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Abstract: 

It is long known that the afternoon peak demand accounts for over-investment in the electricity 

network assets. This results in a high price of delivered electricity which does not fairly 

differentiate between peak and non-peak users. Energy tariff is proven to be one of the best 

demand-side management (DSM) tools for shaping consumers’ behaviour. While electricity 

pricing models, such as inclining block and time-of-use tariffs, have received decent attention 

as successful mechanisms, there are little discussions about another efficient tariff known as a 

rollover network capacity charge. It is a penalty for the highest recorded power usage over the 

previous reading cycle (or year) which is introduced to commercial users in some jurisdictions. 

With recent price reduction in distributed generation and storage (DGS) systems, the interest 

has increased in devising policies for directing the household and commercial consumers’ 

behaviour towards using DGS systems in line with DSM objectives. In this paper, we have 

integrated the rollover network capacity charge into DGS systems investment analysis. The 

results from a few case studies show the positive impact of capacity charge in directing the 

peak-consumers’ investment decisions towards DSM tools (e.g., energy storage) to curb their 

peak demands. This not only improves the resilience of the network but also promises as an 

effective mechanism in energy-justice nexus by avoiding the transfer of the associated costs of 

peak demand to all users.  

 

Keywords: Energy-justice nexus; energy equity; demand-side management (DSM); 

distributed generation and storage (DGS); energy storage; rollover network capacity charge; 

demand charge. 
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1. Introduction 

1.1 The issue of critical peak demand 

In the electricity market, along with the daily demand peaks, there is another form of a peak 

known as “critical peak demand (CPD)” that occurs for a limited number of hours during a 

year. Generally, a CPD is a coincident demand that happens due to air-conditioning use in 

extreme weather conditions (e.g., very hot summer days) by all consumer types. The electricity 

supply chain infrastructure (generation, transmission, and distribution) should be designed to 

satisfy such maximum load incidences. This translates to the development of an oversized 

infrastructure. 

Figure 1 shows the demand profile of New South Wales (NSW), Australia, in 2013. During 

that year, except for two days, the load was always below 12 GW. However, January 8th, a 

summer day, witnessed the fifth hottest day on record, with the ambient temperature reaching 

42.3 ˚C. The consequent air-conditioning usage made a sharp increase in the state-wide 

demand, reaching almost 13 GW during the afternoon. This was not the only shock to the 

network that year, as ten days later the temperature reached 45.8 ˚C. During this hottest day 

since 1939, the demand peaked at 13.8 GW. Therefore, the critical peak load during two hot 

afternoons in 2013 necessitated bringing 1.8 GW of extra generation capacity online. 

 

Figure 1: Time of day electricity demand profile of New South Wales, Australia, during 2013 
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Figure A 

 

Figure B 

Figure 2: Cumulative distribution function (CDF) profile of electricity demand in New South Wales, Australia, 

during 2013 (A) and 2019 (B)  

 

The cumulative distribution functions (CDFs) of the same load of Figure 1 is illustrated in 

Figure 2A. The probability of exceedance (POE) value of 100 in the Y-axis is identical to the 

maximum demand occurrence during that year (i.e., 13.8 GW). The 50 POE line shows that 
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the demand was less than 58.4% of the maximum occurred load (i.e., 8 GW) over half of the 

times. According to the 10 POE line, over 90% of the times, the demand was less than 68.8% 

of maximum load. More interestingly, 99% of the times the demand was satisfied with less 

than 78.7% of the maximum load. In other words, 21.3% of the generation capacity was used 

only during 1% of the times. Figure 2B shows more updated data, for 2019. For this year, the 

50 POE and 90 POE lines cross, the curve at 57.0%, and 70.6 %, respectively. In 2019, 15.7% 

of the generation capacity was used only during 1% of times.   

A simple definition of reliability is the extent of the demand that a supply chain is capable of 

delivering within a certain timeframe, which can be for instance quantified with the loss of load 

probability (LOLP) [1]. This example clearly shows the detrimental role of CPD in the network 

asset investment and supply reliability. Therefore, the consequent question is how to address 

demand volatilities, in general, and CPD particularly, in a reliable energy supply chain planning. 

There are two demand management approaches: A) passive, and B) active illustrated in Figure 

3 and described next. 

 

Figure 3: Approaches for demand management 

 

A) Passive demand management: Supply-side management 

Passive demand management takes the historical and forecast demand as a base, and attempts 

to supply it with the specified reliability standards. For this, a supply chain operator develops 

its planning based on the occurrence of the maximum projected demand during the planning 

horizon. This includes considerations of some reserve capacity for the security of supply in 

case of any component failure or critical demand (See Figure 4A). This capacity margin 
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depends on the POE basis of the investment. The lower the POE value, the higher would be 

the installed capacity and the lower would be the reserve capacity (See Figure 2).  

 

                                Figure A                                                                    Figure B 

Figure 4: Schematic of demand management in the electricity supply chain: A) Passive, with supplying the 

demand, B) Active, with energy efficiency measures and load shifting 

 

Generally, reserve capacity can be as high as 20% [2]. A high reserve generation capacity is 

not the only burden of volatile demand. The transmission and distribution network also needs 

to be designed based on the peak load conditions. Today, therefore, we have (at least across 

industrialized countries), overly-invested electricity grids with a significant part of the fleet 

being utilized for a limited number of hours per year. This is to satisfy social welfare in terms 

of 24/7 continuous access to electricity, even in extreme weather conditions. Of course, this 

welfare comes with elevated delivered energy costs. For example, productivity analysis in 

some jurisdictions shows that 25% of household electricity bills account for generators that 

operate for fewer than 40 hours per year (during critical peak demand periods) [3]. On the other 

hand, in most developing countries, when a high reserve capacity is not an accessible option, 

the partial blackout is the general consequence of critical demand or component failure. Such 

pieces of evidence highlight the weakness of passive demand management and the necessity 

of alternative options. Energy storage at the generation side is another form of passive demand 

management which attempts to improve supply security and also reduce emissions footprint 

with the highest renewable energy utilization. 

B) Active demand management: Demand-side management 

Active demand management is, in fact, reverse demand management in which network 

operators attempt to reshape customers’ demand profile rather than over-investing in reserve 

capacity (See Figure 4 right). This is known today as demand-side management (DSM). It was 

in the early 1970s that the shock in energy prices drew attention towards energy efficiency and 

productivity, and when DSM became a field of research and development in the academic 
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forum [4]. DSM can be categorized into two groups: (1) load reduction through energy 

efficiency and conservation, and (2) load shifting through demand response (See Figure 4 right). 

A detailed review of these approaches is provided elsewhere [5]. 

The significance of energy efficiency is evident. Demand response, however, comprises 

endless innovative techniques with the goal of flattening the load curve by shifting the demand 

from the peak to non-peak periods. Time shifting of demand has proven to be one of the most 

effective approaches for improving reliability and reducing the supply chain delivery costs of 

commodities.   

1.2 Smart and fair tariffs for active demand management 

According to McKinsey, active DSM has six levers: tariff rates, incentives, information, 

control, education, and customer insight and verification [6]. Although a fraction of customers, 

given education and insight, might take voluntary actions to participate in demand response, 

for most people active incentives (e.g., low tariffs for off-peak) or passive incentives (bill rebate 

after participation) would be detrimental to participation.  

Energy storage technologies are great DSM options. However, there are two concerns, one 

being the cost and efficiency of storage technologies [7]. The other and the most critical 

concern is that they cannot support the network alone, and they will be effective when 

combined with smart tariffs [4].  Smart tariffs have proven to be the most influential tool in 

demand-side management [8]. Allcott et al. [9] showed that real-time pricing is more efficient 

than a flat fee structure. A study by the Energy Networks Association (ENA) demonstrated that 

both time-based and market price-based tariffs have a positive effect on peak-demand reduction 

compared to a flat-tariff [10]. Sterioitis et al. [11] showed that tariffs could be tailored down to 

individual customers based on their consumption behaviour. 

Not only could the design of smart tariffs reduce the peak load, but it can also be a useful tool 

in the hands of policy-makers for designing fair pricing mechanisms to improve social equality 

in the energy-justice nexus. For instance, the Productivity Commission of Australia has given 

an interesting example: “Currently, a low-income household without an air conditioner is 

effectively writing cheques to high-income users who run air conditioners during “peaky” 

periods. For example, a household running a two kilowatt (electrical input) reverse cycle air 

conditioner, and using it during peak times, receives an implicit subsidy equivalent of around 

$350 per year from other consumers who do not do this” [3]. More examples of tariff 

discrimination are discussed by Simshauser [12]. Therefore, a smart tariff would incentivize 

customers who consume less energy during peak times and increase the charges of peak users.  
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In brief, when households and businesses are not exposed to time-based, cost-reflective 

network pricing, they lack encouragement to shift their consumption away from the peak 

demand periods. This leads to an over-investment in peak-specific systems and grid 

reinforcement as well as higher fuel costs through increased ramp rates, thus, reducing the 

social benefits for the consumers [13]. Consequently, these costs are shared equally, but 

unfairly, between peak and non-peak consumers. 

