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Abstract 

Creating a reliable groundwater vulnerability map is a key solution for protecting groundwater 

resources and further planning in coastal aquifers. The GALDIT framework is a well-known 

framework for assessing groundwater vulnerability in coastal zones. This framework was designed 

based on six hydrogeological parameters including groundwater occurrence, aquifer hydraulic 

conductivity, level of groundwater above sea level, distance from the shoreline, the impact of the 

existing status of seawater intrusion, and thickness of the aquifer. In this study, two meta-heuristic 

algorithms of Grey Wolf Optimizer (GWO) and Genetic Algorithm (GA) were proposed to 

optimize the weights of GALDIT framework. The GALDIT vulnerability index failed to provide 

an accurate assessment of vulnerability to seawater intrusion. Contrariwise, GALDIT-GWO and 

GALDIT-GA models provided results that are more reasonable. Both vulnerability maps depicted 

the close similarity of the vulnerability to seawater intrusion. The vulnerability maps demonstrated 

that the west and northwest parts of the study area suffer from seawater intrusion. Additionally, 

the correlation coefficient between the GALDIT index and TDS concentration was obtained as 

0.47. The corresponding values of the GALDIT-GWO and GALDIT-GA frameworks were 0.63 

and 0.61, respectively. Therefore, it can be concluded that the proposed optimization models are 

able to provide accurate results. Furthermore, these models reduce the subjectivity and increase 

the capability of GALDIT index.  
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Groundwater resources are the most important water supply resources for the human and natural 

environment in coastal aquifers (Saidi et al., 2013). Human activities are increasing in these areas, 

especially during the summer, and these resources are subjected to seawater intrusion due to 

overexploitation and high water pumping. Therefore, identification of vulnerable areas can be done 

with the aim of land use planning, scientific supervision, and preventing groundwater 

contamination (Boudebala et al., 2016). Among various methods for assessing groundwater 

vulnerability, the rating methods are the most popular one.  Numerous studies have used the rating 

frameworks to assess the groundwater vulnerability (Mogaji 2018; Bouderbala et al. 2016; Neshat 

and Pradhan 2015a; Neshat et al. 2014 a, b, c; Pacheco et al. 2015; Gorgij and Moghaddam 2016; 

Neshat and Pradhan 2017; Nadiri et al. 2017b; Arauzo 2017; Kazakis and Voudouris 2015; 

Majandang and Sarapirome 2013; Ribeiro et al. 2017; Pacheco and Fernandes 2013; Khosravi et 

al. 2018; Trabelsi et al. 2016; Jafari et al., 2016). 

Vulnerability maps of GALDIT framework, which indicate the aquifer areas along the coastline, 

can be applied to accurately investigate the location of the contaminated areas (Luoma et al., 2017). 

The GALDIT framework developed by Chachadi (2005) is one of the most common methods to 

assess the vulnerability of coastal aquifers, and it is one of the most widely used methods among 

the rating index frameworks. In this framework, different parameters are classified according to 

different ranges, and estimates the potential of contamination of coastal aquifers considering six 

parameters of the hydrological system. The main downside of the GALDIT framework is the use 

of constant numerical values based on expert’s ideas to determine the rating and weighting system 

of the parameters evaluated. 

Several studies have been carried out to modify GALDIT framework considering the hydrological 

conditions of aquifers. In some studies, the alternate parameters, such as pumping rates, have been 

used to modify GALDIT model (Gorgij and Moghaddam, 2016). Others have applied the 

sensitivity analysis method for modifying the weights of GALDIT model (Gontara et al., 2016; 

Mahrez et al., 2018). Moreover, Kazakis et al. (2018) used fuzzy logic method to modify the 

GALDIT framework in northern Greece. The modified GALDIT index provided an accurate 

estimate of the level of vulnerability. Finally, they developed a guide map using GALDIT-F index 

in order to prevent and reduce the seawater intrusion. 
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In the past few years, artificial intelligence-based optimization methods have been widely used 

and their results are more accurate compared to traditional methods. Some of these widely used 

optimization algorithms include; Genetic algorithm (GA) (Holland, 1975), Particle Swarm 

Optimization (PSO) (Kennedy and Eberhat, 1995), Grey Wolf Optimizer (GWO) (Mirjalili et al., 

2014), Ant Colony Optimization (ACO) (Dorigo, 1992), Artificial Bee Colony 

Optimization(ABC) (Karaboga, 2005), Harmony Search (HS) (Geem et al., 2001), Differential 

Evolution (DE) (Storn and Price, 1997), and Simulated Annealing (SA) (Kirkpatrick et al., 1983). 

