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Abstract: Landslides are one of the major natural disasters that Bhutan faces every year. The monsoon
season in Bhutan is usually marked by heavy rainfall, which leads to multiple landslides, especially
across the highways, and affects the entire transportation network of the nation. The determinations of
rainfall thresholds are often used to predict the possible occurrence of landslides. A rainfall threshold
was defined along Samdrup Jongkhar–Trashigang highway in eastern Bhutan using cumulated event
rainfall and antecedent rainfall conditions. Threshold values were determined using the available
daily rainfall and landslide data from 2014 to 2017, and validated using the 2018 dataset. The threshold
determined was used to estimate temporal probability using a Poisson probability model. Finally,
a landslide susceptibility map using the analytic hierarchy process was developed for the highway to
identify the sections of the highway that are more susceptible to landslides. The accuracy of the model
was validated using the area under the receiver operating characteristic curves. The results presented
here may be regarded as a first step towards understanding of landslide hazards and development of
an early warning system for a region where such studies have not previously been conducted.

Keywords: shallow landslide; landslide susceptibility; temporal probability; Bhutan

1. Introduction

Rainfall triggered landslides are one of the most devastating naturally occurring disasters across
the world [1]. The global dataset of landslide hazards in the 2004–2016 period extracted from
Reference [2] showed that almost 75% of the world’s fatal landslides occurred in the Himalayan region.
Bhutan is no exception to this, and is a part of one of the world’s highly landslide-prone regions in
the world [3]. The damage caused by landslides in this country has led to casualties and loss of land,
affecting people’s livelihoods and disrupting the transportation network, which is key to the country’s
economy. Most of the landslides in the Bhutan Himalayas are triggered by rainfall, especially during
the monsoon period [4,5]. Therefore, it is imperative to identify the areas that could be affected by
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landslides, in order to reduce the probability of damage in the future. The key to achieving this is
through a detailed landslide hazard assessment that will help civic authorities to curtail landslide
damage through effective land use management.

Landslide hazard may be defined as the probability of a damaging landslide in a spatial (“where”)
and temporal (“when”) context, along with the magnitude (“how large”) of the event [6,7]. Landslide
susceptibility is defined as the likelihood of landslide occurrence (“where”) in an area depending on local
terrain conditions [8]. It may be regarded as the first step towards analyzing hazard and risk. Various
spatial assessment models for landslide susceptibility have been developed [9–11]. However, compared
to spatial assessment, there have been fewer attempts to carry out temporal probability assessment
(studies have been conducted in Nilgiris, India [12], Hoa Binh, Vietnam [13], and Cameroon [14]). The
two main techniques used to assess temporal probability for future landslide occurrences are (i) analysis
of potential slope failure and (ii) statistical analysis of past landslide events [13,15]. The first technique
involves evaluation of the current slope conditions and determination of the probability for future slope
instability, which may be difficult to apply in large study areas [16]. Statistical analysis of past landslide
events may be done directly using records of the landslides identified in the study area or, alternatively,
it may be performed indirectly by using information related to recurrence of the landslide-triggering
events [17]. Direct analysis requires a long time span of historical landslide data which is extremely
difficult to obtain, especially in underdeveloped countries. Therefore, an indirect approach analyzing
the frequency of occurrence of rainfall was used in this study to determine temporal probability. Even
though this approach did not require complete multi-temporal landslide inventory data, it required
determination of the relationship between rainfall and landslide incidences. After the calculation of
rainfall thresholds, the landslide temporal probability was computed based on the number of times
precipitation exceeded the threshold value [16]. As the frequency of rainfall-induced landslides only
evaluates how often landslides might occur, it therefore needs to be integrated with spatial probability
(susceptibility) and temporal probability to develop a landslide hazard map [17,18].

The prediction of landslide incidences using rainfall thresholds has been successfully carried
out for various regions, including Italy [19–21], New Zealand [22], Malaysia [23], and the Himalayan
arc [24–26]. The calculation of rainfall thresholds for landslide triggering can be determined using three
main approaches: (i) physically based models [27], (ii) empirical rainfall threshold models [28], and
(iii) statistically based models [29]. The physically based models are linked to the physical attributes of
the study region and can be difficult to apply in cases of unavailability of an extensive dataset. Empirical
models calculate rainfall thresholds based on past rainfall events which led to landslide incidences.
The threshold is usually obtained by drawing lower-bound lines to the rainfall conditions that resulted
in landslides plotted in Cartesian, semi-logarithmic, or logarithmic coordinates [30]. Statistical models
use statistical tools like Bayesian inference or logistic regression to calculate thresholds [31].