Time of use and inclining block tariffs 

There are currently two main tariff structures in effect internationally: inclining block and time-

of-use (ToU). Figure 5 shows the schematics of the inclining block and ToU tariffs, 

respectively. The inclining block might be a good tariff for network-based commodities such 

as water and gas. Its effectiveness for electricity peak management is however questionable. In 

this tariff, the electricity price increases with the accumulative energy consumption over a 

certain period (e.g., month or season). Therefore, this method contributes to the DSM by 

encouraging customers to reduce their overall consumption, but it lacks any mechanism to 

address peak consumption. Furthermore, it is arguable that the inclining block is not a fair 

mechanism as it does not differentiate between the inhabitant numbers per connection point. 

For instance, a household of five would end up paying more per unit of electricity consumed 

than a household of two, even with lower energy consumption per capita. On the other hand, 

the ToU mechanism tackles peak demand by offering a relatively high tariff during peak 

periods. This can be socially fairer and technically more effective, though it does not address 

overall consumption reduction.  

Currently, a critical philosophical question around consumption behaviour is almost emerging. 

The widespread uptake of clean, renewable technologies, such as photovoltaic (PV) cells, can 

bring us sustainable and affordable energy at near-zero-emissions. We have been educated to 

consume less following social, ethical, and sometimes religious norms. But, will renewable 

energies affect this norm? Why not have over-shiny houses at night when the energy is supplied 

by the wind? The findings in Fikru et al. [14] suggest that households with own energy 

resources consume more energy than those without.  

It can also be anticipated that utilities will shift away from providing energy commodities to 

providing energy services [15].  The fierce competition among retailers further encourages 

innovative energy services to reflect the changing consumer expectations [16]. Inching block 

tariffs are set based on a socialist assumption which does not encourage overconsumption. It 
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is expected that at least in countries without subsidized energy costs, block tariffs might be 

retired over time and different types of time-based tariffs are introduced to reflect the variability 

of renewable resources. Fairness is also critical for renewable energy feed-in tariffs [17], and 

for the same reasons discussed here for energy purchase, ToU tariff may prevail flat tariff for 

energy export, from both fairness and DSM aspects.   
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                               Figure A                                                          Figure B 

Figure 5: Schematic of A) inclining block energy tariff, and B) time of use energy tariff 

 

Rollover network capacity charge  

So far, two major tariffs for targeting overall energy consumption and peak period demand are 

discussed. However, there is evidence that none of these can address the critical peak demand 

efficiently (See Figure 1 and Figure 2 as an example). One approach to address this problem, 

especially on a community scale, is dynamic pricing [18]. Alternatively, some supply chain 

companies introduce a rollover network capacity charge, also known as network charge, 

capacity charge, or demand charge. It is composed of a fixed number ($/power/time) multiplied 

by the highest demand occurrence during the previous billing period at a given measured 

interval of the smart meter (e.g., kW), multiplied by time. For instance, assume the capacity 

charge is based on the highest occurrence in the previous year. For a given company, the 

occurred highest demand was 1000 kW with a capacity charge of 130 $/kW/year. This 

translates to $130,000 added to the bill. Now, imagine that the company’s load was almost 

always below 700 kW, and it exceeded this number only a few times in a hot summer. This 

implies that the company is paying (1000-700)×130=$39000 extra over this year because of 

those few critical demand incidences rolled over from last year. Obviously, any user will source 

for options to avoid its critical peak demand. At a macro level, this demand-side behaviour is 
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expected to reduce the critical peak demand at the generation and transmission side, and thus 

reduce the need for large reserve capacity (See Figure 2).  

Historically, users with capacity charge tariffs, especially commercial buildings, have managed 

their critical demands through efficiency and flexibility measures [19]. In recent years, energy 

storage has been attracting interests from peak-users to provide them with flexibility in their 

demand management. The principle of equity requires that any tariff design fully reflects the 

supply costs and provides investment signals.  However, with high installation costs of energy 

storage systems, this option is not yet a widespread feasible choice if only inclining block or 

ToU is considered. The capacity charge can help to achieve more cost-reflective electricity 

network tariff. However, its effectiveness depends on whether the customer’s coincident 

demand occurs at the time when network peaks are likely to occur [20]. Though the capacity 

charge is often introduced for commercial and large-scale consumers, some studies show the 

efficiency of this tariff even for residential customer [21]. Young et al. [22] simulated various 

tariff designs for the operation of household PV and energy storage and found that 

incorporating capacity charge in the tariff design yielded the highest peak demand reduction. 

This becomes particularly noticeable in the networks where the dominant cost driver is the 

required reserve to meet the highest electricity consumption. The need for the capacity charge 

to facilitate the uptake of energy storage is further supported by Stelt et al. [23] who found that 

under the current storage investment costs and energy tariffs energy storage is economically 

infeasible for households.  

The capacity charge has another benefit of managing the negative load (export from renewable 

generators) or shifting coincident peaks from one period to another. However, Eid et al. [24] 

emphasized that capacity charge can be considered effective only if the peak load is clipped or 

distributed over a longer time period instead of shifting it to another time period. The capacity 

charge can be enabled only if an advanced metering infrastructure (AMI) is deployed in the 

network. Hakyoort et al. [25] highlighted that the problem of split-incentives related to the 

AMI  would discourage a distribution system operator (DSO), retailer or a customer to be the 

sole entity that makes the investment. Khalilpour and Vassallo [4] have discussed the concern 

over the emergence of new peak demands in times other than the current afternoons. They have 

also discussed the potential problems with sharp changes in load profiles during the periods at 

which ToU tariffs are shifting from one threshold to another. In a typical energy storage 

operation program, there are constraints to control the storage charge rate and also prevent the 

storage SOC from being above/below a maximum/minimum. Other constraints limit the battery 
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charge/discharge rates at design charge/discharge caps. While these are valid constraints, there 

can still be a problem. The issue is that the off-peak period is typically close to 10 hours (from 

late night to early morning) while a battery with C-rate of 0.5 requires only two hours for a full 

charge. This two-hour period could occur at any time within the 10-hours of off-peak period. 

A severe grid management problem could occur when all batteries are programmed to charge 

(or discharge) at a similar time. This has been demonstrated in the literature for causing a new 

peak in a common off-peak period [4]. Similar to our morning peaks (e.g., for hot water use) 

the future houses with stationary battery and electric vehicles (EVs) may cause sharper 

morning peaks. Imagine when people wake up in the morning, one or two hours before the 

shift of electricity tariff from off-peak to shoulder/peak. The immediate thing they might think 

of would be to plug in their storage systems. With the rapid uptake of stationary batteries and 

EVs, such problems could easily occur unless smart storage control systems, along with smart 

electricity tariffs, are introduced. 

To avoid this, one approach is to add a further random constraint, so-called “operational charge 

limit (OCL),” for off-peak periods in order to distribute the battery charge over the entire off-

peak period [4]. This prevents charging to be delayed until the last one or two hours before 

tariff change. While this constraint proved to work efficiently, it is not a binding constraint for 

customers to use and in practice, unwanted new demand peaks are possible in future. Capacity 

charge, however, is not time-relevant and can be used as an enforcing tool by policymakers for 

encouraging customers to reduce their peak at any time during a day. With a capacity charge, 

there might be less or no requirement for OCL constraints. 

Currently, in most energy storage investment analyses, the benefit of capacity charge is not 

considered, while this can notably improve the value proposition of energy storage options. 

There could be various reasons for ignoring capacity charge ranging from the inexistence of 

such tariff mechanisms in some jurisdictions to the complexity of bringing it to the optimization 

problem formulation. The key objective of this study is to bring rollover network capacity 

charge constraints into distributed generation and storage systems’ sizing and scheduling, and 

assess how it can affect the decisions.  

2. Literature on sizing and operation modelling of distributed 

generation and storage 

Today, renewable energy technologies are no more topics of merely academic interest. 

Fortunately, renewable energy is finding its way into our fossil-fuel-based energy industry and 

even to our rooftops. Distributed energy resources have several advantages, including 
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abundance and relatively scattered geographic distribution. As such, exploring the utilization 

of local (renewable) energy sources has been a matter of economic benefit and security for 

energy-importing societies. Furthermore, the possibility of generating energy on the demand-

side has many advantages in terms of energy efficiency, as it can reduce the required reserve 

generation capacity, lessen the network footprint, and minimize the power losses in the 

transmission system network. All these features have stimulated the idea of moving from 

traditional, often low-efficiency, and centralized macrogrids to a decentralized form with 

numerous small but smart grids fueled by local resources.  

Various combinations of energy generation and storage technologies have been studied. For 

obvious reasons, solar systems have been of the highest interest for small-scale demand-side 

applications. The earliest simple configurations were PV-grid, PV-diesel [26], and PV-battery. 

