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ABSTRACT Previously, the alternating convex optimization (ACO) was used to reduce the number of
elements in the single-pattern linear array. This work extends the ACO method to synthesize the unequally
spaced sparse linear arrays with reconfigurable multiple patterns. In this extended ACO, the minimum inter-
spacing constraint can be easily incorporated in the sparse array synthesis by performing a set of constrained
alternating convex optimizations. Three examples for synthesizing sparse linear arraywith differentmultiple-
pattern requirements are conducted to validate the effectiveness, robustness, and advantages of the proposed
method. The synthesis results show that the proposed method can effectively reduce the number of elements
in the reconfigurable multiple-pattern linear arrays with good control of the sidelobe levels and minimum
interspacing. The comparisons with other methods are also given in the examples.

INDEX TERMS Unequally spaced linear array, alternating convex optimization, pattern-reconfigurable
array, minimum interspacing control.

I. INTRODUCTION
Antenna arrays with reconfigurable multiple shaped pat-
terns achieved by varying only excitation distributions have
been applied in many applications including multi-functional
radars, remote sensing and wireless communications [1]–[4].
The capability of generating reconfigurable multiple patterns
provides us a possibility of replacing a multiple-antenna
system with a single pattern-reconfigurable antenna. Obvi-
ously, the usage of pattern-reconfigurable antenna arrays can
reduce the number of total antennas and consequently save
the weight, space as well as the cost of the whole system
hardware.

In the past decades, many advanced techniques have
been developed to synthesize the array with reconfig-
urable multiple patterns. These techniques mainly includes
alternating projection approaches [5], [6], the modified
Woodward-Lawson technique [7], stochastic optimization
algorithms [8]–[11], and some other techniques [12]–[15].
For most of them, multiple patterns are generated by varying
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the excitation phases with the common prefixed or optimized
amplitudes based on a prescribed element positions with a
uniform spacing in general. Such synthesis can reduce the
complexity of designing the feeding network, but meantime
reduce the freedoms of degrees in the point of view of pattern
synthesis. In particular, when multiple complicated patterns
with different shapes are required, the array synthesis with a
uniform spacing may require a large number of elements to
simultaneously achieve the multiple pattern characteristics.

Optimizing antenna element positions can provide addi-
tional degrees of freedoms to improve the array synthe-
sis performance, for example, reducing the total number
of elements required for the desired pattern characteristics.
Plenty of synthesis methods for unequally spaced arrays have
been developed, and however, most of them are presented
to design single-beam unequally spaced arrays [16]–[23].
These single-beam sparse array synthesis techniques cannot
be directly extended to deal with the case of reconfigurable
multiple patterns since the best element positions usually
change with different pattern requirements. Nevertheless,
several recent techniques have been successfully generalized
to find the best common element positions for multiple-
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pattern nonuniformly spaced arrays, such as the extended
matrix pencil methods (MPM) [24] and enhanced unitary
MPM [25], the multiple measurement vectors FOCal under-
determined system solver (M-FOCUSS) [26], and the joint
sparse recovery techniques [27], [28]. Among them, the first
three methods including the extended MPM, the enhanced
unitary MPM and the M-FOCUSS, can be considered as a
kind of sparse array reconstruction by matching the synthe-
sized patterns tomultiple reference ones in bothmainlobe and
sidelobe regions. Clearly, artificially presetting the sidelobe
distributions for multiple references patterns is not easy, and
the help of some other synthesismethodswould be required to
generate the reference pattern. In addition, these techniques
usually measure the pattern matching accuracy in terms of
`2-norm error, and consequently the pattern reconstruction
accuracy may deteriorate at low sidelobe and null region.
The joint sparse recovery technique in [27] formulates the
multiple-pattern synthesis problem as a mixed `2/`1-norm
optimization under multiple convex constraints, and both the
mainlobe shape and sidelobe level formultiple patterns can be
easily controlled by using multiple pattern constraints. How-
ever, this technique cannot constrain the minimum interspac-
ing, just like many other reweighted `1-norm optimization
techniques used in the single-beam case [29], [30]. The syn-
thesized array positions may be impractical due to physical
size limitation of antenna elements.

Recently, an alternating convex optimization (ACO)
method is firstly proposed in [31] to synthesize single-
beam sparse linear arrayswithminimum interspacing control.
In this method, a set of alternating weighted `1-norm opti-
mizations are performed and the element excitation vector
and weighting vector are alternately chosen as the optimiza-
tion variables. In particular, the weight vector is obtained
by performing a constrained convex optimization problem
instead of being simply assigned according to the excitation
vector at the previous step in the reweighted `1-norm opti-
mization technique. Consequently, theminimum interspacing
control can be easily implemented by imposing constraints in
the optimization of the weight vector. In this work, we further
extend the ACO method to synthesize a sparse linear array
with reconfigurable multiple patterns. The extended ACO
method can obtain a sparse linear array generating satisfac-
tory multiple pattern results with accurate sidelobe level and
nulling region control, and the minimum interspacing can be
also constrained as expected. Several synthesis experiments
for different reconfigurable pattern requirements are provided
to validate the effectiveness and advantages of the proposed
method. The comparisons with some other methods are also
provided in the examples.

