin determination [112, 117]. These analytical 447 

methods provide accurate detection and quantification of cyanotoxins in environmental 448 

samples. However, a high level of expertise and expensive equipment are required to operate 449 

these systems [112].  450 

Extracellular cyanotoxins can be removed from water using several techniques including 451 

ozonation, UV radiation and activated carbon (Table 5).  These techniques are effective for 452 

degrading common cyanotoxins microcystis, cylindrospermosin and anatoxin-a [40]. 453 
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Cyanotoxin saxitoxins appear to be well removed using granular activated carbon [118]. 454 

Cyanobacterial blooms can contain several types of cyanotoxins; thus, it is recommended to 455 

combine these techniques for a better removal efficiency.  456 

Green Liver Concept or Systems is a method to remove extracellular cyanotoxins based on 457 

plants’ capabilities to uptake, metabolise and store cyanotoxins in their cell wall fractions [119, 458 

120]. This occurs during plants’ biotransformation process similar to that of animal’s liver. The 459 

suitable aquatic plants thus act as “green liver” to remediate contaminated water and pack away 460 

cyanotoxins at a low cost. Periodical harvesting of the aquatic macrophytes in this system is 461 

necessary to prevent the release of cyanotoxins from degrading plants back into the water [120]. 462 

Green Liver concept is a promising approach to sustainably remove extracellular cyanotoxins. 463 

Multiple techniques (e.g. oxidation, coagulation, sedimentation and filtration) are often 464 

incorporated into a drinking water treatment design (Fig. 3) [102]. Different removal 465 

mechanisms offered by these techniques can assist one another thus enhancing the total 466 

cyanobacteria and cyanotoxin removal efficiency. Pre-treatment techniques require careful 467 

consideration to avoid cell lysis and subsequent cyanotoxin release. For example, many 468 

drinking water treatments in Vietnam apply pre-chlorination as an algaecide. However, 469 

cyanobacterial cell’s membrane can be severely disrupted by chlorine, leading to cell lysis and 470 

extracellular cyanotoxins being liberated into drinking water [121]. The combination of 471 

treatment techniques can be determined by the quality of the water source. This data can be 472 

obtained through regular monitoring and testing across the plant. Long-term strategies to 473 

prevent cyanobacterial bloom in the source water should, therefore, be prioritised.  474 

 475 

 476 

 477 

 478 

 479 

 480 

 481 

 482 
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Table 5: Advantages and disadvantages of common removal techniques for cyanotoxins  483 

Removal 

Techniques 
Advantages Disadvantages References  

Ozonation 

Effective for Microcystis, 

Cylindrospermosin, Anatoxin-a 

and T&O  

Quick reaction time 

Ease to automate  

pH dependent for oxidation of 

some species 

Possible formation of 

disinfection by-products  

[40] 

Activated carbon  
Effective and affordable  

Suitable for large scale  

Effectiveness varies among 

types of carbon and pore size  

 

[40] 

UV radiation  

Degrade Microcystis, 

Cylindrospermosin, Anatoxin-a 

Require less space  

No impact on water composition 

Specific UV emission spectrum 

for each toxin 

Require high doses or addition 

of photocatalyst/hydrogen 

peroxide  

[101, 35] 

Green Liver 

concept 

Low cost, sustainable green 

technology 

Toxins completely taken up by 

the aquatic plants 

Require periodical harvesting 

and planting of new plant 

Possible release of cyanotoxins 

back into the water 

[120] 

 484 
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 485 

Figure 3: The schematic of drinking water treatment processes with considerations for 486 

effective cyanobacterial biomass and cyanotoxins removal based on recommendations and 487 

evaluations developed by EPA [102].  488 

5 Opportunities from cyanobacteria 489 

The metabolic diversity allows cyanobacteria to possess a range of bioactive compounds. 490 

Not all of these bioactive compounds are toxic. Indeed, many of them are valuable for the food, 491 

health, cosmetic and pigment industry (Fig. 4). In addition, the photosynthetic capacity of 492 

cyanobacteria makes them one of the most promising feedstocks for solar-powered biofuel 493 

production (Fig. 4).   494 
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 495 