A handful number of these algorithms have been applied in water resources studies (Nicklow et 

al., 2010; Gaur et al., 2013; Szemis et al., 2013; Mansouri et al., 2015). 

The Gray Wolf Optimizer algorithm (GWO) is one of the new meta-heuristic algorithms, inspired 

by the social hierarchy and hunting behaviour. The advantages of this algorithm are its simplicity, 

flexibility, random searching, and avoiding local optimization (Yu and Lu, 2018). In the literature, 

the ability of GWO algorithm has been investigated in comparison with other meta-heuristic 

algorithms. For example, Yu and Lu (2018) used optimization algorithms to optimize the 

allocation of water resources in Songhua river basin. Their results revealed that GWO algorithm 

is superior to FA and PSO algorithms in water quantity optimization problems. 

Genetic algorithm (GA) (Holland, 1975) is another commonly used meta-heuristic algorithm 

inspired by Darwinian biological evolution and natural selection. This algorithm can be easily 

implemented and optimized with discontinuous and continuous variables, and be able to solve the 

combined optimization problems. Meta-heuristic algorithms have been applied in the literature to 

obtain the optimal weights in order to reduce the subjectivity of the rating frameworks. For 

instance, Yang et al. (2017) used AHP methods and genetic algorithm to improve the DRASTIC 

framework in order to assess the vulnerability of Jianghan plain located in the central China. Their 

study concluded that the modified DRASTIC index improved the original DRASTIC framework 

and the correlation coefficient increased from 41.07 to 75.31% after modifying the model. In 

another study, Jafari and Nikoo (2016) examined the vulnerability of Shiraz plain (Iran) using the 

genetic algorithm and Wilcoxon statistical model in order to improve the DRASTIC index. The 

results showed that the hybrid Wilcoxon model and genetic algorithm with the highest correlation 

coefficient are the most suitable models to determine the vulnerability of the region with nitrate 

contaminant in the plain. 
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As it can be seen in the literature above, meta-heuristic algorithms have not applied to assess the 

vulnerability of coastal aquifers to seawater intrusion based on GALDIT framework. This paper 

aims to introduce new meta-heuristic methods such as Grey Wolf Optimizer (GWO) and Genetic 

Algorithm (GA) in order to obtain the optimal GALDIT’s weights. In this regard, the same 

objective function of both optimization techniques was considered through maximizing the 

correlation between the GALDIT indices and TDS concentration with respect to the 

hydrogeological characteristics of the coastal aquifer. Firstly, six rating layers of GALDIT 

framework were combined through applying optimal weights of Grey Wolf Optimizer (GALDIT-

GWO) and then, GALDIT rating layers were combined with optimal weights of Genetic Algorithm 

(GALDIT-GA).  Furthermore, a comparison was made between the combined GALDIT-GA and 

GALDIT-GWO indices and the original GALDIT index in order to illustrate the effectiveness and 

the capability of the proposed frameworks to accurately identify the vulnerable areas.  

Description of the study area  

Gharesoo-Gorgan Rood aquifer is located between the east longitude 54˚00 ́ to 56˚29 ́and north 

latitude 36˚36 ́ to 37˚47 ́ in the Golestan province, Iran, which covers an area of approximately 

4379 km2 (Fig. 1). The study area has a dry and cold to semi-arid climate, as suggested by 

Emberger classification. The average annual precipitation is 300 mm and the annual temperature 

is 17 0c. The average monthly relative humidity ranges from 47 to 89 %. There are also 23485 

wells in this region. Gharesoo-Gorgan Rood basin is located in the structural zone of Alborz 

Mountains. The most important lithological units in the study area include the Paleozonic, Gorgan 

green shists, a collection of Jurassic schists and limestone, and Cretaceous limestone. Loess 

liquorices are one of the widespread sediments of this region, which exist in the form of hills. In 

the study area, Neogene is composed of shale, Marl, sand, and conglomerate, which has the highest 

surface expansion. Approximately 62% of the water of this basin is supplied from groundwater 

resources.  
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Fig 1- Location of the Gharesoo-Gorgan Rood coastal aquifer 