II. FORMULATION AND ALGORITHM
A. MULTIPLE-PATTERN UNEQUALLY SPACED LINEAR
ARRAY SYNTHESIS PROBLEM
The problem of synthesizing a unequally spaced sparse linear
array with reconfigurable patterns can be formulated as that
of finding the best common element positions with optimized

multiple excitation distributions for the desired multiple pat-
tern characteristics. Let us consider a linear array with N
initial elements which are located at Z -axis with a uniform
spacing of d . Assume the initial positions are closely dis-
tributed as to provide enough position candidates for selec-
tion. That is, we assume d � λ for the initial array. The
mth (m = 1, 2, . . . ,M ) array pattern under isotropic element
assumption can be given by

F (m)(θ ) =
N∑
n=1

w(m)
n e−jβnd cos θ (1)

where j =
√
−1, β = 2π/λ is the free space wave number,

and w(m)
n is the complex excitation of the nth element for the

mth array pattern. This pattern can be rewritten in the form of
matrix product,

F (m)(θ ) = aT (θ )w(m) (2)

where

a(θ ) = [e−jβd cos θ , e−j2βd cos θ , ..., e−jNβd cos θ ]T (3)

w(m)
= [w(m)

1 ,w(m)
2 , . . . ,w(m)

N ]T (4)

In the sparse array synthesis problem, most elements must
be discarded from the predefined densely spaced array. How-
ever, in the reconfigurable multiple-pattern case, one element
is related to multiple excitations for multiple different pat-
terns. It is discarded only if all the related excitations are min-
imized to zeros. This is different from the single-beam sparse
array synthesis case. To tackle this problem, we introduce an
auxiliary variable ηn to constrain the maximum energy bound
of all the coefficients related to the nth element. That is given
by

ηn ≥ max
{
|w(1)

n |
2, |w(2)

n |
2, . . . , |w(M )

n |
2
}
. (5)

Then, we can formulate the synthesis of a interspacing-
constrained sparse linear array with reconfigurable multiple
focused and/or shaped patterns as the following optimization
problem

min{
w(m)
n ,ηn;

∣∣∣m=1,...,Mn=1,...,N

} ‖η‖0

s.t.



ηn ≥ max
{
|w(1)

n |
2, |w(2)

n |
2, . . . , |w(M )

n |
2
}
,

(n = 1, 2, . . . ,N )
dmin ≥ Qd

(F .B.C)

{
aT (θlook)w(m)

= 1

|aT (θ )w(m)
| ≤ U (m)

SL (θ ), ∀θ ∈ �(m)
SL

or

(S.B.C)


|aT (θ )w(m)

−f (m)d (θ )|

|f (m)d (θ )|
≤ ε, ∀θ ∈ �

(m)
ML

|aT (θ )w(m)
| ≤ U (m)

SL (θ ), ∀θ ∈ �(m)
SL

(m = 1, 2, . . . ,M ).
(6)
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where η = [η1, η2, . . . , ηN ]T , ‖η‖0 denotes the number
of non-zero components of η (i.e., the number of selected
elements), dmin is the minimum interspacing between the
selected elements and Q is a positive integer. The constraint
(F.B.C) or (S.B.C) is used to control the radiation charac-
teristics on the mth pattern with either a focused or shaped
mainlobe. U (m)

SL (θ ) denotes a prescribed upper bound in the
sidelobe region �(m)

SL , the θlook is the look direction for a
focused pattern, and f (m)d (θ ) is the desired pattern shape in
the mainlobe region�(m)

ML for a shaped pattern. ε is the pattern
matching tolerance in the mainlobe region.

B. THE EXTENDED ALTERNATING CONVEX OPTIMIZATION
METHOD
The problem in (6) is extremely computationally expensive
due to the `0-norm optimization objective function as well as
the minimum interspacing constraint. In [27], a joint sparse
recovery technique based onmixed `2/`1-normminimization
is proposed to deal with the multiple-pattern sparse linear
array synthesis problem. This technique is formulated as

min{
w(m)
n ,ηn;

∣∣∣m=1,...,Mn=1,...,N

}
N∑
n=1

ηn

s.t.



ηn≥

∥∥∥w(1)
n ,w

(2)
n , . . . ,w

(M )
n

∥∥∥
2
, (n=1, 2, . . . ,N )

(F .B.C)

{
aT (θlook)w(m)

= 1

|aT (θ )w(m)
| ≤ U (m)

SL (θ ), ∀θ ∈ �(m)
SL

or

(S.B.C)


|aT (θ )w(m)

−f (m)d (θ )|

|f (m)d (θ )|
≤ε, ∀θ ∈ �

(m)
ML

|aT (θ )w(m)
| ≤ U (m)

SL (θ ), ∀θ ∈ �
(m)
SL

(m = 1, 2, . . . ,M ).
(7)

Clearly, the above optimization problem can be easily solved
by convex optimization. However, the main problem is that
the minimum interspacing constraint dmin ≥ Qd cannot be
incorporated in this optimization programm.

