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Abstract 

Background:  Pulmonary lobectomy has been a well-established curative treatment 
method for localized lung cancer. After left upper pulmonary lobectomy, the upward 
displacement of remaining lower lobe causes the distortion or kink of bronchus, which 
is associated with intractable cough and breathless. However, the quantitative study 
on structural and functional alterations of the tracheobronchial tree after lobectomy 
has not been reported. We sought to investigate these alterations using CT imaging 
analysis and computational fluid dynamics (CFD) method.

Methods:  Both preoperative and postoperative CT images of 18 patients who under-
went left upper pulmonary lobectomy are collected. After the tracheobronchial tree 
models are extracted, the angles between trachea and bronchi, the surface area and 
volume of the tree, and the cross-sectional area of left lower lobar bronchus are inves-
tigated. CFD method is further used to describe the airflow characteristics by the wall 
pressure, airflow velocity, lobar flow rate, etc.

Results:  It is found that the angle between the trachea and the right main bronchus 
increases after operation, but the angle with the left main bronchus decreases. No 
significant alteration is observed for the surface area or volume of the tree between 
pre-operation and post-operation. After left upper pulmonary lobectomy, the cross-
sectional area of left lower lobar bronchus is reduced for most of the patients (15/18) 
by 15–75%, especially for 4 patients by more than 50%. The wall pressure, airflow 
velocity and pressure drop significantly increase after the operation. The flow rate to 
the right lung increases significantly by 2–30% (but there is no significant difference 
between each lobe), and the flow rate to the left lung drops accordingly. Many vortices 
are found in various places with severe distortions.

Conclusions:  The favorable and unfavorable adaptive alterations of tracheobronchial 
tree will occur after left upper pulmonary lobectomy, and these alterations can be 
clarified through CT imaging and CFD analysis. The severe distortions at left lower lobar 
bronchus might exacerbate postoperative shortness of breath.
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Background
Lung cancer has been the most common cancer worldwide in terms of both incidence 
and mortality. In 2012, there were 1.82 million new cases accounting for about 13.0% of 
the total number of new cases, and 1.56 million deaths representing 19.4% of all deaths 
from cancer [1]. Pulmonary lobectomy, especially Video-assisted thoracoscopic surgery 
(VATS) lobectomy, is a well-established curative treatment method for localized lung 
cancer [2, 3].

Pulmonary lobectomy results in a permanent loss of pulmonary function. Normally, 
this loss is proportional to the volume of resected lung, but it is also affected by the 
adaptive remodeling of the remaining lung. In the upper lobectomy, the upward dis-
placement of the diaphragm and the remaining lobe will make the ipsilateral bronchus 
distort anatomically in a sigmoidal form, thereby resulting in the bronchial angulation. 
If the resultant stenosis is higher than 80%, a bronchial kink occurs [4]. The stenosis will 
result in lower postoperative functional lung volume (FLV) and postoperative forced 
expiratory volume in 1 s (FEV1), which will lead to some complications characterized by 
the shortness of breath and persistent cough.

The high-resolution computed tomography (CT) images are used for the anatomic 
alterations and postoperative complications [5–7]. Ueda et  al. initially reported that 
bronchial kink was found in 42% (21/50) of the patients and bronchial kink may exac-
erbate the postoperative deterioration of lung function [4]. It has been proved that CT-
based bronchography can help to screen the bronchial kink without additional invasive 
study. Seok et  al. found that the increased angle of the bronchi is associated with the 
decline of pulmonary function [8]. Sengul et al. demonstrated that the changes of post-
operative lung volume depend on the resected lobe [9]. Specifically, for the lower lobec-
tomy, the reduction of the total lung volume is less than that of the upper lobectomy. 
However, the general pattern of structural alterations of the tracheobronchial tree, spe-
cifically for the left upper pulmonary lobectomy (estimated to account for one-third of 
all cancer [10]) has not been reported.

The changes of postoperative pulmonary functions are measured by the spirometry-
based pulmonary function tests (PFTs) [11]. The expansion of both the contralateral 
lung and the remaining ipsilateral lung contributes to the postoperative compensation 
of pulmonary function [9]. This kind of compensation depends on the resected lobe and 
is more robust after lower lobectomy [12]. However, the postoperative pulmonary func-
tion can be underestimated by only the measure of FEV1 through PFTs [13]. Moreover, 
postoperative PFT is not routinely performed for all patients, it needs the cooperation of 
the patients and it is not suitable for the patients with breathlessness. For example, only 
60 among 202 patients who underwent lobectomy had PFT in the study by Ueda et al. 
[12].