 

 

Data and Methodology  

The research methodology proposed in this study is summarized as follows: (i) gathering the row 

data of six parameters of GALDIT framework, (ii) preparing GALDIT layers, (iii) creating a 

groundwater vulnerability map for seawater intrusion, (iv) collecting TDS samples from quality 

wells, (v) optimizing the weights of the original GALDIT using two meta-heuristics techniques 

(GWO and GA), (vi) validating the frameworks and comparing the results, and (vii) determining 

the suitable framework for the study area.  Figure 2 shows the data used and schematic structure 

of the applied models.  
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Fig 2- Flowchart of proposed methodology 

GALDIT framework 

The GALDIT framework introduced by Chachadi (2005) is widely used as a tool to assess the 

groundwater vulnerability in coastal aquifers. The GALDIT framework consists of six parameters 
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including groundwater occurrence (G), aquifer hydraulic conductivity (A), level of groundwater 

above sea level (L), distance from the shoreline (D), impact of the existing status of seawater 

intrusion (I), and thickness of the aquifer (T). The GALDIT framework is composed of three 

sections including rating, range, and weights. The constant numerical rates of each parameter vary 

from 2.5 (the lowest potential of pollution) to 10 (the highest potential of pollution). In addition, 

the constant numerical weights of the parameters of GALDIT framework vary from 1 to 4 

reflecting their relative importance in vulnerability (Chachadi, 2005) (Table 1). 

The GALDIT vulnerability index (GVI) is calculated from the following equation: 

𝐺𝑉𝐼 = (𝐺 × 1) + (𝐴 × 3) + (𝐿 × 4) + (𝐷 × 4) + (𝐼 × 1) + (𝑇 × 2)      (1) 

where, G, A, L, D, I and T are the rates of six parameters of GALDIT framework.  
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Table1- GALDIT rates and weights values (Chachadi 2005) 

Rating Range Description  Parameter  Abbreviation  

10 

7.5 

5 

2.5 

Confined aquifer 

Unconfined aquifer 

Leaky confined aquifer 

Bounded aquifer 

The seawater intrusion to coastal areas 

depends on the type of the aquifer.  

Groundwater 

occurrence 

G 

10 

7.5 

5 

2.5 

>40 

40-10 

10-5 

<5 

Hydraulic conductivity shows the ability 

to transfer water to the aquifer. 

 Aquifer hydraulic 

conductivity  

A 

10 

7.5 

5 

2.5 

<1.0 

1.0-1.5 

1.5-2 

>2.0 

This parameter shows the groundwater 

level considering the mean height of sea 

level in many areas. 

 Level of 

groundwater  

L 

10 

7.5 

5 

2.5 

<500 

500-750 

750-1000 

>1000 

The extent of seawater to a coastal 

aquifer is related to the distance from the 

shoreline.  

Distance from the 

shoreline  

D 

10 

7.5 

5 

2.5 

>2 

1.5-2.0 

1-1.5 

<1 

The ratio of Cl/HCO3 determines the 

expansion of seawater to coastal aquifer 

Impact of existing 

seawater intrusion  

I 

10 

7.5 

5 

2.5 

>10 

7.5-10 

5-7.5 

<5 

This parameter shows the thickness of 

the saturation region of the aquifer 

Thickness of 

aquifer  

T 

 

 

Grey Wolf Optimizer (GWO) 

Grey Wolf Optimizer (GWO) is a new meta-heuristic algorithm introduced by Mirjalili et al. 

(2014), which is inspired by the social hierarchy and hunting behaviour of grey wolves. There are 

four sorts of grey wolves, including alpha (α), beta (β), delta (δ) and omega (ω) (Fig. 3).  

The first level of the hierarchy is called alpha (α) which is the pack’s leader. The alpha wolves are 

responsible for decision-making and other wolves must obey their commands. They are the best 

managers in the pack. The second level of the hierarchy is called beta (β). Beta wolves help alpha 

in making decisions. The beta wolves are able to command other wolves in the pack, but they also 

must follow alpha. The third level of the hierarchy is called delta (δ). Delta wolves help alpha (α) 

and beta (β) wolves, and do their commands, but they are superior to the omega (ω). The last level 
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and the least ranking wolf of the hierarchy is called omega (ω) which follows the alpha, beta and 

delta’s commands. Furthermore, omega can be a babysitter in the pack and helps in preying 

The steps of the GWO algorithm are as follows: social hierarchy, encircling the preys, hunting, 

attacking the prey (exploitation), and searching the prey (exploration) (Mirjalili et al., 2104) (Fig. 