Recently we presented an ACO method in [31] for the
single-beam sparse linear array synthesis. In this method,
an additional weighting vector g is introduced, and the exci-
tation vector and the weighting vector are chosen in turn
as optimization variables. When the weighting vector g is
chosen as the optimization variable, a sequence of constraints
can be used to control the distribution of elements in the
optimized g. This finally affects the distribution of selected
antenna elements when we optimize the excitation vector
with the obtained g. By using appropriate constraints in the
optimization of g, the minimum interspacing between the
selected elements can be controlled in the final synthesized
result. This idea can be further extended to control the min-
imum interspacing for the reconfigurable multiple-pattern
sparse linear array synthesis. The extended ACO method
can be formulated as alternatively solving two optimization

problems:

min{
w(m)
n ,ηn;

∣∣∣m=1,...,Mn=1,...,N

} gT∗ η

s.t.


ηn ≥ max

{
|w(1)

n |
2, |w(2)

n |
2, . . . , |w(M )

n |
2
}
,

(n = 1, 2, . . . ,N )
(F .B.C) or (S.B.C), (m = 1, 2, . . . ,M );

(8a)

min
g

gT η∗

s.t.


0 ≤ g ≤ 1
1T g(n : n+ Q− 1) ≥ Q− 1
(for n = 1, . . . ,N − Q+ 1).

(8b)

Obviously, Problem (8b) and (8b) are both weighted `1-
norm minimization problems, and they can be solved by
applying convex optimization. In Problem (8b), g∗ has been
already known by solving Problem (8b) at the previous step,
and w(m)

n (m = 1, . . . ,M , n = 1, . . . ,N ) and η are the vari-
ables to be optimized. In Problem (8b), η∗ has been already
known, and g is the optimization variable. At the beginning,
g∗ should be initialized. For example, we can choose g∗ as
random numbers or just equal to ones. The whole synthesis
procedure can be implemented by alternatively solving the
two minimization problems of (8b) and (8b). To understand
why the minimum interspacing can be controlled by this
method, we can at first consider the solution to Problem (8b).
We assume that there are no identical elements in every Q-
length segment of η∗ obtained from Problem (8b). Then,
the solution to Problem (8b) will have ’1’ for at the leastQ−1
entries and ’0’ for the left in each Q-length segment of g(n :
n+Q−1), due to the constraints 1T g(n : n+Q−1) ≥ Q−1
for n = 1, . . . ,N − Q+ 1. Then we return to Problem (8b).
Clearly, the elements in η corresponding to the entries of ’1’
in g∗ will be significantly penalized in Problem (8b), while
the elements in η corresponding to ’0’ entries of g∗ will be no
doubt retained. Since every Q-length segment of g∗ obtained
from Problem (8b) has at the most one entry of ’0’, each
Q-length segment of η obtained from Problem (8b) will have
at the most one element left and all other elements in this
segment will go to zeros. This is the principle of the extended
ACO method to control the minimum interspacing in the
framework of convex optimization.

C. THE PROPOSED EXTENDED ACO SYNTHESIS
PROCEDURE
The proposed extended ACO procedure for synthesizing
unequally spaced multiple-pattern sparse linear arrays with
minimum interspacing constraint is given as follows.
1) Set initial array: the parameters N and d .
2) Set the minimum interspacing constraint: dmin and Q.
3) Give prescribed multiple patterns: the focused beam

direction θ
(m)
look , the shaped pattern f (m)d in mainlobe

region �(m)
ML , the sidelobe level U

(m)
SL within the sidelobe

region �(m)
SL for all patterns (m = 1, 2, . . . ,M ).
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4) Set the initial weighting vector g(0)∗ to be 1 (initialize the
g(0)∗ randomly if required).

5) Set the allowed number of iterations P.
6) for p = 1 : 1 : P do

(i) Perform the convex optimization in problem (8b)
to obtain w and η, and set η(p)∗ = η.

(ii) Perform the convex optimization in problem (8b)
with the interspacing constraint, and set g(p)∗ = g.
(iii) If g remains the same for multiple iterations, then

re-initialize g.
(iv) Sort the elements in η in descent order, and

determine the element number K = min{k; |ηk+1/ηk ≤
10−2}.
(v) Compute the multiple patterns by picking up the

K element positions and multiple sets of excitations
associated with the K largest elements in the ordered η.
(vi) If all the constraints in problem (6) are satisfied,

jump out of the loop.
end for

7) Return the selected element positions and the associated
multiple sets of excitations for all patterns.