The configurations have diversified over time with the inclusion of various hybrid DGS 

systems such as PV-hydrogen, PV-diesel-battery [27], PV-wind-battery [28], PV-wind-diesel 

[29], PV-wind-diesel-battery [30], and PV-wind-diesel-hydrogen-battery [31]. The list of 

configurations could be much longer if other generation types (e.g., bioenergy, hydro, gas 

turbine) and storage (e.g., hydro, compressed air, flywheel, capacitance, chemical conversions) 

are included [32]. For energy network planners and operators, DGS provides a great degree of 

freedom for DSM through load shifting, if efficient rules and regulations for the operation of 

the DGS systems are implemented.  

Table 1 lists some key literature on the optimal sizing and operation of DGS systems. The first 

and most crucial step in DGS decision-making is the selection of the right technology, right 

mix, and right sizes. Then comes the reliable operation of the selected technologies. Initial 

efforts in the sizing of DGS systems were related to the integrated PV-battery systems. The 

studies focused mainly on off-grid and rural areas, using approximate methods which resulted 

in over-sized or under-sized systems [33]. Later, iso-reliability curves were introduced by 

Egido and Lorenzo [34] which are based on developing numerous graphs of PV-storage sizes, 

each at a certain reliability value. A good review of the iso-reliability method and a rule-of-

thumb approximation on that basis is given by Egido and Lorenzo [34]. As computers emerged, 

PV-battery sizing models also improved in rigorousness. For instance, instead of daily average 

solar irradiation or load data, real historical time series were used [35, 36], or characteristic 

equations were used instead of simple efficiency values for PV panel, battery, inverters [37], 

etc. 

With the global attention to the PV transformation within the last decade, there has been an 

increasing interest in linking PV and/or battery systems with the electricity market and a need to 
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develop an optimal operation schedule. Lu and Shahidehpour [38] developed a short-term 

scheduling model for battery use in a grid-connected PV-battery system using a Lagrangian 

relaxation-based optimization algorithm to determine the hourly charge/discharge commitment of 

a battery in a utility grid. They used an eight-bus test system as a case study and investigated the 

impact of the grid-connected PV-battery system on locational pricing. Kaushika et al. [39] 

developed a linear programming formulation for a stand-alone PV-battery system with an objective 

to find out the optimum combination of the number of batteries and PV modules to allow the 

operation of the system with zero loss of power supply probability or 100% reliability. Pham et al. 

[40] examined five energy storage technologies and found that Li-Ion battery has the highest 

suitability index to support a stand-alone PV system. A study to find the optimum ESS size 

considering different battery chemistries was carried out by Hesse et al. [41]. The results showed 

that lithium-nickel-manganese-cobalt battery is more economically effective for residential 

application with annual demand bellow 20,000 kWh, while lithium-iron-phosphate batteries are 

better for households with large demand.  

Some researchers have also used artificial intelligence techniques [42] or heuristic optimization 

techniques, such as particle swarm optimisation (PSO) [43] and metaheuristics with MINLP 

[44] for sizing PV-battery systems. Riffonneau et al. [45] presented a dynamic programming 

methodology for “day-ahead” predictive management of grid-connected PV systems with 

storage. The program, which also considered battery aging, successfully achieved its peak-

shaving goal at minimum costs. Yu et al. [46] studied the problem of determining the size of 

battery storage for grid-connected PV systems. They proposed lower and upper bounds on 

storage size and introduced an optimization algorithm for finding the optimal battery size. They 

identified a unique critical value for battery size, below which the total electricity cost was 

high, whereas, above that, increases in battery size had no impact on costs. Ratnam et al. [47] 

developed a framework based on quadratic programming which enabled the customer to justify 

expenditure on battery storage either through a least-cost option of capital investment or 

through choosing to utilize existing electric vehicle battery storage, if available. 

Some researchers have focused on the efficient operation of PV-battery systems. According to 

Halliday et al. [48], though PV systems account for a significant part of the initial investment 

in PV-battery systems, their share of lifetime capital cost (over 20 years) of the system is around 

one-third. This is while batteries account for half of the total capital cost due to a lower 

expected lifetime as a result of inefficient battery operation (high temperatures, low SOC, etc.). 

As such, optimal control of battery charge/discharge (SOC) is a key component in improving 

the economics of the overall system [49, 50]. One of the earliest studies of efficient battery 
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operation was by Appelbaum et al. [51], who developed geometrical regions on V-I 

characteristic graphs of solar systems for efficient charge/ discharge of batteries and load 

control. More recently, Fragaki and Markvart [52] compared modelling and experimental data 

of PV-battery systems. Although their application of battery charging efficiency reduced the 

gap between experiment and model, they highlighted the necessity of development of a method 

to account for system memory effects imposed by the operation of the charge controller. 

Pedram et al. [53] discussed that current homogeneous electric energy storage (EES) systems 

had limitations in simultaneously achieving desirable performance features such as high 

charge/discharge efficiency, high energy density, low cost per unit capacity, and long cycle 

life. As such they proposed the application of hybrid EES (HEES) systems with each EES 

element having the strength in certain performance feature. Stadler et al. [54] developed a 

distributed energy resources customer adoption model (DER-CAM) based on a mixed-integer 

optimization program. DER-CAM can also model various DG and storage types. Mashayekh 

et al. [55] improved the DER-CAM model by formulating multi-node design to account for the 

cable losses.  

Wang et al. [56] developed a dynamic programming model for the integration of a residential-

level HEES system for smart grid users equipped with PV power generation. The program 

objective was to reduce the total electricity cost over a billing period and to perform peak power 

shaving under arbitrary energy prices, also considering the characteristics of different types of 

EES elements, conversion efficiency variations of power converters, as well as a time-of-use- 

(ToU) dependent energy price function. They reported up to 73.9% profit improvement when 

using a combination of Li-ion and lead-acid batteries compared with single-EES systems. The 

same group studied various aspects of HEES systems, namely networked architecture [57], 

balanced configuration [58], and charge allocation and replacement [59, 60]. Manshadi and 

Khodayar [61] identified the vulnerable components and studied the potential causes of 

disruptions in multiple energy carrier microgrids.  

Abdulla et al. [62] found that accounting for battery degradation and including even simple 

load and generation forecast models can significantly increase the value and performance of 

energy storage systems.  Khalilpour and Vassallo [4, 63] developed a few integrated decision 

support tools for concurrent optimal selection, sizing and operation scheduling of grid-

connected DGS systems (including but not limited to PV-battery). The importance of the 

optimal location for ESS was also emphasized in Novoa et al. [64] and Alsaidan et al. [65].  

Atia and Yamada [66] built an energy system operation model based on Newton-Raphson 

Linear Programming (NRLP) algorithm. This model iteratively schedules resources to 
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maximize profits while compensating for the complicated nonlinear nature of the problem. An 

optimal combination of DGS system candidate units was found using a genetic algorithm (GA). 

The initial combination of units was randomly generated and separately evaluated using the 

NRLP algorithm. Xiang et al. [67] argue that the real peak demand can occur between discrete 

time steps and proposes a continuous approximation for the state of energy function using 

Fourier-Gegendere series to address this problem.  

EINozahy et al. [68] used a probabilistic sizing of battery storage. The uncertainties associated 

with the local power supply and demand were addressed through multiple PV and load profiles; 

generated using principal component analysis (PCA). The supply and demand profiles from 

the PCA were then employed in a Monte Carlo (MC) simulation to obtain random load profiles. 

Their model resulted in lower voltage fluctuations and network losses. Bai et al. [69] reduced 

electricity costs and network losses in the distribution network using a virtual portioning model. 

It takes the minimum annual cost as the upper-level objective to determine the investment in 

PV systems and the minimum sum of equivalent load variance as the lower level objective 

through the virtual partition to determine the energy storage configuration.  

Umeozor and Trifkovic [70] proposed a microgrid management strategy where the variability 

and uncertainty of renewables are solved with the parametric optimization approach (p-MILP), 

thus removing the dependency of the solution on weather and load forecast data.  Zhou et al. 

[71] introduced a multi-objective sizing and optimization of DGS systems including demand 

response. Assuming a linear relationship close to the market equilibrium point, Zhou et al. 

established an electricity price elasticity matrix based on historical data and compared models 

with and without demand response. An improved non-dominated sorting genetic algorithm 

(NTGA II) was used to find the optimal DGS capacity. They found that adding demand 

response in the optimization model reduces the required PV and battery storage capacity. 

Demand response constraints also have a positive effect on maximizing profits for microgrids 

with combined heat and power (CHP) plants as found by Alipour et al. [72]. Storage sizing 

based on stochastic network calculus (SNC) with a tie line penalty constraint ensured balanced 

microgrid operation during import/export transition periods in Xie et al. [73]. Pandžić’s model 

[74] is a deterministic battery sizing with consideration of ToU tariff.  However, the model is 

integrated with various load scenario sets to accommodate the uncertainty in the future demand 

profile.  