4). 

1-Social hierarchy 

To mathematically design the grey wolf model, the fittest value is considered as alpha (α). The 

beta (β) and delta (δ) wolves are the second and third best solutions, respectively.  The rest of the 

wolves (ω) in the pack are named omega wolves. In GWO algorithms, (α), (β) and (δ) are leaders 

in the hunting mechanism, and the ω wolves follow them for the purpose of finding the optimum 

solution.  

2- Encircling the preys  

The wolves encircle their prey. The following equations present the mathematical model of the 

encircling mechanism: 

𝐷⃗⃗ =  |𝐶  . 𝑋 𝑝(𝑡) − 𝑋 (𝑡)|                                                                  (2) 

𝑋 (𝑡 + 1) = 𝑋 𝑝(𝑡) − 𝐴 . 𝐷⃗⃗                                                                   (3) 

 

where, t is the current iteration, 𝑋 𝑝 is the prey position, and 𝑋  is the grey wolf position.  

𝐴  and 𝐶  are coefficient vectors calculated by using the following equations: 

𝐴 = 2𝑎 . 𝑟1⃗⃗⃗  − 𝑎                                                        (4) 

𝐶 = 2. 𝑟 2                                                                  (5) 

 

where, 𝑟1 and 𝑟2 are random vectors in the range of [0,1], and 𝑎  was linearly reduced from 2 to 0 

during iterations.  

3- Hunting 

The alpha wolves guide the hunting mechanism, and beta and delta wolves help them. The three 

best solutions (α, β and δ) are saved, and other solutions (ω) update their positions based on the 

best solutions. The mathematical expressions are given as follows: 

 

𝐷⃗⃗ 𝑥 = |𝐶 1. 𝑋 𝛼 − 𝑋 |, |𝐶 2. 𝑋 𝛽 − 𝑋 |, |𝐶 3. 𝑋 𝛿 − 𝑋 |                                                (6) 

𝑋 1 = 𝑋 𝛼 − 𝐴 1. (𝐷⃗⃗ 𝛼), 𝑋 2 = 𝑋 𝛽 − 𝐴 2. (𝐷⃗⃗ 𝛽), 𝑋 3 = 𝑋 𝛿 − 𝐴 3. (𝐷⃗⃗ 𝛿)                                                               (7)   
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𝑋(𝑡 + 1) =
𝑋⃗ 1+𝑋⃗ 2+𝑋⃗ 3

3
                                                                                                    (8) 

 

4-Attaking the prey (Exploitation) 

The process is ended by attacking the prey. To mathematically model, the process indicated by 

decreasing the rate of 𝑎  and 𝑎  is reduced from 2 to 0 during iterations.  𝐴   is a random rate in the 

range of [-2a,2a].  When |𝐴| < 1, the wolves attack the prey.  

5-Searching the prey (Exploration) 

Grey wolves diverge from each other to search for the prey. To mathematically model the 

divergence, 𝐴  is used with random values between 1 and -1. When |𝐴| > 1, wolves separate from 

the prey to search for better prey. The component 𝐶  varies from 0 to 2, which estimates the random 

weights for prey.  

The GWO algorithm used in this study is programmed using MATLAB environment. The GWO 

algorithm codes can be found in Mirjalili et al., (2014). 

 

 

 

Fig 3. Hierarchy of grey wolves 



11 
 

 

Fig 4- GWO flowchart 
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Genetic algorithm (GA) 

Genetic algorithm (GA) is one of the evolutionary algorithms, inspired by biological evolution in 

nature called Darwin’s theory. This algorithm was first introduced by Holland in 1975 (Holland, 

1975). It is one of the earliest and most practical evolutionary algorithms, which is used in different 

fields to optimize the complex problems (Chen et al., 2017). In genetic algorithm, the number of 

generation is denoted as NG and the size of the population of chromosomes is denoted as Pop. The 

GA starts with a population of random chromosomes as the solutions to the problem. From the 

initial population, the fittest threads which are measured by objective functions are selected to 

transmit the genetic data to the next generation. A set of solutions from the selective members of 

the previous population are used by selection, crossover and mutation operators. This process 

continues until it reaches the predetermined scale (Fig. 5) (Ketabchi and Ataie-Ashtiani, 2015). 