Depending on the individualized structural models of the tracheobronchial tree 
extracted from CT images, the computational fluid dynamics (CFD) simulation can 
provide physiologically significant ventilation information including the airflow 
velocity, wall pressure, wall shear stress, pressure drop and lobular airflow rate, which 
may complement the results of anatomy and pulmonary function [14–17]. Walters 
et  al. proposed to use the reduced geometry model to reduce the complexity [18]. 
Oakes et al. investigated the effect of age on the airflow pattern and airway resistance 
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[19] and Sul et al. assessed the airflow sensitivity on the lobar flow fraction [20]. Tur-
bulent characteristics have been observed downstream of the glottis by Calmet et al. 
[21]. It has been reported that the obstructions in the lower airway caused bronchial 
tumor or other lesion can alter airflow patterns in the central airway [22, 23]. In our 
previous work, CFD simulations have been done to study airflow characteristics in 
subjects with left pulmonary artery sling, the tracheal bronchus and chronic obstruc-
tive pulmonary disease [24–28]. Besides the studies on the flow in the airway tree 
models with asthma and severe stenosis, CFD has also been used to facilitate vari-
ous treatments, such as acute bronchodilation in asthmatics, tracheobronchial stent 
placement, vascular ring surgery and antibiotic treatment with cystic fibrosis [29–32]. 
It should be noted that the results of CFD simulation have been validated by both 
in vitro experiments and in vivo SPECT/CT images [33, 34].

The contributions of this work are summarized as follows. First, the structural alter-
ations of the tracheobronchial trees after left upper pulmonary lobectomy for lung 
cancer are investigated through various quantitative measures including the angles 
between trachea and bronchi, the surface area and volume of the tree, and the cross-
sectional area of the left lower lobar bronchus. Second, the alterations of the airflow 
are characterized by CFD-based measures of the wall pressure, airflow velocity, pres-
sure drop, lobar flow rate, and local flow features at the left lower lobar bronchus. 
Third, the relationship between alterations of airway structure and ventilation func-
tion is illustrated. To the best of our knowledge, this is the first systematic study 
which combines quantitative CT images and CFD analysis to clarify the structural 
and functional alterations of the tracheobronchial tree caused by left upper pulmo-
nary lobectomy.

Results
Structural alterations of the tracheobronchial tree

Postoperatively, the global alterations (deformation) of the tracheobronchial tree can be 
found in Fig. 1a. It is in agreement with previous observation that the left main bronchus 
distorts in a sigmoidal form [4], as a result of the upward displacement of diaphragm 
and the remaining left lower lobe. In addition, the trachea seems to slant to the left and 
the stenosis occurs at the left lower lobar bronchus, but not at the left main bronchus. 
However, neither for the volume nor the surface area, there is no significant difference 
between preoperative and postoperative tracheobronchial trees, as shown in Fig. 1c.

Compared with the preoperative models, the angle between the trachea and the left 
main bronchus ( θL ) decreases significantly in the postoperative models (p < 0.01), by 
the mean of 13.4°. Nonetheless, θR increases significantly by the mean of 10.5 degrees 
as shown in Fig. 1b. These alterations are thought to be associated with the upward 
displacement of diaphragm and the remaining lobe.

The cross-sectional area growth rate ( R ) is given for each patient in Fig.  2a. It 
is found that R is negative for most patients (15/18), indicating that the left lower 
lobar bronchus becomes narrow (15–75%) after lobectomy. For four patients (LCP7, 
LCP12, LCP14 and LCP16), the stenosis is higher than 50%. The location and cross 
section of the stenosis are given in Fig. 2b.
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Alterations of airflow in the tracheobronchial tree

Wall pressure and flow velocity distribution

The wall pressure distribution is given in Fig. 3a for LCP7 and LCP8 as examples. It 
can be seen that the wall pressure at the trachea and the main bronchi increases sig-
nificantly after the lobectomy. The maximum wall pressure in LCP7 reaches 65.0 Pa 
for the stenosis higher than 50% at the left lower lobar bronchus. For LCP8 with a 
stenosis of 21.95%, the maximum wall pressure is only about 7.0  Pa. After the left 
upper lobectomy, the average wall pressure in 17 patients is higher than that before 
the surgery, with an increase ranging from 0.1747 to 5.7243 Pa. One patient (LCP15) 
had a decrease of 0.7506 Pa.