Figure 4: Potential applications of cyanobacterial biomass. 496 

 497 

5.1 Human food 498 

Cyanobacteria biomass has been a traditional food source for centuries.  Kanembu people 499 

in central Africa and the indigenous population in Asia and North America are known to 500 

consume Spirulina as a nutritious food [19]. It is a high protein content (65%) superfood in 501 

comparison to most other natural food such as animal and fish flesh (15-25%), soybean (35%) 502 

and eggs (12%). Vitamins extracted from cyanobacterial biomass have also been used for 503 

health care. A rich amount of carotene, thiamine, riboflavin and vitamin B can be harvested 504 

from Spirulina [122].  505 

 Several secondary metabolites from cyanobacteria (polysaccharides, essential fat gamma-506 

Linolenic acid) can be easily absorbed by human cell thus improving energy production. In 507 

addition, researchers have identified potential health-promoting effects from Spirulina 508 
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consumption (e.g. suppression of hypertension and elevated serum glucose level, alleviation of 509 

hyperlipidaemia) [123, 124].  510 

Commercial production of these cyanobacteria into “nutraceuticals” (food supplements 511 

marketed with nutritional and medicinal benefits) have been facilitated over that last few 512 

decades. Spirulina is a dominating species in commercial cyanobacterial biomass production 513 

with an estimated global output of 2,000 tonnes a year [125, 126].  The largest cultivation farm 514 

is in Hainan China (Hainan Simai Enterprising Ltd) and produces 200 tonnes of Spirulina 515 

powder annually. Further research to optimise the harvesting and extraction of valuable 516 

compounds from cyanobacteria will establish an economic and environmental-friendly food 517 

industry for the future.  518 

5.2 Essential ingredients for cosmetic products 519 

Bioactive compounds isolated from cyanobacteria are promising resources for natural 520 

cosmetic and skincare industry. For examples, mycosporine-like amino acids are potential 521 

compounds for the production of effective natural UV blockers due to their adsorption maxima 522 

in UV range [127, 128]. These are photoprotective compounds primarily engaged in the 523 

protection of cyanobacteria against detrimental solar radiation [129, 130]. Derivatives from 524 

mycosporine-like amino acids (e.g. tetrahydropyridines) as sunscreen pigments not only 525 

prevent damage from the UV radiation but also suppress inflammation and have antioxidant 526 

activity [131-133]. However, further research is needed to validate the industrial development 527 

of natural sunscreens and other cosmetic products from mycosporine-like amino acids.  528 

Exopolysaccharides excreted from cyanobacteria (e.g. Synechocystis) have antioxidant 529 

properties and potential use as moisturising agents [134]. Exopolysaccharides are composed of 530 

various sugars and uronic acid with water adsorption and retention capacity [12]. In a 531 

comparison between a exopolysaccharides (sacran) extracted from Aphanothece sacrum and 532 

hyaluronic acid (the most widely used ingredient in moisturising products), Okajima et al. 533 

observed that sacran had a higher water absorption efficiency [135, 136]. Sacran, therefore, has 534 

the potential to replace expensive hyaluronic acid in the production of high moisturising 535 

products. Hence, the development of cosmetic formulations based on natural compounds from 536 

cyanobacteria is an ecologically-friendly approach to provide skin benefits without inducing 537 

side effects and high cost like synthetic products [12].  538 
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5.3 Pigments as natural colorants 539 

Major groups of light-harvesting pigments (chlorophyll, phycobiliproteins and carotenoids) 540 

produced by cyanobacteria are commercially valuable. Phycocyanin is a type of 541 

phycobiliproteins that have been used as natural colourants in food (e.g. chewing gum, ice 542 

cream, candies) [19]. It contains natural blue pigment and is abundant in cyanobacteria (e.g. 543 

Spirulina, Synechococus, Anabaena) [11]. Phycocyanin as natural colourants are environment-544 

friendly and eliminate potential health issues using synthetic colours (toxic, carcinogenic). 545 