III. NUMERICAL EXAMPLE
A. SYNTHESIS OF A SPARSE LINEAR ARRAY WITH
RECONFIGURABLE DUAL-PATTERNS
As the first example, we will apply the proposed method
to synthesize a sparse linear array with reconfigurable dual-
patterns. In [32], dual-patterns including a flat-top pattern
and a cosecant-squared pattern were obtained by optimizing
the amplitudes and phases of a 20-element λ/2-spaced array.
The dual-patterns are re-plotted in Fig. 1. Now, we try to
apply the proposed method to re-synthesize the dual patterns
with reduced number of elements. Assume that the desired
two mainlobe shapes are used as the same as those in [32].
The SLL bound for the flat-top pattern is set as USL(θ ) =
−40 dB for θ ∈ [65◦, 71◦] ∪ [109◦, 115◦] and USL(θ ) =
−20 dB for θ ∈ [0◦, 65◦) ∪ (115◦, 180◦]. The SLL for the
cosecant-squared pattern is set as USL(θ ) = −30 dB for
θ ∈ [96◦, 116◦] and USL(θ ) = −20 dB for others in the
sidelobe region. A linear array consisting of 191 potential
elements with a spacing of λ/20 is used as the initial array.
The minimum interspacing constraint is set as dmin = 0.5λ,
and accordinglyQ equals to 10.We now perform the extended
ACO method to find the best common element positions
for the desired dual-patterns. Finally, 16 unequally spaced
elements are selected from the initial element positions, and
175 elements have been discarded. The synthesized dual-
patterns are shown in Fig. 1. As can be seen, both of the
obtained mainlobe shapes of the dual-patterns agree well
with the desired ones while the sidelobe distributions for the
both patterns meet the prescribed bound. Fig. 2 shows the
selected 16 element positions by the proposedmethod and the
20 λ/2-spaced elements used in [32] for comparison. For the
synthesized array, the minimum and maximum interspacing
is 0.50λ and 0.85λ, respectively. This means the obtained

FIGURE 1. The synthesized dual-patterns by the proposed method with
16 elements and the patterns obtained in [32] with 20 uniformly spaced
elements.

FIGURE 2. The synthesized element positions by the proposed method
and the uniformly spaced positions used in [32] for the dual-patterns.

FIGURE 3. The synthesized excitation distributions by the proposed
method for the reconfigurable dual-patterns. (a) Amplitude and
(b) phase.

array exactly satisfies the minimum interspacing constraint.
Compared with the 20-element λ/2-spaced array, the syn-
thesized array saved 20% elements. Fig. 3(a) and (b) show
the obtained excitation amplitudes and phases for the dual-
patterns, respectively.

To check the effectiveness of the proposed method for
different minimum interspacing requirements, we set dmin =

[0.40, 0.45, 0.50, 0.55, 0.60]λ (Q = [8, 9, 10, 11, 12]).
Assume that the same dual-patterns are required, and the
initial array is also used as the same as the above for all test
cases. Table 1 lists the synthesized results including the mini-
mum andmaximum element spacings, the number of selected
elements as well as the saving in the element count compared
to the 20-element λ/2-spaced array in [32]. As can be seen,
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TABLE 1. Synthesis results of the proposed method with different
interspacing constraints.

although the number of selected elements varies slightly in
different cases, the sparse arrays obtained by the proposed
method strictly satisfy the specified minimum interspacing
constraints. Hence, we can carefully draw the conclusion that
the extended ACOmethod is robust for dealing with different
minimum interspacing constraints.

B. SYNTHESIS OF A SPARSE LINEAR ARRAY WITH
RECONFIGURABLE TRIPLE-PATTERNS
In this case, we consider synthesizing a sparse linear array
generating reconfigurable triple-patterns. In [7], a reconfig-
urable triple-patterns including a focused, a flat-top, and
a cosecant-squared patterns were synthesized by using the
modified Woodward-Lawson method with a 20-element
λ/2-spaced array. The obtained SLL is −20 dB for all the
three patterns. In [24], similar triple-patterns with the same
mainlobe shapes were obtained by the extended FBMPM
using 16 optimized element positions. Fig. 4(a) re-plots all
the pattern results obtained in [7] and [24]. As can be seen,
the patterns synthesized by the extended FBMPM is not satis-
factory in the sidelobe region, and the obtained SLL is consid-
erably higher than −20 dB. In [27], the joint sparse recovery
method is applied to produce the same triple-patterns. The
pattern results are shown in Fig. 4(b). It is seen, the obtained
patterns by the joint sparse recovery method are more accu-
rate than the extended FBMPM. However, the required num-
ber of elements by this method is increased to 18, and the
minimum interspacing is only 0.21λ. As we know, such
an interspacing is not easy to implement for conventional
antenna arrays.