Figure  3b presents the flow velocity within the tracheobronchial trees for LCP7 
and LCP 8 as examples. The air flow velocity in the left lower lobe increases signifi-
cantly after lobectomy. Preoperatively, the velocity at the left lower bronchus of LCP7 
and LCP8 is 3.00 m/s and 1.50 m/s, respectively; the velocity in postoperative model 
increases to 4.50  m/s and 2.25  m/s, respectively. The maximum velocity in LCP7 
(6.00  m/s) is higher than that in LCP8 (3.00  m/s) due to higher stenosis. After the 
lobectomy, the maximum airflow velocity within the tracheobronchial tree increases 
significantly by 0.09–4.26 m/s in 16 patients. For the remaining patients, it has a slight 
decrease of about 0.76 m/s.

Fig. 1  Structural alterations of tracheobronchial trees after the left upper pulmonary lobectomy. a The global 
appearances. b The angles between the trachea and the main bronchus. c The volume and surface area



Page 5 of 18Gu et al. BioMed Eng OnLine          (2019) 18:105 

Pressure drop

The pressure drop can be calculated as the difference between the mean pressure at 
the inlet of the trachea and the average pressure of the outlet (the atmospheric pres-
sure). According to Eq. (8), the relationship between the pressure drop and the inlet 
area can be presented in Fig.  4a. After the left upper lobectomy, the pressure drop 
( �P ) increased in 16 patients with a range of 0.81–10.37  Pa. In the remaining two 

Fig. 2  Alterations of the left lower lobar bronchus induced by the left upper pulmonary lobectomy. a The 
cross-sectional area growth rate for all patients. b The alterations of the left lower lobar bronchus
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Fig. 3  The wall pressure and flow velocity in preoperative and postoperative tracheobronchial trees. a LCP7 
with a 51.64% stenosis at the left lower lobar bronchus. b LCP8 with a 21.95% stenosis at the left lower lobar 
bronchus
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patients, �P decreased by 3.90 and 1.62 Pa, respectively. The slopes of the fitting line 
before and after the lobectomy are roughly the same, indicating that the relationship 
between the pressure drop and the inlet area remains unchanged. Meanwhile, the 
postoperative fitting line is above the preoperative one.

Fig. 4  Alterations of pressure drop and airflow rate distribution induced by the left upper pulmonary 
lobectomy. a The pressure drop vs the sectional area of inlet. b The airflow rate distribution
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Airflow rate distribution

The airflow rate for each lobe and left and right lung is given in Fig.  4b. Though the 
flow rate to the right upper lobe, right middle lobe, and right lobe increases after the 
lobectomy, no significant difference is available (p > 0.01). The postoperative flow 
rate to the left lower lobe is significantly higher than that before lobectomy (p < 0.01) 
by 6.36% (0.6211 × 10−4  kg/s). The postoperative flow rate to the right lung is signifi-
cantly higher than that before lobectomy (p < 0.01) by 10.97%. Preoperatively, the ratio 
of the airflow rate to the right lung to that to the left lung is 58.67%/41.32%. It turns into 
69.65%/30.35% postoperatively.

Local alterations

Local alterations of the structure, velocity, wall pressure, and wall shear stress are given 
in Fig.  5 for LCP7 and LCP8 as examples. For LCP7, there is an increase in the flow 
velocity at the stenosis of the left lower lobar bronchus and the occurrence of turbu-
lence. A clear vortex appears in the remnants of the left lower lobe, and the streamline 
is distorted. The wall pressure and wall shear stress increase at the stenosis after lobec-
tomy. For LCP8, the lower stenosis corresponds to the relatively smooth streamlines, 
small increase of wall pressure and wall shear stress.