The capacity charge is not a new tariff. However, there is a gap in the literature on bringing 

this tariff into optimization framework in the context of DGS systems. In this paper, we 
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integrate capacity charge constraints with energy storage sizing and scheduling algorithm. For 

the sake of paper continuity and in favour of readers with broader interests we have provided 

the full formulation in Appendix 1. Unlike the current application of capacity charge for the 

import from the grid, we anticipate that in the future, there might also be a requirement for such 

a capacity charge for energy export to the grid. As such we consider two capacity charges; one 

for export, and one for import. We assess the impact of capacity charge consideration in DGS 

systems selection, sizing, and operation. We also investigate the inherent performance of such 

a tariff in active demand-side management. The most relevant paper for the sizing and 

operation of ESS are summarized in Table 1.  
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Table 1. Key literature on the optimal sizing and operation of DGS. The following abbreviations are used: WT – wind turbine, CHP – combined heat power, FC – fuel cell, 

GT – gas turbine, G – genset.  

Study Model Network Considerations Tariff Considerations  

 Operational Criteria Operational Model Application Additional 

Components 
Network 

topology 

Fixed Price ToU Capacity 

Charge 

Spot Price FIT Reference 

- Cash Flow  Mathematical (DP) DER PV  ✔    ✔ [45] 

- Energy Costs Mathematical (QP) DER PV  ✔    ✔ [47] 

- Energy Costs Analytical (geometrical) DER PV  ✔ ✔   ✔ [49] 

- Energy Costs Analytical  DER PV  ✔ ✔    [14] 

- Energy Costs Mathematical (p-MILP) DER PV, WT   ✔  ✔ ✔ [70] 

- Revenue Mathematical (MILP) Microgrid WT, CHP, FC     ✔  [72] 

Non-cost-based sizing            

ENS - Mathematical (LP) Stand-alone PV       [39] 

ENS - Analytical (rule-based) Stand-alone PV       [52] 

ENS Battery Capacity Analytical (rule-based) Stand-alone PV       [40] 

Network Congestion Transformer Overloading Probabilistic (MC) DER PV ✔      [68] 

Zero Net Energy - Mathematical (MILP) Microgrid PV ✔  ✔  ✔ ✔ [64] 

Cost-based sizing            

NPV Energy Costs Analytical (technometric) DER PV  ✔ ✔   ✔ [50] 

Annualized Costs Energy Costs Mathematical (MILP) DER PV  ✔ ✔   ✔ [46] 

Annualized Costs Energy Costs Mathematical (DP) DER PV  ✔ ✔    [56] 

NPV - Mathematical (LP) Microgrid PV, G  ✔  ✔   [27] 

Annualized Costs Energy & Operation Costs Mathematical (MILP) DER PV ✔✔ ✔  ✔  ✔ [55] 

NPV Energy Costs Mathematical (MINLP) DER PV   ✔   ✔ [63] 

LCOE Energy Costs Mathematical (MILP) DER PV ✔    ✔  [23] 

Annualized Costs Energy Costs Mathematical (GA+LP) DER PV, WT ✔    ✔  [71] 

Annualized Costs Energy Costs Mathematical (MILP) DER -   ✔ ✔   [74] 

Annualized Costs Energy & Operation Costs Mathematical (MILP) Microgrid -       [65] 

Annualized Costs Energy Costs Mathematical (MINLP) DER PV   ✔    [44] 

Investment Costs Energy & Operation Costs Mathematical (MILP) Microgrid PV   ✔ ✔   [75] 

Annualized Costs Energy Costs Mathematical (LP) DER PV  ✔    ✔ [41] 

Annualized Costs - Mathematical (MILP) Microgrid PV, WT, GT ✔    ✔  [65] 

Investment Costs Energy Costs Mathematical (SNC) Microgrid PV, WT  ✔    ✔ [73] 

Annualized Costs - Analytical  DER PV ✔      [67] 

Investment Costs Energy Costs Heuristics (PSO) DER PV  ✔    ✔ [43] 
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3. Case studies  

3.1. With a supply charge 

A supply chain company (here on called “the company”) has an inventory in Melbourne, 

Australia, with an annual electrical load profile given in Figure 6. The inventory has consumed 

6,633.7 MWh of electricity over the base year with the load varying between 212.0 kWh and 

1344.8 kWh (occurred 6 pm, 23 Feb, a summer day). Almost all of the top 20 peak demand 

incidences have occurred over Dec-Mar (evident in Figure 6), which are summer months in 

Melbourne. This implies the use of air-conditioning as a major contributor to peak demand. 

Table 2 provides an explicit list of electricity tariffs the company has paid with an additional 

10% goods and service tax (GST). The cost is composed of retail charges for the peak and off-

peak usage, environmental schemes, network, market operator, and metering. In Table 2, the 

capacity charge is one of the tariffs under “network charges” category. The company has paid 

$908,158.7 over the year for its electricity bill. Given the capacity charge of 134.7 $/kW/y and 

the incurred highest demand of 1344.8 kW, the company has to pay $181,175.4 as a capacity 

charge in the following billing year.  

 
Figure 6: The Company’s carpet-plot of electricity load during the base year (July-July); the high demands during 

Dec-March imply the use of air-conditioning over the summer (for the southern hemisphere). 

 

Given that the declining PV prices, the company is interested to assess the feasibility of 

investing in PV as well as in battery storage systems. The preferred payback period for the 

company is less than ten years.  
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The candidate PV panels have a standard efficiency of 0.17. They are available in various sizes, 

and the company puts no upper limit on the potential system size. The PV output decreases by 

0.5% annually (due to aging). The annual ambient temperature and GHI profiles are illustrated 

in Figure 7. The recent PV system prices show almost linear functionality with size (though 

with different multipliers for small-, medium-, and large-scale systems).  For this study, the 

customer considers a linear function for the PV installation cost with a multiplier of 1500 $/kW. 

Table 2: The tariff breakdown of the company’s electricity bill with GST of 10% 

Charges Charge type 
Applied to 

(unit) 

Unit Price 

(c/kWh, 

unless 

mentioned) 

Loss 

factor 

Total Unit 

Price (excl. 

GST) 

Retail Charges 

 

 

Peak 

Peak consumption 

(kWh) 
5.0192 1.09479 5.4950 

Off Peak 
Off-peak 

consumption (kWh) 
2.9611 1.09479 3.2418 

Environmental 

Schemes 

 

 

 Large-scale renewable 

energy Certificates 

(LRECs) 

Total consumption 

(kWh) 
0.9426 1.09130 1.0287 

Victorian energy 
efficiency certificates 

(VEECs)  

Total consumption 

(kWh) 
0.4691 1.09130 0.5119 

Small-scale renewable 

energy Certificates 

(SRECs) 

Total consumption 
(kWh) 

0.3857 1.09130 0.4209 

Network Charges 

(for large low 

voltage demand) 

 

 

Peak 

Peak consumption 

(kWh) 
4.7905 - 4.7905 

Off Peak 
Off-peak 

consumption (kWh) 
2.8514 - 2.8514 

Capacity 
Highest demand 

occurred (kW) 

134.7229 

($/kW/y) 
- 134.7229 

Market Operator 

Charges 

 

 

AEMO Ancillary Fee 
Total consumption 

(kWh) 
0.0178 1.09130 0.0194 

AEMO Market Fee 
Total consumption 

(kWh) 
0.0315 1.09130 0.0344 

Metering Charges 

 
Meter Charge 

Number of meters 

(mtr) 
1120 ($/mtr/y) - 1120 

 Peak: 7am-9pm weekdays; Off-peak: other weekday times and weekend/holidays. 

 GST: 10% 
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      Figure A 

 

Figure B 

Figure 7: Heat map of annual ambient temperature (A) and GHI (B) for Melbourne city (July-June). Please note 

the seasonal differences of the southern hemisphere. 

The company is interested to investigate the feasibility of eight battery types, each with 

different capacity and techno-economic parameters. Table 3 lists the specifications of the 

candidate batteries. The installation prices are from [76] with the assumption of a 20% 
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reduction since the year 2012. The selected batteries will operate at a maximum DOD of 85%. 

The charge controllers and inverters have an assumed efficiency of 98%. The annual 

maintenance cost of the PV system is 0.5% of its capital expenditure (CAPEX), while it is 

1.0% for batteries [4].  