Now, we apply the proposedmethod to synthesize the same
triple-patterns, and the SLL bound for each pattern is set as
−20 dB. The initial array is still set as 191 elements with a
spacing of λ/20, and the minimum interspacing constraint is
set as dmin = 0.5λ (Q = 10). By performing a set of alternat-
ing convex optimizations, the proposed method finally picks
up 16 elements. The obtained triple-patterns have exactly the
same mainlobe shapes while all the sidelobe distributions for
the triple-patterns completely meet the specification. Fig. 5
shows the synthesized element positions by the proposed
method as well as the element distributions obtained in [7],
[24] and [27] for comparison. The obtained minimum inter-
spacing by the proposed method is exactly equal to the spec-
ified 0.5λ. In this example, the array layouts obtained by the
proposedmethod and the FBMPM aremore practical than the
result given by the joint sparse recovery method. However,

FIGURE 4. The triple-patterns synthesized in [7] with 20 elements, and
the patterns synthesized by (a) the extended FBMPM in [24] with
16 elements, (b) the joint sparse recovery in [27] with 18 elements, and
(c) the proposed method with 16 elements.

it should be noted that the extended FBMPM cannot accu-
rately control the minimum interspacing, and consequently
the obtained layout depending on the case cannot alwaysmeet
the requirement. In addition, the extended FBMPM cannot
implement accurate sidelobe control. Hence, in terms of both
the pattern accuracy and minimum interspacing control abil-
ity, the proposed method is more preferable. Fig. 6(a) and (b)
show the obtained excitation amplitudes and phases by the
proposed method for the triple- patterns, respectively. In this
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FIGURE 5. The element positions synthesized by the extended FBMPM,
the joint sparse recovery and the proposed method, as well as the
uniformly spaced positions used in [7].

FIGURE 6. The synthesized excitation distributions by the proposed
method for the reconfigurable triple-patterns. (a) Amplitude and
(b) phase.

triple-pattern synthesis case, we still saved 20% elements if
compared with the 20-element λ/2-spaced array.

C. SYNTHESIS OF A SPARSE LINEAR ARRAY WITH MORE
COMPLICATED RECONFIGURABLE PATTERNS
In the last example, we will check the effectiveness of
the proposed method for synthesizing more complicated
reconfigurable patterns. Assume that an additional common
null is added into the same triple-patterns in the second
example. The null level is set as USL(θ ) = −45 dB for
θ ∈ [145◦, 160◦]. Other configurations such as initial ele-
ment positions and interspacing constraint are set as the same
as those in the second example. The same synthesis proce-
dure is adopted to find the best common element positions
and the associated excitation coefficients. Fig. 7 shows the
synthesized multiple patterns. As can be seen, all the patterns
including the focused, flat-top and cosecant-squared patterns
maintain their mainlobe shapes, and the additional common
null is exactly produced within the required angular region.
It should be noted that for this more complicated pattern
requirement, 17 elements are selected from the initial array.
Compared with the sparse array obtained without the addi-
tional null, one element is added. The element saving in this
case is 15%. Fig. 8 shows the synthesized element positions.
Fig. 9(a) and (b) show the required excitation amplitudes

FIGURE 7. The synthesized triple-patterns with a common null.

FIGURE 8. The synthesized element positions for the triple-patterns with
a common null.

FIGURE 9. The synthesized excitation distributions by the proposed
method for the reconfigurable triple-patterns with a common null.
(a) Amplitude and (b) phase.

and phases for the triple-patterns with the additional null,
respectively.

IV. CONCLUSION
An extended alternating convex optimization (ACO) method
has been presented to synthesize unequally spaced sparse lin-
ear arrays with reconfigurable multiple patterns. By perform-
ing a set of alternating constrained convex optimizations, this
method can accurately control both the sidelobe distribution
and the minimum interspacing. A common null requirement
can be also added into the reconfigurable pattern synthesis.
All these properties make the proposed method more prefer-
able in practice than some other pattern-reconfigurable sparse
array synthesis techniques such as the extended FBMPM and
the joint sparse recovery method. Three examples for synthe-
sizing different reconfigurable patterns have been conducted.
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The synthesis results show that the proposed method is very
effective and robust for different setting in pattern shape,
sidelobe distribution and minimum interspacing requirement.
For test cases, the element saving is about 15% ∼ 25%,which
is very useful for lowering the cost of fabricating pattern-
reconfigurable arrays.

Finally, it should be noted that the proposed method adopts
the isotropic element assumption without considering the
mutual coupling. When considering real antenna array struc-
ture, the array patterns including mutual coupling may devi-
ate from the synthesized ones. In general, since the mutual
coupling effect depends on the element position arrangement,
incorporating the mutual coupling into the element position
optimization seems to be very hard. One possible strategy is
adding a refining step to re-correct the synthesized positions
and excitations. The optimal position perturbations can be
found by solving a convex optimization problem based on
the assumption that the position-perturbed elements have the
same active element patterns except with additional phase
terms associated with the position shifts. Another issue with
the proposedmethod is that a reference pattern is still required
in the mainlobe region. This problem can be overcome
by employing some spectral factorization-based power pat-
tern synthesis methods. Further research on these strategies
applied to the proposed method would be very interesting but
beyond the scope of this paper.

REFERENCES
[1] J. Costantine, Y. Tawk, S. E. Barbin, and C. G. Christodoulou, ‘‘Recon-

figurable antennas: Design and applications,’’ Proc. IEEE, vol. 103, no. 3,
pp. 424–437, Mar. 2015.

[2] P. Angeletti and M. Lisi, ‘‘Multimode beamforming networks for space
applications,’’ IEEE Antennas Propag. Mag., vol. 56, no. 1, pp. 62–78,
Feb. 2014.