Discussions
The present study characterized the structural and functional alterations of the tra-
cheobronchial tree after left upper pulmonary lobectomy for lung cancer using the 
preoperative and postoperative CT images of 18 patients. These alterations firstly and 
comprehensively describe the adaptive remodeling of the remaining respiratory system 
after the left upper lobectomy. The favorable remodeling includes the increased angle 
between the trachea and right main bronchus and the significant growth of flow rate 
ratio to the right lung. The unfavorable remodeling are the decrease of the angle between 
the trachea and left main bronchus, the sigmoidal distortion of the left main bronchus, 
and the decrease of sectional area (narrowing) of the left lower lobar bronchus. The nar-
rowing of bronchus, the severe stenosis in particular, increases the flow velocity, the wall 
pressure, the wall shear stress, the possibility of vortex and the pressure drop; while the 
inlet boundary condition is the steady constant flow rate for our present simulation. The 
favorable and unfavorable remodelings lay a foundation for understanding the “com-
pensatory lung adaption” and etiology of postoperative breathless, persistent cough and 
inflammation. The main findings, the methodological advantages and their significance 
will be presented as follows.

The first main finding of this study is about the favorable adaptive remodeling of 
the remaining respiratory system after the left upper lobectomy. θR increases signif-
icantly from 142° to 152° and the flow rate ratio increases from 58.67 to 69.65%. The 
increase of θR facilitates the ventilation of the right lung, resulting in the increase of the 
flow rate ratio. It partially contributes to “compensatory lung adaption”, one phenom-
enon that postoperative pulmonary function is better than the estimated one [4]. Sen-
gul et  al. reported that after the left upper lobectomy, the ipsilateral and contralateral 
lung volumes decrease by 39.31% and 2.72%, respectively [9]. For the lower lobectomy, 
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postoperative compensation is obtained by the expansion of both contralateral lung and 
remaining ipsilateral lung. It is noted that the statistical power of the study by Sengul 
et al. [9] is low for only five patients with left upper lobectomy are included.

The second main finding of this study is about the unfavorable alterations induced 
by lobectomy. These alterations include the decrease of the angle between the trachea 
and left main bronchus, the sigmoidal distortion of the left main bronchus, and the 
stenosis of the left lower lobar bronchus (the degree of stenosis is greater than 50% in 
some cases). Despite of these unfavorable alterations, the increased flow rate ratio to 
the remaining left lower lobe (from 23.98 to 30.34%) demonstrates that the pulmonary 

Fig. 5  Local structure of the tracheobronchial tree, flow velocity, wall pressure and wall shear stress after the 
left upper pulmonary lobectomy. a LCP7 with a 51.64% stenosis at the left lower lobar bronchus. b LCP8 with 
a 21.95% stenosis at the left lower lobar bronchus
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function of the left lower lobe is augmented, contributing to the “compensatory lung 
adaption”. The observations of this study have two aspects different with previous study. 
Firstly, the bronchial kink (80% stenosis) is not found for the present model. However, 
according to Ueda et al. [4], the bronchial kink was observed in up to 42% of the patients 
who had undergone the upper lobectomy. Secondly, the stenosis is not at the left main 
bronchus, but at the left lower lobar bronchus. These differences are not related to the 
operation procedure because it is the same in two studies. The specific reason has been 
unknown up to now.

The third main finding is about the alterations of global and local measures of airflow 
in the tracheobronchial tree. The narrowing of the left lower lobar bronchus increases 
the low velocity, the wall pressure, the wall shear stress, the possibility of vortex, and the 
pressure drop while the inlet boundary condition is the steady constant flow rate for our 
present simulation. The long-term increase of these local airflow measures may result in 
trauma of the airway, mucosa and inflammatory response [27, 35]. With the same airflow 
rate, the higher pressure drop is required after lobectomy, indicating that the postopera-
tive patients have smaller airflow rate, while the pressure drop is constant [32].

For the methodological advantages, the morphological analysis of tracheobronchial 
trees extracted from CT images and further CFD simulation of airflow characteristics 
within the trees are combined in the present work. Hence, it enables us to illustrate the 
relationship between alterations of airway structure and ventilation function, besides 
the respective ones. Via high and isotropic resolution CT images (with the voxel size of 
about 1 × 1 × 1 mm) and extracted tracheobronchial tree, the distortion of bronchus can 
be presented and bronchus kink can be diagnosed [14]. The routine postoperative fol-
low-up CT examination does not expose patients to the additional invasive study, unlike 
bronchoscopy. Traditional CT and dual-energy CT applications should be expanded to 
image the anatomic changes and related complications for post-lobectomy patient [5, 7].