In the case of Bhutan, studies to date have focused on the southwest region covering the
Phuentsholing–Thimphu Highway (known as the Asian Highway), which connects the national capital
Thimphu with neighboring countries. These studies have primarily focused on rainfall estimation and
spatial assessment, using various techniques such as a probabilistic approach [5,32], a semi-automatic
algorithm approach [26], an empirical approach [4], and machine learning models [33]. The other major
highway, Samdrup Jongkhar–Trashigang (S-T), situated in the eastern part of the country, has been
neglected, and a landslide study in this region is yet to be conducted. The main aim of this study was
to assess landslide susceptibility utilizing temporal rainfall for the S-T highway. The two objectives in
this study were (i) to estimate the temporal probability, and (ii) to estimate the landslide susceptibility
using a multi-criterion decision-making approach. We addressed three major research themes in the
current study: (i) determination of rainfall threshold, probability estimation of the threshold being
exceeded, and landslide probability after the threshold has exceeded; (ii) susceptibility of the region
with respect to landslides; and (iii) validation of the thresholds and susceptibility map. For this, the
rainfall thresholds were determined based on the relation between daily rainfall and past landslide
events that occurred between 2014 and 2017. The thresholds were validated using the rainfall records
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of 2018. Thereafter, the exceedance probability of the threshold was calculated and the temporal
probability of landslides was determined using a Poisson model. Finally, a landslide susceptibility
map was developed using the analytic hierarchy process (AHP), utilizing the determined threshold
values. This study was the first attempt to conduct such an elaborate study for the eastern region of
Bhutan. The results from the present work can be understood as a preliminary step towards setting up
an operational landslide early warning system so that damage to the transportation corridor can be
reduced and human lives can be saved.

2. Study Area

The study area was the Samdrup Jongkar–Trashigang (S-T) highway, which is a 180 km stretch
of road located in the eastern part of Bhutan, which covers 1880 km2 (Figure 1). The region was
selected as it connects eight districts (known as “dzongkhags” in Bhutanese) and is a major route
for the people residing around the highway. The highway is critical as it is the only transportation
network connecting eight dzongkhags in East Bhutan, and it is a lifeline for the people residing in
these areas. The transportation corridor has a history of severe slope failures in the form of frequent
landslides, rockfalls, and mudflow. The region falls in a sub-tropical zone, where heavy rainfall is
frequent. The region receives its maximum rainfall during the monsoon seasons (June–September).
The rainfall pattern in this region can be described as low-intensity and long-duration with occasional
intermittent outbursts.
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Figure 1. Location of (a) Bhutan; (b) spatial distribution of landslides in the study area considered in
this analysis. The zones were categorized based on spatial coverage of rain gauges, rain gauge location,
and elevation difference.

The area includes five different geological groups, which are Baxa Group, Daling Shumar Group,
and the Greater, Lesser, and Sub-Himalayan zones. The geology varies from the Baxa Group in the south
to the Greater Himalayan Zone in the north. The rocks found in the region are predominantly dark
grey to green fine-grained phyllites, slate varying from dark brown to black, and fine-grained, medium-
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to thick-bedded quartzite with thin to very thin grey-black fine-grained phyllite interbeds [34,35].
The average thickness of the quartzite is about 100 m, but the individual bands of quartzite range
from 10 cm to 2 m. The orientation of the latter is 48◦ NW, with an average dip 40◦ towards the slope
direction of the slide. The quartzite in the landslide area undergoes brittle deformation with many
irregular joints [36]. Figure 2 depicts examples of the damage caused by landslides along the highway.
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Figure 2. Landslide damage: (a) landslide at 68.1 km along the Samdrup Jongkar–Trashigang (S-T) road
(N 26.903◦, E 91.505◦) (5 July 2016); (b) landslide at 93.8 km along the S-T road (N 27.112◦, E 91.544◦)
(17 July 2016) [36].