Phycobilins (phycobiliproteins) are also used as chemical tags in research and in 546 

immunofluorescence technique. This is due to their ability to bind to specific antibodies and 547 

fluoresce at a particular wavelength [137].  548 

5.4 Sustainable agriculture 549 

Cyanobacteria have promising applications in the field of sustainable agriculture due to their 550 

ability to fix atmospheric nitrogen (N2) in soil, enhance the solubility of nutrients, and act as a 551 

soil conditioner [19, 138, 139]. A natural population of cyanobacteria is present in most paddy 552 

fields [138]. Rice fields with waterlogged conditions are especially favourable for their 553 

habitation [19, 138]. Cyanobacteria as biofertiliser in rice field can contribute to about 20 – 30 554 

kg N/ha [140]. It thereby reduces the investment into chemical fertilisers without 555 

compromising with the normal yield. Nutrient availability (i.e. phosphorus) is also improved 556 

as cyanobacteria can solubilise and mobilise the insoluble organic phosphates present in the 557 

soil [13, 141]. The effect of cyanobacterial biofertiliser on crop growth is not spontaneous due 558 

to the gradual release of the fixed nitrogen into the soil. This enables the crops to utilise more 559 

nutrients available from the soil during growth stage [19, 138]. Examples of effective 560 

cyanobacterial biofertilisers include Anabaena variabilis, Nostoc muscorum, Aulosira 561 

fertissima, and Tolypothrix tenuis [139].  562 

The beneficial effects of cyanobacteria inoculation in crop field have also been reported for 563 

wheat, kale and willow [142-144]. These studies indicated that besides enhancing soil fertility, 564 

cyanobacteria are effective soil conditioners. Inoculation of cyanobacteria in sandy and 565 

calcareous soils improved the soil organic matter, water holding capacity and soil aggregate 566 

stability [142]. This was presumably due to the excretion of several compounds 567 

(polysaccharides, peptides, lipids, etc.) from cyanobacterial cells which helps in binding soil 568 

particles [19, 142]. Cyanobacteria is, therefore, an economical option to replace expensive soil 569 

conditioners for common agricultural use.  570 
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5.5 Feedstocks for biofuel production 571 

Several advantageous properties make cyanobacteria a good feedstock for solar-powered 572 

biofuel production [145]. Carbon rich biomass can be produced rapidly without competing for 573 

arable lands for food crops. Naturally available resources such as sunlight, water, atmospheric 574 

or water-dissolved CO2 are adequate for cyanobacterial growth. Some strains of cyanobacteria 575 

(e.g. Synechocystis sp., Synechococcus sp. and Anabaena sp.) can be easily and stably 576 

engineered for better biofuel production [145, 146]. Excretion of fuel outside the engineered 577 

cyanobacterial cells is also favoured over intracellular fuel production in eukaryotic algae 578 

[145].  579 

Synthetic biology and metabolic engineering approaches have been introduced to 580 

cyanobacteria since they do not possess a complete biosynthetic pathway for biofuel production 581 

[147]. Deng and Coleman [148] transformed Synechococcus species with bacterial genes from 582 

Zymomonas mobilis  to create a catalysed pathway for ethanol synthesis. These genes provided 583 

two key enzymes (pyruvate decarboxylase and alcohol dehydrogenase). They degraded sugars 584 

to pyruvate, then fermented it to produce ethanol and CO2 as the only products. The engineered 585 

Synechococcus sp. PCC 6803 yielded an ethanol concentration of 0.23 g/L [148]. A similar 586 

approach was applied by Gao et.al [14] to Synechococcus, with additional disruption to the 587 

biosynthetic pathway of poly-β-hydroxybutyrate. A significantly higher ethanol yield (5.50 588 

g/L) was achieved by the transformed Synechococcus sp. PCC 6803 [14]. Another example of 589 

engineered cyanobacteria is the transgenic S. elongatus PCC 7942 for isobutanol production. 590 

An isobutanol yield of 0.45 g/L was achieved using this species via the artificial and non-591 

fermentative pathway [15].  592 

Cyanobacteria also produce molecular hydrogen (H2), a promising clean fuel for the future 593 