Based on the realistic and individualized tracheobronchial trees extracted from CT 
images, CFD provides with rich local and global information including flow velocity, 
wall pressure, wall shear stress, and pressure drop and flow rate ratio to the pulmonary 
function [14, 15]. Through strict and standard operation flow and quality control, such 
as the grid independence and validation, the CFD accuracy and reliability can be guar-
anteed. The pulmonary function test by spirometry is still the golden standard to study 
the changes in pulmonary function in lung cancer patients after VATS [11]. However, 
the concern of unnecessary risk and complex cooperation requirements for the patients 
limit the application of spirometry. Moreover, the changes of forced vital capacity (FVC) 
vary with time in the period of 3–12 months, and it reaches the maximum between 6 
and 12 months [13, 36].

Regardless of the above-mentioned great advantages and findings of our study, it pre-
sents the following limitations. First, the flow rate ratio is determined according to CFD 
simulation without considering the CT-based lobar volume. Measuring lobar volume 
will help to confirm whether the ventilation and volume match well. Hyperpolarized 3He 
magnetic resonance (MR) phase-contrast velocimetry is another way of accurately meas-
uring the airflow velocity in human airways in vivo [33]. Second, postoperative PFTs can 
not be collected for the concern of unnecessary risk. The scores on the cough, pain, and 
shortness of breath are not available, which makes it impossible to correlate our findings 



Page 11 of 18Gu et al. BioMed Eng OnLine          (2019) 18:105 

with these scores. The direct cause of the symptoms and guide to the patient care could 
not be obtained. Third, most studies on CFD simulation of airflow in human airway trees 
including our current study have adopted the steady flow condition for the simplifica-
tion of numerical calculation and further analysis [15]. Even for the transient CFD sim-
ulation, the sine curve of the respiratory cycle is usually used as a simplified method 
for representing the natural respiratory cycle [26, 32]. More advanced models with the 
realistic boundary conditions measured by PFTs are needed. Fourth, only the patients 
after the left upper lobectomy are included; therefore, the comparison between different 
lobectomy is not achievable. It has been reported that the compensatory response after 
lower lobectomy is more robust than that after upper lobectomy [12], and more bron-
chial kinkings happen after upper lobectomy [13]. Changes in pulmonary function after 
right-side lobectomy are different from those after left side [11]. Finally, only the inspira-
tory phase CT is scanned in the current study to reduce the radiation dose and whether 
the inspiratory and expiratory flow will affect θR is still unknown. These limitations actu-
ally point out some issues for the further in-depth study.

Conclusions
After left upper pulmonary lobectomy for lung cancer, the tracheobronchial tree will 
take adaptive remodeling, resulting in various structural and functional alterations. 
These alterations or remodelings can be favorable and unfavorable. The increase of the 
angle between the trachea and right main bronchus, and the resultant increase of airflow 
rate to the right lung are the favorable compensations of residual lung. The decrease of 
the angle between the trachea and left main bronchus, the sigmoidal distortion of the 
left main bronchus, and the stenosis of the left lower lobar bronchus are the unfavorable 
structural alterations. These structural alterations lead to the abnormal increase of the 
flow velocity, the wall pressure, the wall shear stress, the possibility of the vortex and the 
pressure drop, which might be associated with the realistic shortness of breath, persis-
tent cough, and inflammation after lobectomy. Based on the morphological analysis of 
tracheobronchial trees extracted from CT images and further CFD simulation of airflow 
characteristics within the trees, all those structural and functional alterations of the tra-
cheobronchial tree can be clarified.

Methods
Participants and CT images acquisition

The high-resolution CT images in DICOM format of 18 patients who underwent upper 
left pulmonary lobectomy for lung cancer are randomly selected out of a database of 
the Affiliated Zhongshan Hospital of Dalian University (Dalian, China) for a retrospec-
tive study. After anonymization, the data of each patient were given one index (LCP1–
LCP18). Of the 18 patients, 12 (66.7%) were female and 6 (33.3%) were male. The mean 
age was 61.5 (range 50–71) years. The surgery was carried out in the period from April 
2014 to October 2017. The VATS lobectomy procedure was the same as that introduced 
by Ueda et al. [4].