The three selection, crossover, and mutation operators are summarized in the following (Chen et 

al., 2017). 

Selection operator: At this stage, the best chromosome from the population, which is the best 

solution for the problem, is identified by calculating the fitness function of each chromosome. 

Chromosomes are used as parents to reproduce offspring which is the new child chromosome, and 

the next generation is generated in this way.  

Crossover operator: This operator produces the offspring, which is the new child chromosome, 

from two chromosomes of the parent and these chromosomes have better fitness compared to their 

parents. Indeed, crossover operator is used to determining the structure and ratio of offspring 

chromosomes to parents’ chromosomes.  

Mutation operator: This operator searches for new areas in the space available. The results lead 

to local optimization, which are not as acceptable as the best solution. For this reason, some genes 

are changed in random chromosomes. 
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Fig 5- GA flowchart 
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Objective function for optimization models 

The Spearman correlation coefficient is a nonparametric statistical test developed by Spearman 

(1904) to measure the power of the relationship between two variables. Spearman correlation 

coefficient can evaluate an optional linear uniform function, which describes the relationship 

between two variables without any hypothesis about the frequency distribution of variables. This 

correlation coefficient is applied for variables measured by ordinal scale (Hauke, 2011). In this 

study, the purpose of optimization is to find the optimal weights for six parameters of GALDIT 

framework. The vulnerability level of coastal aquifers is evaluated by determining the weights of 

the parameters of this framework. For this purpose, the objective function (equation 9) was defined 

as the maximum correlation between two variables of vulnerability index (GI) and TDS 

contaminant concentration considering all hydrological features, and the optimal weights were 

obtained for all six parameters of this framework. 

 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐹 = 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 (𝐺𝐼, 𝑇𝐷𝑆) 

𝐹 = 1 −
6∑ 𝑑𝑖

2𝑁
𝑗=1

𝑛(𝑛2−1)
                                                                (9) 

𝑑𝑖 = 𝑅𝐺𝐼𝑖−
𝑅𝑇𝐷𝑆𝑖

 

< 4           ,          Ɐj = 1 , 2 , 3 ,… , 6                                                         Subject to : 1 < 𝑊𝑗 

where, F is the objective function, n is the sample size, di is the rate difference, and 𝑅𝐺𝐼𝑖
 and 𝑅𝑇𝐷𝑆𝑖

 

are the rates of vulnerability index and TDS contaminant concentration, respectively.  

Results  

The layers of the parameters of GALDIT framework were prepared in Raster format in ArcGIS 

software environment (Fig. 6). 

Groundwater occurrence 

Aquifers are classified into four types of the unconfined aquifer, confined aquifer, leaky confined 

aquifer, and bounded aquifer. The aquifer type map showed that the study area is covered by two 
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types of the unconfined aquifer and confined aquifer. The unconfined aquifer covers the southern 

lands of the plan, which is rated as 7.5 based on Chachadi’s table (2005). In the northern and 

western parts of the region, the aquifer is a kind of confined aquifers, which is rated as 10. The 

majority of the study area is composed of the unconfined aquifer. 

Aquifer hydraulic conductivity (A) 

This parameter is obtained by dividing the transmissivity coefficient (T) into the aquifer thickness 

(B) (𝑘 =
𝑇

𝐵
). The high hydraulic conductivity increases salinity. An aquifer creates a large cone 

from the declining level during the pumping process (Chandio and Lee, 2012; Jakovovic et al., 

2016; Motevalli et al., 2018). The hydraulic conductivity map was divided into four ranges of >40, 

10-40, 5-10, and <5 m/day. This map shows that the highest level of conductivity belongs to the 

class 10-40 m/day. 

Level of groundwater (L) 

The height of the groundwater level above the sea level is one of the most important parameters 

for assessing vulnerability to seawater intrusion. The values of groundwater level less than sea 

level are of great importance, because it causes the possibility of more vulnerability to seawater 

intrusion (Najib et al., 2012). The parameter of the height of groundwater levels for the study area 

varies from -31.3 to 95.1 m. The lowest height of the groundwater level is in the west of the study 

area near the sea. 