[145, 149]. The combustion of hydrogen for energy conversion does not result in any air 594 

pollution. Hydrogen has the highest energy per unit weight (141.65 MJ/kg) among all known 595 

fuels [145, 147, 150]. In cyanobacteria, nitrogenase enzymes have been reported to produce 596 

hydrogen most efficiently as a by-product of nitrogen fixation [16]. Several engineered 597 

cyanobacterial strains have been generated and evaluated for hydrogen production (Table 5).  598 

 599 

 600 

 601 
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Table 5: Hydrogen production of genetically engineered cyanobacterial strains.  602 

Cyanobacterial strain Productivity 
(μmol H2/mg chlorophyll*hour) References 

Synechococcus sp. PCC 7002 1.2 [151] 

Synechocystis sp. PCC 6803 6 [152] 

Nostoc sp. PCC 7422 100 [153] 

Nostoc linckia HA-46 93-105 [154] 

 603 

6 Future research roadmap 604 

The knowledge of cyanotoxin production is significant for solving problems regarding 605 

cyanobacterial bloom, but it is still not well understood. Cyanotoxin production is regulated by 606 

cyanobacterial gene and a variety of environmental factors such as nutrients, light, temperature 607 

and oxidants [155]. A few studies have been conducted to investigate the gene regulation and 608 

the impact of environmental factors on various toxin production (e.g. microcystins, 609 

cylindropermopsins, nodularins, and saxitoxins) [156-159]. However, since these studies were 610 

conducted under different conditions and due to the complexity of each cyanobacterial system, 611 

it is difficult to establish a precise understanding of toxin synthesis and regulation [155]. 612 

Besides laboratory experiments, more field experiments should be conducted to determine the 613 

effect of environmental triggers on toxin production. Furthermore, advances in molecular 614 

research are required to obtain a clear view of toxin synthesis. Strong knowledge of toxin 615 

trigger and production will allow researchers to develop preventive measures or treatments 616 

against the presence of cyanotoxins in the water environment.  617 
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 618 

 619 

Figure 5: The current state of research on problems and opportunities associated with 620 

cyanobacteria in surface water. 621 

 622 

Cyanobacteria also present many opportunities. Some applications have been 623 

commercialised with demonstrated market value (e.g. Spirulina health food, biofertilisers and 624 

pigments) while the others are emerging as a potential (cosmetics and biofuel) (Fig. 5). 625 

Cyanobacteria biomass into biofuels can be an effective replacement to fossil fuels but there 626 

are challenges in lowering the production cost. The cost of cyanobacterial cultivation and 627 

processing for biofuel production is still high, making biofuel from cyanobacterial biomass 628 

more expensive than fossil fuel. Besides, the use of genetically modify cyanobacteria species 629 

for biofuel production require careful considerations regarding potential environmental risks. 630 

Therefore, more research is still necessary to develop efficient and economically viable 631 

cultivation techniques and to gain further understanding of engineered cyanobacteria.   632 

7 Conclusion 633 

Cyanobacteria present significant threats to human health and the environment at the time 634 

of worsening climate change outlook. Harmful cyanobacterial blooms negatively cause 635 
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impacts on the water quality, public health and the economy.  Technologies have been 636 

effectively utilised to detect and remove cyanobacterial biomass and cyanotoxins from water. 637 

The key to mitigating cyanobacterial bloom and its consequences relies upon prevention 638 

strategies. It requires efforts in managing water quality and reducing global warming. Progress 639 

in the research area of cyanotoxin production will be useful for toxic bloom prevention. Despite 640 

the problems, there are also several and very significant opportunities from purposeful 641 

cyanobacteria cultivation and utilisation (e.g. agriculture, food, cosmetics and pigments).   642 

Recently, genetically engineered cyanobacteria attract attention as promising feedstocks for 643 

solar-powered biofuel production. Further research is still necessary to evaluate the application 644 

of these engineered cyanobacterial strains. Successful large-scale production of biofuels from 645 

cyanobacterial biomass will contribute significantly towards the global goal of sustainability.  646 
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