Preoperative CT images were scanned within 1 week before the lobectomy and post-
operative images at 1–12 months after the lobectomy. For all acquired CT images, the 
tube voltage was set to 100 kV, the slice thickness was 1.0 mm, and the reconstruction 
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matrix size was 512 × 512. The tube current, the pixel size and the number of slices were 
in the range of 275–673 mAs, 0.59–0.81 mm and 251–468, respectively. This study was 
approved by the Medical Ethics Committee of the Affiliated Zhongshan Hospital of 
Dalian University. Informed consent was waived because it was a retrospective review 
study.

Overview of the analysis procedure

The whole analysis procedure of the present study is illustrated in Fig. 6. Using preopera-
tive CT images, the tracheobronchial tree of each patient is extracted, and the structural 
measures including critical angle, surface area and volume are calculated. By CFD simu-
lation, the measures of wall pressure, wall shear stress, flow velocity, lobar flow rate and 
pressure drop are obtained. After the postoperative measures are gotten similarly, the 
comparison between preoperative and postoperative groups produces the structural and 
functional alterations. The relationship between the structural and functional alterations 
is illustrated in coming sections.

Structural analysis of the tracheobronchial tree

The tracheobronchial tree is extracted from the CT images using the algorithm of deep 
segmentation embedded in a medical imaging process software called Mimics (Material-
ise Corp, Belgium), and exported in the STL format. The 3D model is subsequently input 
into Geomagic Studio to reduce the complexity of the model. After the format of STL is 
converted into the X_T entity format using SolidWorks (SOLIDWORKS Corp, Waltham, 

Fig. 6  The overview of procedure in the current study
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USA), the tracheobronchial tree model is imported into ANSYS Workbench 15 (ANSYS 
Inc., Pennsylvania, USA) for CFD simulation.

As shown in Fig. 6, the angles between the trachea and the left and right main bronchus 
are defined as θL and θR , respectively. These angles in the preoperative and postoperative 
models are measured and compared. The cross-sectional area growth rate is defined as

where SPost is the cross-sectional area of the left lower lobar bronchus in postopera-
tive model and SPre is that in preoperative model. The volume and surface area of all the 
models are also measured for analysis.

CFD analysis of the tracheobronchial tree

An advanced meshing technique is used to generate the unstructured tetrahedral elements 
for the highly asymmetric tracheobronchial model and path independent algorithm is used 
as the meshing method. The quality of the generated mesh is evaluated by the skewness and 
the values of skewness are found in the range of 0.8616–0.95, which eventually indicates 
that the mesh of the present study is acceptable. A steady breathing state with the tidal vol-
ume of 500 mL is considered as the normal adult inhalation tidal volume.

In the current study, the steady inlet velocity is set as the inlet boundary condition (BC) 
and the constant outlet pressure of the atmospheric pressure is set as the outlet BC [25]. As 
done in our previous studies [26, 27], FLUENT 16.0 is utilized to solve the governing equa-
tions of the airflow.

where ρ is the fluid density, t is time, υ is the flow velocity, �υ is the velocity vector, �F  is the 
force vector, �p is the pressure vector, µ is the viscosity of fluid. In Reynolds association 
numerical simulation (RANS), the above unsteady governing equations are averaged 
temporally.

where ūj is the temporally averaged flow velocity, ū′

i and ū′

j are turbulent fluctuations, 
j = 1, 2, and 3. xj is the spatial coordinate and gi is the gravity. ρūiūj is Reynolds stress. 
Many turbulent models have been proposed to calculate Reynolds stress, including 
Eddy-Viscosity Models, Reynolds Stress Model, and Algebraic Stress Model. Here, we 
adopt one Eddy-Viscosity Model, i.e., the standard Low Reynolds number (LRN) k-ω tur-
bulence model, where k and ω denote the turbulent kinetic energy and the specific dis-
sipation rate, respectively. Meanwhile, the low-Re correction and shear flow correction 