3. Data

Data from a total of 347 landslides which occurred from 2014 to 2018 were collected from Border
Road Organization, Government of India under Project DANTAK (Figure 1b). The data included the
dates and geographic coordinates of landslide location based on field observations, interactions with
locals, and media reports. The types of movement in the region based on Cruden and Varnes’ [37]
classification are: debris slides, rock falls, earth flows, and rotational landslides. The field visit
conducted in November 2017 revealed the landslides to be shallow, with depths ranging up to few
meters, and able to be mapped as single points. The yearly distribution (Figure 3a) of landslides
shows that the majority of the landslides occurred in 2017 and 2018, whereas the monthly distribution
(Figure 3b) shows that 89% of landslides occurred between the months of June and September. It is
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often difficult to determine the rainfall conditions responsible for failures, due to lack of rain gauge
density and high distances between rain gauges and landslide points [26,38]. As multiple landslides
can occur during a rainfall event, subsequent landslides for a single rainfall event after the initial
failure were not considered for the threshold analysis. Thus, in this study, we defined a landslide event
as “single landslide-triggering event”, in which the landslide events after the initial failure were not
considered for threshold estimation [16,26]. A rainfall event was defined as a period of continuous
rainfall separated by dry (without rainfall) period. Using all these criteria, the total numbers of rainfall
and landslide events during the threshold determination time frame (2014–2017) were 477 and 104,
respectively. The zones were divided based on spatial coverage of rain gauges [4,26]. A buffer radius
of 15 km around each rain gauge was selected to divide the region into zones. In terms of landslide
events for respective zones, half of the landslide events occurred in Zone 2 (49) followed by Zone 3 (40)
and Zone 1 (15).
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Figure 3. Number of landslides (a) per year and (b) per month between 2014 and 2018.

The daily rainfall data used for this study (Figure 4) was collected from two rain gauges at
Deothang and Kanglung, managed by the National Centre for Hydrology and Meteorology, Bhutan
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(http://www.hydromet.gov.bt). The average cumulative yearly rainfalls for Deothang and Kanglung
for 2014–2018 were 3495 mm and 1020 mm, respectively, of which 89% occurred during the monsoon
season (June–September). The higher precipitation observed in Deothang is due to its location on the
windward side of the mountain.
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Figure 4. Average monthly rainfall in the study region for both rain gauges (2014–2018).

4. Landslide Temporal Probability Assessment

4.1. Rainfall Threshold Estimation

A rainfall threshold determines the minimum rainfall conditions necessary for landslide initiation
in a specific region [39], and various researchers have attempted to quantify thresholds using several
approaches [39–41]. A recent review article [40] on rainfall threshold estimation explained in detail the
various approaches currently in use, along with their merits and demerits. Of the various techniques,
empirically based approaches are widely used because of the simplicity and ease with which they can
provide an accurate approximation of minimum precipitation conditions. Various rainfall thresholds
using different parameters have been developed, such as ID (intensity–duration) [21], ED (cumulative
event rainfall duration) [4], and AD (antecedent rainfall duration) [16,42]. The most commonly
used rainfall variables for threshold estimation are daily rainfall, antecedent rainfall, and cumulative
rainfall [40]. However, the choice of rainfall variable with which to determine thresholds is primarily
dependent on the type of landslides in the region [20].

For the S-T highway, monsoonal rainfall occurs with interruptions and can be characterized mostly
low-intensity and long-duration events along with occasional extreme events, making the choice of
antecedent rainfall appropriate [30]. Antecedent rainfall is a significant factor for landslide triggering,
especially in less impermeable soils, as it lowers soil suction and increases pore water pressure [13].
The use of antecedent rainfall was based on analysis of historical landslide pattern, the field visit,
and previous studies conducted in other regions of Bhutan. Although estimation of the number of
days to be considered to analyze the effect of antecedent rainfall was a challenge, it has been widely
accepted that antecedent rainfall over 15 days to 30 days plays a crucial role for landslide initiation in
the Himalayas [43]. The calculation of the antecedent period prior to landslide incidence is usually
based on a trial-and-error approach, ranging from 3 days to 120 days [30,44,45].

For this study, the correlation between daily and antecedent rainfall conditions was analyzed
for six different time periods (3, 5, 7, 10, 15, and 30 days) (Figure 5a–f). The analysis of the various
antecedent rainfall time periods was conducted using the method proposed by Zezere et al. [42]. Blue
dots represent the daily rainfall, whereas the orange points depict the antecedent rainfall values for
respective time periods. The best discrimination between daily and antecedent conditions, according to

http://www.hydromet.gov.bt
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the method suggested by Reference [42], was observed for 30 day antecedent rainfall and was accepted
as the metric for threshold calculation.
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Figure 5. Relationship between daily (blue) and antecedent (orange) rainfall in 2014–2017.