Table 3: Techno-economic specifications of the candidate batteries for the hospital  (the parameters are mainly 

from [76]) 

Candidate 

battery No. 
Battery type 

Manufacturin

g round-trip 

efficiency 

Annual efficiency 

loss factor due to 

aging 

Dis/charge 

duration 

(hours) 

Life 

(years) 

Base 

CAPEX 

($/kWh) 

J1 Li-ion high power 0.910 0.960 1 8 950 

J2 Li-ion high energy 0.920 0.960 2 8 700 

J3 Advanced lead acid 0.800 0.960 2 8 900 

J4 Advanced lead-acid 0.900 0.960 5 8 700 

J5 Valve-regulated lead acid 0.680 0.955 2 6 650 

J6 Valve-regulated lead acid 0.780 0.955 4 6 500 

J7 Sodium Nickel Chloride 0.870 0.965 4 10 600 

J8 Sodium Sulfur 0.730 0.980 7 16 350 

 

Given the policy sensitivity of feed-in tariff, the company desires to make the investment 

analysis without consideration of any revenue stream from it (FIT=0 c/kWh). The government 

is supporting the investment in renewable energy technologies such as PV by offering 

renewable energy certificates (RECs) as per $/MWh generated. The value of RECs is defined 

by market dynamics, and the company has decided to assume it at 40 $/MWh. The annual price 

escalation factor is 3% with a discount rate of 7% [77]. The company does not project any 

change in electricity consumption. With these given factors, the company wants to assess 

whether it is economically feasible to install PV and/or battery systems. When feasible, the 

proceeding questions are the specifications of the selected system(s) and the operation 

mechanism of the system. 

We formulated the problem using the model presented in Appendix 1. The problem, consisting 

of 4,642,931 equations and 5,431,348 variables, was solved for 10 years of operation using 

CPLEX 12.4.0.1 on a desktop PC with a dual-core 3.2 GHz Intel Xeon processor and 115 GB 

RAM. The execution time was 339.204 CPU s. The optimization program suggests that it is 

more economical to invest in a PV-battery system than to buy electricity completely from the 

grid. The optimum decision is identified as a 1323.8 kW PV system with a high-power Li-ion 

battery of size j1=127.6 kWh. This NPV of savings is $626,760.2 over ten years with a payback 

time of 7.2 years. 
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According to the optimization results, this integrated PV-battery system will reduce the 

company’s direct dependence on the grid to 70.7% during the first year of operation. Under 

this condition, the company receives 4,687,931 kWh of electricity directly from the grid within 

the first year. The remaining demand is satisfied by the PV system (1,883,605 kWh, i.e., 28.4%) 

and battery (62,164.5 kWh, 0.9%). 

The PV output over the first year is 2,075,900 kWh. It is mainly used for the local load (92.6%). 

The remainder goes to the battery (3.4%) or dispatched to the grid (4.0 %). Within the first 

year, the battery receives 70,698.1 kWh (83.1%) of electricity from the PV system, and its 

remaining charge (14,388.5 kWh, 16.9%) is supplied by the grid, mainly during off-peak 

periods. The selected 5.5 kWh battery never operates below 15% SOC and its average annual 

SOC is 35.9% (i.e., 45.8 kWh), over the first year.  

In summary, the selected PV-battery system not only reduces the company’s energy costs and 

thus dependence on the grid with a reasonable payback time of 7.2 years, but it also supports 

the sustainability of the electricity supply chain by reducing the critical peak demand. Figure 

8 (A and C) illustrates the company’s energy exchange profiles with the grid under the base 

scenario, without investment in DGS systems (A), and with a PV-battery system (C). It is 

evident from the comparison of Figure 8A with Figure 8C that with a PV-battery system the 

values of peak demand incidences have reduced (to below 1100 kW) and also negative loads 

(export or curtail) have appeared. Figure 8 (B and D) illustrates the same annual profiles on a 

daily basis. The comparison of Figure 8B with Figure 8D clearly shows the impact of the DGS 

system on demand reduction not only during mid-day but also during the afternoon peak. The 

average hourly energy import value from the grid (shown with a solid line in the figures) has 

reduced from 757.3 kWh to 535.1 kWh, over the first year. This value is even lower (526.3 

kWh) if the energy exchange average (which also considers export) is considered. 
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Figure 8: The Company’s energy exchange profiles at base case (A and B), and with a PV-battery system (C and 

D); C vs. A and D vs. B show the reduction of peak demand incidences, and also the appearance of negative loads 

(export or curtail).  

 

Another representation of energy exchange profiles is illustrated in Figure 9 based on the 

probability of exceedance (POE). This figure clearly shows how the DGS system has 

successfully reduced the critical peaks occurred at POE < ~3%. Figure 9 also shows that the 

import from the grid has notably reduced at large POE values (the off-peak or low-demand 

periods). This implies that at a lower storage price there could be more potential for the 

installation of a larger storage system.  
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Figure 9: The case-study company’s energy exchange profiles based on the probability of exceedance (POE)  

 

In another note, the highest export value (negative in the figure) is -645.6 kW. This value is 

still less than the highest import incidence (i.e. 1034.0 kW). However, with reduced PV 

installation costs and future installations of larger PV systems, there could be conditions that 

the critical load on the grid reverses from import to export (highest export incidence exceeds 

that of the highest import). This was the main reason that we introduced a capacity charge for 

energy export. 

The average annual average SOC of the installed battery over the first year is illustrated in 

Figure 10. It is evident from the figure that the battery makes on average two cycles a day. It 

charges at night and discharges in the morning before the PV system peaks. During noon and 

early afternoon, it charges again to support the late afternoon peak demand. 
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Figure 10: The annual-average daily profile of the company’s battery system’ SOC during the first year of 

operation 

3.2. Without a supply charge 

This scenario is similar to the previous example. However, here we would like to assess the 

impact of the capacity charge on decision-making. For this, we assume that the company 

receives a new electricity tariff structure as shown in Table 2, but without any capacity charge. 

The other tariff terms are however multiplied by a factor (in this case 1.237) so that the total 

annual bill for the base year is unchanged. This means that the off-peak and on-peak tariffs will 

be 23.7% higher than the previous scenario, but the capacity charge will be zero. With this 

modification, the optimization problem, with a similar size of Scenario 1, was executed with a 

CPU time of 412.5 s. 

Under the new condition, the best investment decision is found in installing 1489.0 kW PV 

system (larger than 1323.8 kW for the previous scenario). The program does not suggest 

investing in an energy storage system. With this arrangement, the company’s NPV of saving 

is $858,365.5 over the first ten years of the PV system operation with the payback time of 6.7 

years.  

The PV output over the first year is 2,334,935.9 kWh. It is mainly used for the local load 

(2,122,715.6 kWh, 90.9%) and the remainder is exported to the grid (9.1%) or curtailed. 

Overall, this integrated PV system supplies 31.4% of the load and reduces the company’s direct 

dependence on the grid to 68.6% during the first year of operation. This value is even better 
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than the scenario with capacity charge (70.7%), but it comes at the cost of a lesser reduction in 

the critical peak load as evident from Figure 11. 

 

Figure 11: The Company’s energy exchange profiles without a capacity charge tariff  

 

The performance comparison of the business as usual (BAU) scenario with the two case-

studies, with and without a capacity charge, is provided in Table 4. The business as usual 

scenarios refer to a company in Melbourne which has paid $908,158.7 for its electricity 

consumption either with a capacity charge and energy tariffs as per Table 2 or without a 

capacity charge but with 23.7% extra cost per unit of energy consumed. For each of the given 

scenarios, the DGS investment model gives the optimal design and provides the optimal 

operation decisions and scheduling summarized in the last two columns of Table 4.  

In summary, the lack of a capacity charge tariff with higher energy rates promotes investment 

on larger generation systems to curb energy costs. The investment has a relatively better 

payback-time (6.7 y) with grid dependence reduced to 68.6%. With a capacity charge, these 

numbers are lower (smaller PV system size and higher grid dependence). Also, the energy cost 

of the company is higher with the capacity charge. However, the capacity charge promotes the 

installation of storage systems and thus reduces the peak import and export from the grid better 

than the scenario without a capacity charge. From a network perspective, with the BAU 

scenario, the company’s critical demand incidence is 1344.8 kW, with high energy tariff, 
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without capacity charge this value becomes 1133.4 kW, while with capacity charge, it further 

declines to 1034.0, contributing to the improvement in network efficiency. Therefore, one 

conclusion could be that in a society with energy security issues, avoiding capacity charge can 

promote investment in larger generation capacity by consumers, however, for societies with 

peak demand challenges, the capacity charge is seen as an efficient tool to direct the behaviour 

of consumers towards peak-demand management.  