Distance from the shoreline (D) 

The map of distance from the shoreline is obtained using buffer tool in ArcGIS environment. The 

map of this parameter was classified into four classes of low vulnerability to high vulnerability. 

The area near the shoreline (distance less than 500 m) has the highest vulnerability to seawater 

intrusion and it is rated as 10. Therefore, the more is the distance from the shoreline (distance more 

than 1000 m), the less is the vulnerability of the region to seawater intrusion. 

Impact of existing status of seawater intrusion (I) 

The groundwater is always under pressure and this pressure changes the natural balance between 

the fresh groundwater and salt water (Trabelsi et al., 2016). The data related to the concentrations 
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of chloride and carbonate was obtained from different wells. To prepare the intrusive seawater 

map, the ratio of Cl/HCO3 was used to determine the expansion of seawater to the coastal aquifer. 

The lowest level of Cl/HCO3 was observed in the southern and eastern areas of the aquifer, which 

was ranked as less (2.5).  

Thickness of the aquifer (T) 

This parameter is considered as the resonant parameter in the level of seawater intrusion in coastal 

areas (Mahrez et al., 2018). Therefore, this parameter is determined from the difference between 

the groundwater level and the end of the aquifer. The thickness of the aquifer map showed that the 

western parts of the study aquifer have the lowest thickness, while the highest thickness was 

observed in the east and south parts of the aquifer. The map of this parameter was classified into 

four vulnerability classes of 2.5, 5, 7.5, and 10.  

GALDIT framework 

The GALDIT vulnerability index was calculated using equation (1) (Table 1). The GALDIT 

vulnerability index was classified into four classes of very-high, high, moderate, and low 

vulnerability. The final vulnerability map showed very-high vulnerability in the west, north, and 

southwest parts of the region, while the east and south areas are placed in the class of low 

vulnerability (Fig. 7a). The results of vulnerability distribution showed that the very-high and high 

vulnerability classes cover 24% and 30% of the study area, respectively.  A small part of the region 

(14%) is placed in low vulnerability class, while most of the region (32%) is placed in the class of 

moderate vulnerability (Fig. 8). The Spearman correlation coefficient between the GALDIT 

vulnerability index and TDS concentration was obtained as 0.47. The original GALDIT needs to 

be optimized due to its weak correlation coefficient in order to obtain a more reliable vulnerability 

map of the study area.  In this study, two meta-heuristics algorithms were used to optimize the 

weights of the original GALDIT framework.  
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Fig 6. Six layers of GALDIT parameters 
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Grey Wolf Optimizer (GWO) 

In this study, the Grey Wolf Optimizer algorithm was used to optimize the weights of the 

parameters of GALDIT framework. The objective function (equation 9) was defined with 

maximizing the least distinction between GALDIT vulnerability index and TDS concentration. 

Before starting Grey Wolf Optimizer algorithm, it is necessary to determine the parameters, such 

as the number of population and iterations, and these parameters are characterized based on the 

type of problem. The stop criterion in Grey Wolf algorithm is the maximum number of iterations. 

Table 2 shows the parameters used in this study to optimize the weights of GALDIT model. 

Table 2- GWO features 

Values Parameters 

50 Maximum number of Search Agents 

(SA) 

100 Number of iterations 

1 Lower bounds 

4 Upper bounds 

 

Genetic Algorithm (GA) 

The genetic algorithm used in this study was applied to find the optimal weights of the parameters 

of GALDIT framework. The decision variables of the problem are six weights of GALDIT 

framework. The objective function of the optimization model was defined with maximizing the 

least distinction between the vulnerability index (GI) and TDS concentration (Spearman 

correlation coefficient), and the optimal weights were calculated for each parameter of the 

GALDIT framework. The optimization codes of the genetic algorithm were written in MATLAB 

environment. The algorithm was performed with a population size of 50 chromosomes. Table 3 

presents the features of the genetic algorithm used in this study.  
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Table 3- Genetic Algorithm features 

 