[3] Q.-L. Yang, Y.-L. Ban, K. Kang, C.-Y.-D. Sim, and G. Wu, ‘‘SIW
multibeam array for 5G mobile devices,’’ IEEE Access, vol. 4,
pp. 2788–2796, Jun. 2016.

[4] Y. J. Guo, P.-Y. Qin, S.-L. Chen, W. Lin, and R. W. Ziolkowski, ‘‘Advances
in reconfigurable antenna systems facilitated by innovative technologies,’’
IEEE Access., vol. 6, pp. 5780–5794, Jan. 2018.

[5] O. M. Bucci, G. Mazzarella, and G. Panariello, ‘‘Reconfigurable arrays
by phase-only control,’’ IEEE Trans. Antennas Propag., vol. 39, no. 7,
pp. 919–925, Jul. 1991.

[6] R. Vescovo, ‘‘Reconfigurability and beam scanning with phase-only con-
trol for antenna arrays,’’ IEEE Trans. Antennas Propag., vol. 56, no. 6,
pp. 1555–1565, Jun. 2008.

[7] M. Durr, A. Trastoy, and F. Ares, ‘‘Multiple-pattern linear antenna
arrays with single prefixed amplitude distributions: Modified Woodward-
Lawson synthesis,’’ Electron. Lett., vol. 36, no. 16, pp. 1345–1346,
Aug. 2000.

[8] D. Gies and Y. Rahmat-samii, ‘‘Particle swarm optimization for recon-
figurable phase-differentiated array design,’’ Microw. Opt. Technol. Lett.,
vol. 38, no. 3, pp. 168–175, Aug. 2003.

[9] G. K. Mahanti, S. Das, and A. Chakraborty, ‘‘Design of phase-
differentiated reconfigurable array antennas with minimum dynamic range
ratio,’’ IEEE Antennas Wireless Propag. Lett., vol. 5, pp. 262–264,
2006.

[10] G. K. Mahanti, A. Chakraborty, and S. Das, ‘‘Phase-only and amplitude-
phase only synthesis of dual-beam pattern linear antenna arrays using
floating-point genetic algorithms,’’ Prog. Electromagn. Res., vol. 68,
pp. 247–259, 2007.

[11] S. M. Vaitheeswaran, ‘‘Dual beam synthesis using element position per-
turbations and the G3-GA algorithm,’’ Prog. Electromag. Res., vol. 87,
pp. 43–61, 2008.

[12] A. Chakraborty, B. N. Das, and G. S. Sanyal, ‘‘Beam shaping using
nonlinear phase distribution in a uniformly spaced array,’’ IEEE Trans.
Antennas Propag., vol. 30, no. 5, pp. 1031–1034, Sep. 1982.

[13] A. F. Morabito, A. Massa, P. Rocca, and T. Isernia, ‘‘An effective approach
to the synthesis of phase-only reconfigurable linear arrays,’’ IEEE Trans.
Antennas Propag., vol. 60, no. 8, pp. 3622–3631, Aug. 2012.

[14] B. Fuchs, ‘‘Application of convex relaxation to array synthesis problems,’’
IEEE Trans. Antennas Propag., vol. 62, no. 2, pp. 634–640, Feb. 2014.

[15] G. Oliveri, F. Viani, and A. Massa, ‘‘Synthesis of linear multi-beam
arrays through hierarchical almost difference set-based interleaving,’’ IET
Microw., Antennas Propag., vol. 8, no. 10, pp. 794–808, Jul. 2014.

[16] B. P. Kumar and G. R. Branner, ‘‘Design of unequally spaced arrays for
performance improvement,’’ IEEE Trans. Antennas Propag., vol. 47, no. 3,
pp. 511–523, Mar. 1999.

[17] O. M. Bucci, M. D’Urso, T. Isernia, P. Angeletti, and G. Toso, ‘‘Determin-
istic synthesis of uniform amplitude sparse arrays via new density taper
techniques,’’ IEEE Trans. Antennas Propag., vol. 58, no. 6, pp. 1949–1958,
Jun. 2010.

[18] G. Oliveri and A. Massa, ‘‘Bayesian compressive sampling for
pattern synthesis with maximally sparse non-uniform linear arrays,’’
IEEE Trans. Antennas Propag., vol. 59, no. 2, pp. 467–481,
Feb. 2011.

[19] G. Oliveri, M. Carlin, and A. Massa, ‘‘Complex-weight sparse linear array
synthesis by Bayesian compressive sampling,’’ IEEE Trans. Antennas
Propag., vol. 60, no. 5, pp. 2309–2326, May 2012.

[20] K.-K. Yan and Y. Lu, ‘‘Sidelobe reduction in array-pattern synthesis
using genetic algorithm,’’ IEEE Trans. Antennas Propag., vol. 45, no. 7,
pp. 1117–1122, Jul. 1997.

[21] L. Cen, W. Ser, Z. L. Yu, S. Rahardja, and W. Cen, ‘‘Linear sparse
array synthesis with minimum number of sensors,’’ IEEE Trans. Antennas
Propag., vol. 58, no. 3, pp. 720–726, Mar. 2010.