Table 4: Comparison of the business as usual scenario with two DGS investment analyses scenarios: 1) with a 

capacity charge tariff; 2) Without a capacity charge tariff, but with a higher energy cost 

Key features 

Business as usual 

(BAU) 
Investment in DGS systems 

w/o 

CapCh 

with 

CapCh 
w/o CapCh with CapCh 

Size of selected PVs (kW) - - 1489.0 1323.8 

Size of selected batteries 

(kWh) 
- - 0 127.6 

NPV of saving over 10y ($) 0 0 $858365.5 626760.2 

Payback time (y) - - 6.7 7.2 

Electricity import over the one 

year (MWh) 
6,633.7 6,633.7 4,553.4 4,702.3 

Energy tariff 
123.7% of 

Table 2 
As Table 2 

123.7% of 

Table 2 
As Table 2 

Electricity cost over the one 

year ($) 
908,158.7 908,158.7 619,378.5 664,499.7 

Grid dependence on direct 

import 
100 100 68.6 70.7 

Critical peaks: 

 

Maximum import from grid 

(kW) 
1344.8 1344.8 1133.4 1034.0 

Min import from the grid or 

max export (kW) 

 

212.0 212.0 -811.2 -645.6 
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3.3. Impact of techno-economic parameters 

In the previous two examples, we assessed the impact of capacity charge on the DGS 

investment decisions. The results clearly showed that capacity charge motivates investment in 

energy storage. Here, we take the same example with capacity charge (Section 3.1) and 

investigate the impact of some key techno-economic factors on the investment decisions. We 

have selected four factors including FIT, RECs, PV price, and battery price. We have 

considered a few price scenarios for each of the factors, FIT ($/kWh): 0 and 0.05; REC 

($/MWh): 0, 20, 40, and 60; PV CAPEX ($/kW): 1000, 1500, and 2000; Battery CAPEX 

($/kWh): 300, 500, 750, and 1000. It is noteworthy that for this analysis we used only one type 

of battery (j2 in Table 3) with varied CAPEX values. All other parameters are the same as the 

first case-study (Section 3.1). Combination of two price scenarios for FIT, four scenarios for 

REC, three scenarios for PV CAPEX, and four scenarios for battery CAPEX gives a total of 

96 different problem scenarios. All these optimization problems are executed and their optimal 

PV size, battery size, and operation schedules, as well as the objective values (NPV of saving 

over ten years), are obtained. The results are illustrated in Figure 12.  

To	use	in	paper
Scenario No

FIT 

($/kWh)

PV capex 

($/kW)

Bat. capex 

($/kWh)

REC 

($/MWh)
NPV over ten years ($000) PV size (kW) Battery size (kWh)

1 0 1000 300 840 1423.9 212.0

2 0 1000 300 20 1217 1649.9 230.0

3 0 1000 300 40 1658 1984.1 248.4

4 0 1000 300 60 2225 2723.7 614.7

5 0 1000 500 0 800 1417.0 169.9

% 6 0 1000 500 20 1176 1640.3 172.8

7 0 1000 500 40 1614 1970.0 179.9

59.16013834 8 0 1000 500 60 2171 2633.5 183.7

22.72899588 9 0 1000 750 0 760 1411.3 132.9

10 0 1000 750 20 1134 1633.4 138.4

11 0 1000 750 40 1571 1965.0 144.0

12 0 1000 750 60 2127 2631.2 149.8

13 0 1000 1000 0 751 1384.3 0.0

14 0 1000 1000 20 1118 1614.4 0.0

15 0 1000 1000 40 1551 1948.4 0.0

16 0 1000 1000 60 2101 2600.7 0.0

17 0 1500 300 0 234 796.8 279.7

18 0 1500 300 20 486 1166.7 187.7

19 0 1500 300 40 803 1394.3 203.6

20 0 1500 300 60 1174 1627.2 222.8

21 0 1500 500 0 187 980.7 180.2

22 0 1500 500 20 449 1162.1 163.2

23 0 1500 500 40 763 1390.2 169.9

24 0 1500 500 60 1133 1616.1 172.8

25 0 1500 750 0 148 1036.5 20.9

26 0 1500 750 20 410 1155.1 127.7

27 0 1500 750 40 723 1384.8 133.0

28 0 1500 750 60 1091 1608.5 138.4

29 0 1500 1000 0 148 1032.0 0.0

30 0 1500 1000 20 409 1126.5 0.0

31 0 1500 1000 40 715 1362.3 0.0

32 0 1500 1000 60 1075 1584.2 0.0

33 0 2000 300 0 100 0.0 264.3

34 0 2000 300 20 118 165.2 355.1

35 0 2000 300 40 214 732.7 307.4

36 0 2000 300 60 456 1139.4 187.7

37 0 2000 500 0 48 0.0 224.4

38 0 2000 500 20 49 75.8 264.6

39 0 2000 500 40 161 958.8 191.0

40 0 2000 500 60 418 1133.4 163.2

41 0 2000 750 0 0 0.0 0.0

42 0 2000 750 20 0 0.0 0.0

43 0 2000 750 40 120 1031.3 16.8

44 0 2000 750 60 380 1127.3 127.7

45 0 2000 1000 0 0 0.0 0.0

46 0 2000 1000 20 0 0.0 0.0

47 0 2000 1000 40 120 1030.7 0.0

48 0 2000 1000 60 379 1097.2 0.0

Optimisation resultsScenarios

48 0 2000 1000 60 379 1097.2 0.0

Scenario No
FIT 

($/kWh)

PV capex 

($/kW)

Bat. capex 

($/kWh)

REC 

($/MWh)
NPV over ten years ($000) PV size (kW) Battery size (kWh)

49 0.05 1000 300 0 921 1737.6 203.4

50 0.05 1000 300 20 1429 2431.7 211.6

51 0.05 1000 300 40 2102 3081.1 220.1

52 0.05 1000 300 60 2982 4269.7 202.3

53 0.05 1000 500 0 882 1732.7 165.8

54 0.05 1000 500 20 1389 2428.5 169.4

55 0.05 1000 500 40 2062 3088.4 165.4

56 0.05 1000 500 60 2948 4316.4 126.6

57 0.05 1000 750 0 843 1727.8 132.8

58 0.05 1000 750 20 1349 2431.7 132.6

59 0.05 1000 750 40 2030 3188.1 0.0

60 0.05 1000 750 60 2946 4457.7 0.0

61 0.05 1000 1000 0 836 1715.9 0.0

62 0.05 1000 1000 20 1341 2455.3 0.0

63 0.05 1000 1000 40 2030 3188.1 0.0

64 0.05 1000 1000 60 2946 4457.7 0.0

65 0.05 1500 300 0 234 843.6 266.0

66 0.05 1500 300 20 508 1311.4 187.6

67 0.05 1500 300 40 876 1689.4 203.4

68 0.05 1500 300 60 1365 2358.0 211.6

69 0.05 1500 500 0 192 1021.2 166.1

70 0.05 1500 500 20 470 1308.0 163.1

71 0.05 1500 500 40 837 1684.8 165.9

72 0.05 1500 500 60 1326 2357.8 169.4

73 0.05 1500 750 0 157 1046.9 0.0

74 0.05 1500 750 20 432 1303.1 127.7

75 0.05 1500 750 40 798 1681.0 127.5

76 0.05 1500 750 60 1285 2360.9 132.6

77 0.05 1500 1000 0 157 1046.9 0.0

78 0.05 1500 1000 20 431 1275.6 0.0

79 0.05 1500 1000 40 791 1666.1 0.0

80 0.05 1500 1000 60 1277 2375.2 0.0

81 0.05 2000 300 0 100 0.0 264.3

82 0.05 2000 300 20 118 165.2 355.1

83 0.05 2000 300 40 214 732.7 307.4

84 0.05 2000 300 60 474 1274.3 187.6

85 0.05 2000 500 0 48 0.0 224.4

86 0.05 2000 500 20 49 75.8 264.6

87 0.05 2000 500 40 165 993.7 173.0

88 0.05 2000 500 60 436 1268.1 163.1

89 0.05 2000 750 0 0 0.0 0.0

90 0.05 2000 750 20 0 0.0 0.0

91 0.05 2000 750 40 129 1041.7 0.0

92 0.05 2000 750 60 398 1258.4 127.7

93 0.05 2000 1000 0 0 0.0 0.0

94 0.05 2000 1000 20 0 0.0 0.0

95 0.05 2000 1000 40 129 1041.7 0.0

96 0.05 2000 1000 60 398 1235.0 0.0

Optimisation resultsScenarios

 

Figure 12: Optimization result summary for 96 scenarios based on four techno-economic factors: FIT (c/kWh): 

0 and 5; REC ($/MWh): 0, 20, 40, and 60; PV CAPEX ($/kW): 1000, 1500, and 2000; Battery CAPEX ($/kWh): 

300, 500, 750, and 1000.  
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According to the results, FIT improves the attractiveness of investment in DGS systems and 

the optimal size of PV increases across all scenarios. However, the introduction of FIT 

motivates the direct export of surplus energy and reduces the urgency of battery storage 

installation. For instance, while on average the 48 scenarios with FIT=0 require 139.1 kWh 

battery, this value reduces to 119.1 kWh with a FIT=0.05 $/kWh.  

The price of PV shows a strong impact on the optimal size of PV and the NPV. The average 

size of PV across 32 scenarios with PV CAPEX of 1000 $/kW is 2417 kW. At 1500 $/kW, this 

value is 1430 kW (>40% drop). For the remaining 32 scenarios with PV CAPEX of 2000 $/kW, 

this value becomes notably low, 549 kW, which is almost one-fifth of the scenarios with PV 

CAPEX of 1000 $/kW. The NPV of savings also drops with the reduction in the PV size. 