Weights optimization and new frameworks 

GALDIT-GWO framework 

GALDIT-GWO framework was obtained from combining the rates of the original GALDIT and 

optimal weights of GWO algorithm given by the equation (10). The optimal weights for parameters 

of the type of aquifer, hydraulic conductivity of aquifer, the height of groundwater level above the 

sea level, distance from the shoreline, the impact of seawater intrusion, and thickness of the aquifer 

were obtained as 3.40, 1, 3.73, 1.47, 1.54, and 1, respectively (Table 4). The GALDIT-GWO 

vulnerability map was classified into four groups ranged from low vulnerability to very-high 

vulnerability, and showed that the northwest and west areas of Gharesoo-Gorgan Rood aquifer are 

placed in the class of very-high vulnerability, while the south and east areas of the aquifer are 

placed in the class of low vulnerability (Fig. 7b). The diagram of vulnerability distribution showed 

that 33% and 21% of the study area are placed in the classes of very high and high vulnerability, 

while 7% and 39% of the study area has a moderate and low vulnerability, respectively (Fig. 8).  

The GALDIT-GWO is calculated as follows: 

𝐺𝐴𝐿𝐷𝐼𝑇 − 𝐺𝑊𝑂 = 𝐺𝑟 × 𝐺𝐺𝑊𝑂 + 𝐴𝑟 × 𝐴𝐺𝑊𝑂 + 𝐿𝑟 × 𝐿𝐺𝑊𝑂 + 𝐷𝑟 × 𝐷𝐺𝑊𝑂 + 𝐼𝑟 × 𝐼𝐺𝑊𝑂 + 𝑇𝑟 × 𝑇𝐺𝑊𝑂     (10)                                                                                                                                

where, GWO is the optimal weights and r is the rates of the original GALDIT. 

 

 

 

 

50 Number of chromosomes  in the population 

100 Number of generation 

Roulette wheel selection 

Arithmetic crossover Crossover 

0.8 Crossover probability 

0.01 Mutation probability 
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GALDIT-GA framework 

The hybrid GALDIT-GA framework is obtained from the rates of the original GALDIT and the 

optimal weights of GA by using the equation (11). The optimal weights for parameters of G, A, L, 

D, I, and T were obtained as 3.80, 2.81, 3.27, 2.18, 1.77, and 1.1, respectively. The GALDIT-GA 

map was classified into four vulnerability classes of low, moderate, high, and very-high. The 

higher vulnerability index shows the higher potential of contamination in those areas. This map 

showed that the northwest and west areas of the aquifer have very-high vulnerability to seawater 

intrusion, while the south and east areas of aquifer are placed in the class of low vulnerability (Fig. 

7c). The diagram of vulnerability distribution showed that 32% and 23% of the study area are 

placed in the classes of very high and high vulnerability, respectively, while 14% and 31% of it 

have moderate and low vulnerability (Fig. 8). The GALDIT-GA is calculated as follows: 

𝐺𝐴𝐿𝐷𝐼𝑇 − 𝐺𝐴 = 𝐺𝑟 × 𝐺𝐺𝐴 + 𝐴𝑟 × 𝐴𝐺𝐴 + 𝐿𝑟 × 𝐿𝐺𝐴 + 𝐷𝑟 × 𝐷𝐺𝐴 + 𝐼𝑟 × 𝐼𝐺𝐴 + 𝑇𝑟 × 𝑇𝐺𝐴         

where, GA is optimal weights, and r is the rates of the original GALDIT. 
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Figure 7.Vulnerability maps using different frameworks: (a) GALDIT, (b) GALDIT-GWO, (c) 

GALDIT-GA  

 

Table4- Original GALDIT weights and optimization weights 

GALDIT-GA GALDIT-GWO GALDIT 

framework 

Parameters 

3.80 3.40 1 G 

2.81 1 3 A 

3.27 3.73 4 L 

2.18 1.47 4 D 

1.77 1.54 1 I 

1.1 1 2 T 

 

Validation methods 

Aquifer vulnerability methods need to be validated. Validation reduces subjectivity and increases 

the reliability of the models (Allouche et al., 2016). Although vulnerability assessments have been 

reported in many areas in the world, few studies have reported the validation of the methods used 

(Luoma et al., 2017). Therefore, the methods applied in this study were validated using correlation 

coefficient between vulnerability indices and TDS contaminant concentration. TDS concentration 

is used as the contaminant index to validate the models applied. TDS samples were collected in 

October 2018.  The highest level of TDS concentration is in the shallow areas of the aquifer in the 

northwest and west parts of the aquifer along the shoreline. The higher values of TDS indicate the 

seawater intrusion. The lowest value of TDS was observed in the eastern parts of the study area. 