[22] D. G. Kurup, M. Himdi, and A. Rydberg, ‘‘Synthesis of uniform
amplitude unequally spaced antenna arrays using the differential evo-
lution algorithm,’’ IEEE Trans. Antennas Propag., vol. 51, no. 9,
pp. 2210–2217, Sep. 2003.

[23] S. Ho and S. Yang, ‘‘The cross-entropy method and its application to
inverse problems,’’ IEEE Trans. Magn., vol. 46, no. 8, pp. 3401–3404,
Aug. 2010.

[24] Y. Liu, Q. H. Liu, and Z. Nie, ‘‘Reducing the number of elements
in multiple-pattern linear arrays by the extended matrix pencil meth-
ods,’’ IEEE Trans. Antennas Propag., vol. 62, no. 2, pp. 652–660,
Feb. 2014.

[25] H. Shen and B. Wang, ‘‘An effective method for synthesizing multiple-
pattern linear arrays with a reduced number of antenna elements,’’
IEEE Trans. Antennas Propag., vol. 65, no. 5, pp. 2358–2366,
May 2017.

[26] F. Yan, P. Yang, F. Yang, L. Zhou, and M. Gao, ‘‘Synthesis of pattern
reconfigurable sparse arrays with multiple measurement vectors FOCUSS
method,’’ IEEE Trans. Antennas Propag., vol. 65, no. 2, pp. 602–611,
Feb. 2017.

[27] X. Zhao, Q. Yang, and Y. Zhang, ‘‘Synthesis of sparse linear array with
multiple patterns based on joint sparse recovery,’’ in Proc. IEEE Int. Symp.
Antennas Propag., San Diego, CA, USA, Jul. 2017, pp. 425–426.

[28] Y. Liu, P. You, C. Zhu, X. Tan, and Q. H. Liu, ‘‘Synthesis of sparse
or thinned linear and planar arrays generating reconfigurable multiple
real patterns by iterative linear programming,’’ Prog. Electromagn. Res.,
vol. 155, pp. 27–38, Jan. 2016.

[29] B. Fuchs, ‘‘Synthesis of sparse arrays with focused or shaped beampattern
via sequential convex optimizations,’’ IEEE Trans. Antennas Propag.,
vol. 60, no. 7, pp. 3499–3503, Jul. 2012.

[30] S. E. Nai, W. Ser, Z. L. Yu, and H. Chen, ‘‘Beampattern synthesis for linear
and planar arrays with antenna selection by convex optimization,’’ IEEE
Trans. Antennas Propag., vol. 58, no. 12, pp. 3923–3930, Dec. 2010.

[31] P. You, Y. Liu, S.-L. Chen, K. D. Xu, W. Li, and Q. H. Liu, ‘‘Synthesis
of unequally spaced linear antenna arrays with minimum element spacing
constraint by alternating convex optimization,’’ IEEE Antennas Wireless
Propag. Lett., vol. 16, pp. 3126–3130, 2017.

[32] J. M. Cid, J. A. Rodriguez, and F. Ares, ‘‘Shaped power patterns pro-
duced by equispaced linear arrays: Optimized synthesis using orthogo-
nal sin(Nx)/sin(x) beams,’’ J. Electromagn. Waves Appl., vol. 13, no. 7,
pp. 985–992, Jan. 1999.

VOLUME 7, 2019 58899



Y. Yang et al.: Synthesizing Unequally Spaced Pattern-Reconfigurable Linear Arrays With Minimum Interspacing Control

YUQI YANG received the B.S. degree from Xia-
men University, Xiamen, China, in 2016, where
she is currently pursuing the M.S. degree in the
electromagnetic field and microwave technology.

YANHUI LIU (M’15–SM’19) received the B.S.
and Ph.D. degrees from the University of Elec-
tronic Science and Technology of China (UESTC),
in 2004 and 2009, respectively, both in electrical
engineering.

From 2007 to 2009, he was a Visiting Scholar
with the Department of Electrical Engineering,
Duke University, Durham, NC, USA. In 2011, he
joined the Department of Electronic Science, Xia-
men University, China, where he is currently a Full

Professor. In 2017, he was a Visiting Professor with the State Key Laboratory
ofMillimeterWaves, City University of Hong Kong. Since 2017, he has been
with the Global Big Data Technologies Centre, University of Technology
Sydney (UTS), as a Visiting Professor/Research Principal. He has authored
and coauthored over 130 peer-reviewed journals and conference papers.
He holds several granted Chinese invention patents. His research interests
include antenna array design, reconfigurable antennas, and electromagnetic
signal processing.

Dr. Liu has served many times as a TPCmember or Reviewer for the IEEE
APS, PIERS, APCAP, and NCANT, and has served as the Session Chair for
NCANT2015, PIERS2016, ACES2017-China, NCANT2017, APCAP2017,
and ICCEM2018/2019. He received the UESTC Outstanding Graduate
Award, in 2004, and the Excellent Doctoral Dissertation Award of Sichuan
Province of China, in 2011. He is serving as a Reviewer for a dozen of SCI-
indexed journals. Since 2018, he has been an Associate Editor of the IEEE
ACCESS.