However, the PV price does not show an evident impact on battery size. Likewise, battery 

CAPEX does not reveal any correlation with the optimal PV size. The battery CAPEX is the 

most influential factor in its optimal size. With battery CAPEX of 1000 $/kWh, none of the 24 

scenarios selects any battery. With the CAPEX of 750$/kWh, the average battery size becomes 

79.6 kWh. With the CAPEX of 500 $/kWh, this value increases with more than two-fold (181.4 

kWh). At battery CAPEX of 300 $/kWh, the average battery size reaches 255.6 kWh.  

The results clearly show that that FIT and REC are effective policies for motivating the 

investment in DGS systems. However, as both REC and FIT are renewable energy generation 

incentives, they motivate investment in generation (here PV) quantity and cannot tackle the 

prosumers’ peak-management. As such, we observe in Figure 12 their significant impact on 

optimal PV size and a negligible impact on battery size. The FIT even reduces the attractiveness 

of battery storage. Therefore, from DSM policy-making perspective, a tailored combination of 

REC, FIT, and the capacity charge is needed for encouraging both investments in renewable 

energy and load shifting technologies. 

4. Conclusions  

Tariff design is one of the most critical tools for demand-side management (DSM) and for 

shaping consumer behaviour. With recent price reduction in distributed generation and storage 

(DGS) systems, interest has increased in devising policies for directing the consumers’ 

behaviour towards using DGS systems in line with DSM objectives. This has further increased 

the complexity of tariff modelling. On the one hand, a smart tariff structure is required to reflect 

the economic value of a DGS system for its owner and thus promote widespread DGS uptake. 

On the other hand, it should satisfy the key DSM goals such as peak load reduction. The current 

tariff mechanisms such as time-of-use and inclining blocks, though effective tools, cannot 
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guarantee peak load reduction. As we discussed in Section 3.3, renewable energy subsidies in 

the form of REC or FIT, though efficient for investment in generation technology, cannot lead 

to peak load reduction. 

While ToU and inclining block tariffs, as well as renewable energy subsidies, have received 

decent attention as successful policies, there is another less-discussed efficient tariff known as 

rollover network capacity charge. It is a penalty for the highest recorded power usage over the 

previous reading cycle (or year). We anticipated that the consideration of capacity charge might 

improve the economic feasibility of energy storage and thus motivate its demand-side uptake. 

To investigate this, we integrated rollover network capacity charge into DGS system sizing and 

scheduling.  

We executed some scenarios with and without a capacity charge. The results showed that high 

energy rates promote investment in larger PV generation systems to curb energy costs. The 

investment has a relatively better payback-time and less grid dependence. With lower energy 

rates but with the introduction of the capacity charge, these numbers are slightly lower (smaller 

PV system size and higher grid dependence). Also, the energy cost of the peak-user is higher 

with the capacity charge. However, it promotes the installation of storage systems and thus 

reduces the peak import and export from the grid more efficient than the scenario without a 

capacity charge. The results lead us to the following key conclusions. 

 Effective energy-justice mechanism  

Capacity charge transfers the network over-investment costs to the critical-peak users by 

enforcing them to pay extra for their critical peak consumption. This gives an incentive to 

invest in DSM systems, such as energy storage, to shift or reduce their peak import from the 

grid. However, reducing the consumption or changing the consumption pattern is not always 

possible and making new investments in DGS systems is preferred. With falling PV and battery 

costs, DGS systems are becoming more attractive to energy users. However, a strong DSM 

policy with the capacity charge induces customers to make investments in demand-side 

management earlier. This is particularly important for electricity networks that are facing peak 

demand challenges already today. Therefore, this is a fair mechanism which enforces those 
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who contribute more to critical peak loads to take more responsibility in addressing the 

problem. 

 Addressing the challenges of new peaks 

One of the big concerns in the power systems is a possibility of new peak demands in the future 

[3]. The capacity charge not only can curb the current afternoon peak loads but can also avoid 

any unconventional new peaks in the future. It can even address the possible challenges of 

sharp changes in load profiles during the moments when the ToU tariff shifts from one price 

threshold to another. There are at least two new peaks anticipated for the future. One such new 

peak pertains to mid-day solar power export. As the probability of exceedance (POE) curves 

(e.g., Figure 9) show, the significant ratio of PV generation occurs in low demand periods (high 

POEs), e.g., sunny mid-day. With widespread PV uptake, there is a risk of voltage and 

frequency failure due to over-export to the network. Consideration of capacity charge can also 

curb export (As the example in Section 3.2 showed) and motivate shifting the export time by 

energy storage or any other mechanism. The other new peak is related to energy import at times 

known traditionally as off-peak periods. The continuous decline in battery prices and the 

consequent widespread uptake of stationary or EV batteries may encourage consumers to 

arrange the charging time of their appliances at currently known off-peak periods (with lower 

electricity tariff) which may lead to new peak demands. The capacity charge appears as an 

effective mechanism to curb any form of new peaks including the mentioned ones. In 

conclusion, from the DSM policy-making perspective, a tailored combination of renewable 

energy certificates, energy tariffs, and a capacity charge is needed for encouraging both 

investments in renewable energy and load management. 
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Appendix 1 

Table 5: The formulation of a decision support program for DGS system screening, selection, sizing, and scheduling with inclusion of capacity charge tariff 

Formula Formula description Note 

∑𝑦𝑖 ≤ 𝑁𝐷𝐺

𝐼

𝑖=1

 
Limit on the number of selected DG 

systems 
𝑦𝑖 = {

1, if DG system 𝑖 is selected
0, otherwise

 

∑ 𝑦𝑗
′ ≤ 𝑁𝑆

𝐽

𝑗=1

 
Limit on the number of selected storage 

systems 
𝑦𝑗

′ = {
1, if storage system 𝑗 is selected
0, otherwise

 

∑ 𝑦𝑖𝐴𝑖

𝐼

𝑖=1

+ ∑𝑦𝑗
′𝐴𝑗

𝐽

𝑗=1

≤ 𝐴𝑚 
Limit on the total area occupied by the 

DGS system 
Total area limit: 𝐴𝑚 

∑𝑦𝑖𝑉𝑖

𝐼

𝑖=1

+ ∑ 𝑦𝑗
′𝑉𝑗

𝐽

𝑗=1

≤ 𝑉𝑚 
Limit on the total volume occupied by 

the DGS system 
Total volume limit: 𝑉𝑚 

𝐹𝐶𝑖𝑝 = 𝑋𝑖𝑝
𝐷𝐺 𝐹𝑖𝑝 𝜂𝑖𝑝

𝐷𝐺⁄  Feed supply cost of DG unit i at period p 

𝐹𝑖𝑝: Feed price per unit supply for DG unit i at period p 

𝑋𝑖𝑝
𝐷𝐺: Total generation of DG unit i at period p 

𝜂𝑖𝑝
𝐷𝐺: Efficiency of DG unit i at period p 

 𝐸𝑖𝑝 = 𝑋𝑖𝑝
𝐷𝐺 𝐶𝐼𝑖𝑝 𝜂𝑖𝑝

𝐷𝐺⁄  
CO2-equivalent GHG emission from DG 

i at period p 

𝐶𝐼𝑖𝑝  : Carbon intensity of DG unit i per unit of feed energy 

at period p 

𝐺𝐻𝐶𝑖𝑝 = 𝐸𝑖𝑝𝐶𝑃𝑝 Incurred GHG cost for DG i at period p CPp: CO2-equivalent GHG emission penalty at period p 

𝑋𝑖𝑝
𝐷𝐺 = 𝑋𝑖𝑝

𝐷𝐺.𝐺 + 𝑋𝑖𝑝
𝐷𝐺.𝐿 + ∑𝑋𝑖𝑗𝑝

𝐷𝐺.𝑆

𝐽

𝑗=1

≤ 𝑦𝑖𝐶𝑖𝑝
𝐷𝐺 

Limit on the total energy production 

from DG i at period p 

𝐶𝑖𝑝
𝐷𝐺: The maximum “generatable” capacity of a DG unit i 

at period p 

𝑋𝑛𝑖𝑝
𝐷𝐺.𝑁: Export from DG i to network n at period p 

𝑋𝑘𝑖𝑝
𝐷𝐺.𝐾: Supply from DG i to load k at period p 

𝑋𝑖𝑗𝑝
𝐷𝐺.𝑆: Supply from DG i to storage j at period p 

𝑋𝑝
𝐺.𝐿 + ∑𝜂𝑖𝑝

𝐷𝐺𝑖𝑛𝑋𝑖𝑝
𝐷𝐺.𝐿

𝐼

𝑖=1

+ ∑ 𝑋𝑗𝑝
𝑆.𝐿

𝐽

𝑗=1

≤ 𝐿𝑝 Local load limit in any period p  

𝑋𝑝
𝐺.𝐿: Supply from grid to load at period p 

Lp: demand during period p 

𝑋𝑖𝑝
𝐷𝐺.𝐿: Supply from DG i to load at period p 

𝑋𝑗𝑝
𝑆.𝐿: Supply from storage j to load at period p 
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𝐵𝑗𝑝 = (1 − 𝛽𝑗𝑝)(𝜂𝑗
𝐶𝐶𝜂𝑗𝑝