(1)R = (SPost − SPre)/SPre,

(2)
∂ρ

∂t
+ div(ρυ) = 0,

(3)ρ
∂ �υ

∂t
= ρ �F − grad�p+ µ��υ +

µ

3
grad(div�υ),

(4)
∂ρ

∂t
+

∂

∂xj

(

ρūj
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ρūiūj
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are taken into account. For the inlet velocity, the turbulent intensity (I) is set as 5% and 
the turbulent viscosity ratio ( µT /µ ) is set as 10 [37, 38]. I and the turbulent viscosity µT 
are defined as

where Cµ = 0.09 and ε is the rate of dissipation of turbulent energy.
The material settings and the details of the algorithm for solving the governing equa-

tions include: (1) The air is set as a Newtonian fluid with a constant density of 1.225 kg/
m3 and a viscosity of 1.7984 × 10−5kg/m s. (2) A steady pressure-based solver is used. (3) 
The SIMPLE scheme is adopted for the pressure–velocity coupling. For the spatial dis-
cretization, the gradient is set as “Green-Gauss Cell Based”, the pressure is set as “Second 
Order” and the moment is set as “Second Order Upwind”. (4) The convergence criterion 
is set as a residual of < 10−6.

The relationship between the pressure drop and inlet area in straight tubes can be rep-
resented as

where � is the resistance coefficient along the course, ρ is the density of the fluid, Q is the 
inlet flow, L is the length of the straight pipe, d is the inner diameter of the round pipe 
and S is the inlet cross-sectional area [39, 40]. Equation (8) is adopted to the tracheo-
bronchial tree model for simplification purpose. Since there is no significant change in 
surface area and volume before and after lobectomy, the Eq. (8) can be simplified as

where C is the constant. It means that the magnitude of pressure drop is inversely pro-
portional to the inlet cross-sectional area to the power of 2.5.

For the comparison of all the above structural and functional measures, two-sample 
t-test is performed to determine whether there is a significant difference between preop-
erative and postoperative groups (p < 0.01).

Convergence analysis

To study the independence of the CFD method in grid density, three different grid sizes 
(374,593, 412,555, and 453,954 nodes) are used to mesh all the tracheobronchial tree 
models. Figure 6a presents the meshes of one tracheobronchial tree model as an example 
where 412,555 nodes exist. The meshing quality is reasonable according to visual inspec-
tion. All other settings are the same except the grid size and we calculate and compare 
the airflow velocity profile along one line in the model. Specifically, two key sections 
(CS1 and CS2) are defined in the model (Fig. 7b). The velocity profile along Y at CS1 is 
calculated and compared. As shown in Fig. 7c, no significant difference in air flow veloc-
ity was observed at the three grid sizes. Comprehensively considering the calculation 

(6)I =
√

ū′2 + v̄′2 + w̄′2/uavg,

(7)µT = ρCµk
2/ε,

(8)�P =
�ρQ2L

d

1

S2
,

(9)�P =
C

S2.5
,
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Fig. 7  Grid independence and validation of CFD accuracy. a The meshes of one tracheobronchial tree model 
as an example. b Trachea cross section CS1 and bronchus cross section CS2. c Velocity profile along Y at CS1. 
d The velocity simulated by CFD and the results of MR gas velocity measurement at the section CS2 along 
X. e The velocity simulated by CFD and the results of MR gas velocity measurement at the section CS2 along 
Y. f The lobar distribution of airflow rate (RU right upper, RM right middle, RL right lower, LU left upper, LL left 
lower)
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speed and stability, we used 412,555 nodes to mesh the model and used the same mesh 
density control scheme for all models.

To verify the accuracy of the CFD method, two studies were conducted and the 
obtained CFD simulation results were compared with the published experimental data. 
First, the velocity simulated by CFD at the section CS2 was compared with the results of 
magnetic resonance gas velocity measurement [33]. The results are shown in Fig. 7d, e, 
and the CFD simulation velocity along the X and Y directions of the profile are consist-
ent with the MRI measurement flow velocity. The difference in the magnitude of the air 
flow velocity may be caused by the geometric differences in the model. Then, the dis-
tribution of air flow in each lobe at the same flow velocity (7.5 L/min) was studied, as 
shown in Fig. 7f, which is also consistent with the previous results [41–43]. The findings 
of the present model along with the published literature indicate that the present model 
is sufficiently accurate to predict the structural alterations phenomenon of the tracheo-
bronchial model.
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