XINYU MA received the B.S. and M.S. degrees
from the Xiamen University, in 2015 and 2018,
respectively.

MING LI received the B.S. and M.S. degrees
from Xiamen University, in 2015 and 2018,
respectively. His current research interests include
antenna array synthesis, array signal processing,
and linear polarization configurable array.

KAI-DA XU received the B.S. and Ph.D. degrees in
electromagnetic field and microwave technology
from the University of Electronic Science and
Technology of China (UESTC), Chengdu, China,
in 2009 and 2015, respectively.

From 2012 to 2014, he was a Visiting
Researcher with the Department of Electrical and
Computer Engineering, Duke University, Durham,
NC, USA, under the financial support from the
China Scholarship Council. In 2015, he joined

the Department of Electronic Science, Xiamen University, Xiamen, China,
as an Assistant Professor. From 2016 to 2017, he was a Postdoctoral Fellow
with the State Key Laboratory of Millimeter Waves, City University of
Hong Kong, Hong Kong. Since 2018, he has been an Honorary Fellow
with the Department of Electrical and Computer Engineering, University
of Wisconsin–Madison, WI, USA. He has authored and coauthored over
100 papers in peer-reviewed journals and conference proceedings. His
current research interests include RF/microwave and mm-wave devices,
antenna arrays, and nanoscale memristors.

Dr. Xu received the UESTC Outstanding Graduate Awards, in 2009 and
2015, respectively. He was a recipient of the National Graduate Student
Scholarship from theMinistry of Education, China, in 2012, 2013, and 2014,
respectively. He is serving as a Reviewer for several IEEE and IET journals.
Since 2017, he has been serving as an Associate Editor for both of the IEEE
ACCESS and Electronics Letters. He is also an Editorial Board Member of the
AEÜ-International Journal of Electronics and Communications.

Y. JAY GUO (F’14) received the bachelor’s and
master’s degrees from Xidian University, China,
in 1982 and 1984, respectively, and the Ph.D.
degree from Xian Jiaotong University, China,
in 1987.

He is a Distinguished Professor and the Found-
ing Director of the Global Big Data Technologies
Centre (GBDTC), University of Technology Syd-
ney (UTS), Australia. Prior to this appointment
in 2014, he has served as the Director of CSIRO for

over nine years, directing a number of ICT research portfolios. Before joining
CSIRO, he held various senior technology leadership positions in Fujitsu,
Siemens, and NEC in the U.K. His research interests include antennas, mm-
wave, and THz communications and sensing systems, as well as big data
technologies. He has published over 450 research papers and holds 26 patents
in antennas and wireless systems.

Dr. Guo is a Fellow of the Australian Academy of Engineering and Tech-
nology, a Fellow of the IET, and was a member of the College of Experts of
Australian Research Council (ARC) (2016–2018). He has received a number
of most prestigious Australian national awards, and was named as one of
the most influential engineers in Australia, in 2014 and 2015, respectively.
He has chaired numerous international conferences. He is the Chair Elect
of the International Steering Committee, and the International Symposium
on Antennas and Propagation (ISAP). He was the International Advisory
Committee Chair of the IEEEVTC2017, the General Chair of the ISAP2015,
iWAT2014, and WPMC’2014, the TPC Chair of the 2010 IEEEWCNC, and
the 2012 and 2007 IEEE ISCIT. He has served as a Guest Editor for the
special issues on the Antennas for Satellite Communications and the Anten-
nas and Propagation Aspects of 60–90GHz Wireless Communications, both
in the IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, the Special Issue
on Communications Challenges and Dynamics for Unmanned Autonomous
Vehicles, the IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS (JSAC),
the Special Issue on 5G for Mission Critical Machine Communications, and
the IEEE Network Magazine.

58900 VOLUME 7, 2019


	INTRODUCTION
	FORMULATION AND ALGORITHM
	MULTIPLE-PATTERN UNEQUALLY SPACED LINEAR ARRAY SYNTHESIS PROBLEM
	THE EXTENDED ALTERNATING CONVEX OPTIMIZATION METHOD
	THE PROPOSED EXTENDED ACO SYNTHESIS PROCEDURE

	NUMERICAL EXAMPLE
	SYNTHESIS OF A SPARSE LINEAR ARRAY WITH RECONFIGURABLE DUAL-PATTERNS 
	SYNTHESIS OF A SPARSE LINEAR ARRAY WITH RECONFIGURABLE TRIPLE-PATTERNS 
	SYNTHESIS OF A SPARSE LINEAR ARRAY WITH MORE COMPLICATED RECONFIGURABLE PATTERNS 

	CONCLUSION
	REFERENCES
	Biographies
	YUQI YANG
	YANHUI LIU
	XINYU MA
	MING LI
	KAI-DA XU
	Y. JAY GUO