𝐶 𝑋𝑖𝑗𝑝
𝐷𝐺.𝑆 + 𝜂𝑗𝑝

𝑆𝑖𝑛𝜂𝑗
𝐶𝐶𝜂𝑗𝑝

𝐶 𝑋𝑗𝑝
𝐺.𝑆

− 𝑋𝑗𝑝
𝑆.𝐺 (𝜂𝑗𝑝

𝑆𝑖𝑛𝜂𝑗
𝐶𝐶𝜂𝑗𝑝

𝐷 )⁄

− 𝑋𝑗𝑝
𝑆.𝐿 (𝜂𝑗𝑝

𝑆𝑖𝑛𝜂𝑗
𝐶𝐶𝜂𝑗𝑝

𝐷 )⁄ ) 

Input-output balance of storage system j 

in period p 

𝛽𝑗𝑝: Self-discharges of storage system j during period 

𝑋𝑗𝑝
𝐺.𝑆: Supply from grid to storage j at period p 

𝑋𝑗𝑝
𝑆.𝐺: Supply from storage j to grid at period p 

𝜂𝑗𝑝
𝐶  and 𝜂𝑗𝑝

𝐷 : charge and discharge efficiency of storage j at 

period p 

𝜂𝑖𝑝
𝐷𝐺𝑖𝑛 and 𝜂𝑗𝑝

𝑆𝑖𝑛: inverter efficiency of DG system i and 

storage system j at period p 

𝜂𝑗
𝐶𝐶 : efficiency of charge controller for storage j 

𝑆𝑂𝐶𝑗𝑝 = ∑ 𝐵𝑗𝑝′

𝑝

𝑝′=1

 SOC of storage system j at period p  

𝑦𝑗
′𝑆𝑂𝐶𝑗

𝐿 ≤ 𝑆𝑂𝐶𝑗𝑝 ≤ 𝑦𝑗
′𝑆𝑂𝐶𝑗

𝑈 
Lower and upper limit on SOC of 

storage system j 

𝑆𝑂𝐶𝑗
𝐿: Lower bound on SOC 

𝑆𝑂𝐶𝑗
𝑈: Upper bound on SOC 

𝐺𝐶ℎ = ∑ (𝑋𝑝
𝐺.𝐿 + ∑(𝑋𝑖𝑝

𝐷𝐺.𝐺)

𝐼

𝑖=1

ℎ𝑃′

𝑝=(ℎ−1)𝑃′+1

+ ∑(𝑋𝑗𝑝
𝑆.𝐺 + 𝑋𝑗𝑝

𝐺.𝑆)

𝐽

𝑗=1

) 

Magnitude of grid connectivity during 

horizon h 

𝑋𝑝
𝐺.𝐿: Supply from grid to load at period p 

 

𝐺𝐶ℎ ≤ 𝑀. 𝑦ℎ
′′ If connected to grid during horizon h 

𝑦ℎ
′′ = {

1, if 𝐺𝐶ℎ > 0
0, if 𝐺𝐶ℎ = 0

 

M: constant number (big-M method [78]) 

𝐿ℎ−1
∗ = max

  
 [𝐿𝑝] 

Rollover capacity, without DGS, for 

horizon h 
 

𝐺𝐼ℎ−1
∗ ≥ 𝑋𝑝

𝐺.𝐿 + ∑(𝑋𝑗𝑝
𝐺.𝑆)

𝐽

𝑗=1

 
Rollover import capacity, with DGS, for 

horizon h 
𝐺𝐼ℎ−1

∗ : Import capacity during horizon h 

𝐺𝐸ℎ−1
∗ ≥ ∑(𝑋𝑗𝑝

𝑆.𝐺)

𝐽

𝑗=1

+ ∑(𝜂𝑖𝑝
𝐷𝐺𝑖𝑛𝑋𝑖𝑝

𝐷𝐺.𝐺)

𝐼

𝑖=1

 
Rollover network capacity charge for 

export, with DGS, for horizon h 
𝐺𝐸ℎ−1

∗ : Export capacity during horizon h 
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𝑁𝑃𝑉𝑐

= ∑𝐶𝑋𝑖
𝐷𝐺

𝐼

𝑖=1

+ ∑𝐶𝑋𝑗
𝑆

𝐽

𝑗=1

+ ∑ [ ∑ (∑𝑦𝑖𝐹𝑂𝑀𝑖𝑝
𝐷𝐺

𝐼

𝑖=1

+ ∑𝑦𝑗
′𝐹𝑂𝑀𝑗𝑝

𝑆

𝐼

𝑖=1

)

ℎ𝑃′

𝑝=(ℎ−1)𝑃′+1

]

𝐻

ℎ=1

(1 + 𝑟)ℎ⁄

+ ∑

[
 
 
 
 
 

∑

(

 
 
 𝑋𝑝

𝐺.𝐿𝐸𝑃𝑝 + 𝑦ℎ
′′𝐶𝐹𝑝 + 𝐺𝐼ℎ−1

∗ 𝑅𝐶𝐼𝑝 + 𝐺𝐸ℎ−1
∗ 𝑅𝐶𝐸𝑝 + ∑(𝑋𝑗𝑝

𝐺.𝑆𝐸𝑃𝑝 − 𝑋𝑗𝑝
𝑆.𝐺𝐹𝐼𝑇𝑝)

𝐽

𝑗=1

−∑(𝜂𝑖𝑝
𝐷𝐺𝑖𝑛𝑋𝑖𝑝

𝐷𝐺.𝐺𝐹𝐼𝑇𝑝)

𝐼

𝑖=1

+ ∑(𝐹𝐶𝑖𝑝 + 𝐺𝐻𝐺𝑖𝑝)

𝐼

𝑖=1 )

 
 
 ℎ𝑃′

𝑝=(ℎ−1)𝑃′+1

]
 
 
 
 
 

𝐻

ℎ=1

(1 + 𝑟)ℎ⁄  

Objective function for the net present 

value of costs 

r: Discount rate over h 

𝐹𝑂𝑀𝑖𝑝
𝐷𝐺  and 𝐹𝑂𝑀𝑗𝑝

𝑆 : FOM of DG system i and storage 

system j at period p 

𝐶𝑋𝑖
𝐷𝐺 and 𝐶𝑋𝑗

𝑆: Installation cost of DG system i and 

storage system j 

EPp: electricity price at period p 

CFp: Connection fee (or supply charge) at period p 

RCIp: Rollover network capacity charge for import at 

period p. 

RCEp: Rollover network capacity charge for export at 

period p. 

FiTp: Feed-in-tariff during period p 

 

𝑁𝑃𝑉𝑆

= ∑ [ ∑ (𝐿𝑝𝐸𝑃𝑝 + 𝐶𝐹𝑝 + 𝐿ℎ−1
∗ 𝑅𝐶𝑝)

ℎ𝑃′

𝑝=(ℎ−1)𝑃′+1

]

𝐻

ℎ=1

(1 + 𝑟)ℎ⁄

− 𝑁𝑃𝑉𝑐  

Objective function for the net present 

value of savings 
 

Planning horizon: H segments (weeks, months, years) with P’ multiple periods of a given fixed length (minute, hour, etc.) 
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List of Abbreviations 

CAPEX capital expenditure 

CPD critical peak demand 

CDF cumulative distribution functions 

CHP combined heat and power 

DER distributed [renewable] energy resources 

DG distributed generation 

DGS distributed generation and storage (Here DGS means: “distributed generation, or 

storage, or both”) 

DOD depth of discharge 

DSM  demand-side management 

EES  Electrical energy storage  

EV electric vehicle 

FIT  feed in tariff 

FOM fixed operation and maintenance cost 

GHG greenhouse gas 

GST goods and service tax 

GW gigawatt 

GHI global horizontal irradiation 

LPSP  loss of power supply probability 

MILP  mixed-integer linear program 

MINLP  mixed-integer nonlinear program 

NPV net present value 

NRLP  Newton-Raphson linear programming 

NTGA  non-dominated sorting genetic algorithm 

NSW New South Wales 

OCL operational charge limit 

OPEX operational expenditure 

PCA  principal component analysis 

POE probability of exceedance 

PR performance ratio 
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PV photovoltaic 

REC renewable energy certificate 

SOC state of charge 

ToU time-of-use 

LLP loss of load probability 

UN  United Nations 
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