The results showed that the level of the correlation coefficient between GALDIT vulnerability 

index and TDS parameter is equal to 0.47, while the results from the proposed model showed that 

the performance of these models has enhanced compared to the original GALDIT, and the level of 

these coefficients for GALDIT-GWO and GALDIT-GA frameworks were obtained as 0.63 and  

0.61, respectively. 
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Figure 8. Percentage of vulnerability for each framework 

 

Discussion 

In this study, GALDIT framework was used to identify the areas vulnerable to seawater intrusion 

in coastal aquifer. According to the results from this model, the vulnerable areas were not 

accurately identified due to the effect of subjectivity in the weighting and rating systems of the 

evaluated parameters. Mahrez et al. (2018) concluded that the subjectivity of the rating frameworks 

has a strong effect on the final vulnerability map. In addition, different weights were used for each 

parameter to calculate the vulnerability index considering the study area (Saidi et al., 2011; 

Gontara et al., 2016).  

The spatial distribution of groundwater quality index (TDS concentration) is also considered as 

the main contaminant of seawater intrusion in coastal areas (Luoma et al., 2017; Trabelsi et al., 

2016). In this regard, the hydrological features of the coastal aquifer and the effects of total 

dissolved solids (TDS) were used in the study area. Indeed, it is necessary to optimize the weight 

of each parameter to prepare the vulnerability map in order to prevent seawater intrusion in each 

region. There is no study conducted on the capability of meta-heuristic algorithms to optimize the 

weights of GALDIT, although the application of these algorithms in optimizing the rating index 
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of DRASTIC has been extensively investigated. Jafari and Nikoo (2016) stated that the optimal 

weights for the DRASTIC framework were obtained using genetic algorithm technique. They also 

stressed that the optimized weights are the main solution to create a proper vulnerability map. The 

genetic algorithm solves the problem in an expanded space and its decisions are random, so that 

all possible solutions are considered. On the other hand, Yu and Lu (2018) showed that the GWO 

algorithm having features such as high convergence speed, optimization accuracy, ability to strong 

global optimization, and good convergence stability is superior to other algorithms.  

According to the results of this study, it was found out that almost similar weights were obtained 

from both GA and GWO algorithm. These weights are different from those of the original 

GALDIT, which indicate the good performance of this algorithm in the optimization process. In 

both models, the highest weights were obtained for groundwater occurrence (G) and level of 

groundwater (L). Two vulnerability maps were obtained using the above-mentioned algorithms 

and then they were classified into four classes of vulnerability.  The high and very classes of 

vulnerability covered the west and northwest parts of the aquifer along the shoreline. Moreover, 

the optimization algorithms can be applied in further studies within different hydrological 

conditions due to their optimal weights. It should be noted that the optimization algorithm is 

needed to create a comprehensive vulnerability map in coastal aquifers in order to determine 

vulnerable regions.   

 

Conclusions 

 In this paper, the GALDIT framework was applied in Gharesoo-Gorgan Rood coastal aquifer to 

identify vulnerable areas to seawater intrusion. The results from the original GALDIT framework 

did not accurately show the vulnerability, which was also, confirmed by the poor correlation with 

TDS values. The GALDIT framework was optimized using Genetic Algorithm (GA) and Grey 

Wolf Optimizer (GWO) methods. Then, the optimal weights were multiplied by the rated layers 

according to GALDIT framework, and the vulnerability maps of GALDIT-GWO and GADIT-GA 

were obtained. The GA and GWO algorithms showed almost similar results. Both methods 

depicted the vulnerable areas in the northwest and west parts of the study area along the shoreline, 

exposed to seawater intrusion. In addition, the correlation coefficient between vulnerability indices 
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of GALDIT-GWO, GALDIT-GA, and TDS parameter were obtained as 0.63 and 0.61, which 

indicate the strong correlation between these two frameworks. Using the optimization algorithms 

in each region increases the accuracy of the index and reduces the subjectivity considering the 

conditions of the aquifer. Applying these algorithms, a proper understanding was acquired on the 

vulnerability of coastal aquifer to seawater intrusion.  Moreover, the result of this paper provides 

a practical reference for hydrologists and decision makers to protect the groundwater resources in 

coastal aquifers. 
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