The threshold determination was performed using a scatter chart for daily (RTH) and 30 day
antecedent rainfall (R30ad), and was calculated for all three zones. The graph was generated using the
rainfall and landslide data from 2014–2017. The threshold equation was obtained by using the lower



Water 2020, 12, 267 9 of 24

end points in the scattered graph [13,16]. The threshold equations of various zones are depicted in
Figure 6.
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4.2. Validation of Rainfall Threshold

The significance of any landslide study is determined by the validation of the results obtained.
One review of rainfall threshold studies [40] emphasized the importance of validation of rainfall
thresholds for conducting landslide studies. The rainfall threshold validation was performed using
rainfall and landslide data from 1 January to 31 December 2018. During this period, a total of 52
landslide events occurred, out of which 80% of landslides (41) happened during the monsoon season.
The threshold equation for Zone 1 was RTH = 150 − 0.24R30ad, and its validation for the monsoon of
2018 is depicted in Figure 7. The threshold exceedance axis depicts the value of RTH with respect
to R30AD value for each day, wherein the positive values indicates landslide occurrence. This figure
shows that a heavy measure of rainfall occurred, exceeding the threshold. The abrupt increase in the
magnitude of daily rainfall or constant rise in 30 day antecedent rainfall is shown by the rise in the
threshold curve.

During the validation period, the threshold was exceeded nine times, out of which seven times
landslides occurred. No landslides were reported on 2 June and 7 June, even though the threshold
was exceeded. This observation can be attributed to the fact that a landslide event does not generally
happen with the increase in threshold curve, and sometimes happens a couple of days later as the
result of a difference in pore pressure because of changes in the measure of antecedent rainfall. From
1 October to 30 December, there was no threshold exceedance, and no landslides occurred during
that period. Similar validations were carried out for Zone 2 and Zone 3 threshold equations using
2018 rainfall and landslide data. These results indicate that the threshold model performed well for
landslide forecasting in 2018.
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Figure 7. Validation of the threshold equation for Zone 1. The positive values on the Y axis represent
exceedance and negative values denote non-exceedance of the threshold.

4.3. Temporal Probability of Landslide Initiation

The temporal probability of landslide incident is determined as the product of annual exceedance
probability (AEP) and probability of landslide occurrence [16]. AEP is defined as the probability of the
threshold being exceeded in a given year [46], and is determined using the Poisson probability model
defined as [16]

P(N(t) = n) = e−λt (−λt)n

n!
(1)

where N(t) represents the number of landslide incidences during time t and λ is landslide occurrence
rate. The exceedance probability for time t is calculated as [13]

P[N(t) ≥ 1] = 1 − exp (−t/µ) (2)

where µ is the mean recurrence interval between subsequent landslides determined from
landslide inventory.

The determination of temporal probability was based on the following assumptions: (i) probability
of landslide incidence is correlated to the probability of rainfall threshold being reached or exceeded,
and (ii) landslides will not or will seldom occur when precipitation value is less than the threshold
value [13,16,47].

The annual temporal probabilities for different zones of the study region are depicted in Figure 8,
and their distribution along with the threshold equations is presented in Table 1. For Zone 1, the
threshold value was exceeded 55 times during the simulation period, and out of these 55 cases,
landslides were triggered in 16. The estimated probability P[L|(R > RT)] for Zone 1 was 0.29. Similarly,
for Zone 2 and 3, the threshold value was exceeded 76 and 64 times in the 4 year period, leading to
31 and 21 landslides being triggered and contributing temporal probability values of 0.41 and 0.33,
respectively. The probability of having one or more rainfall events in any given year varied from 0.29
to 0.41. The highest probability values were obtained for Zone 2, followed by Zone 3 and Zone 1. This
variation was also observed in the number of landslide incidences for each zone. These precipitation
events were also capable of triggering multiple landslides during the monsoon period.
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Table 1. Temporal Probability of Landslide Occurrence.

Area Threshold
Equation (RT)

Number of
Threshold

Exceedances
P(R > RT) Landslide

Frequency
P[L|(R >

RT)]
Temporal

Probability

Zone 1 150 − 0.24R30ad 55 0.99 16 0.29 0.28
Zone 2 232 − 0.50R30ad 76 0.99 31 0.40 0.39
Zone 3 44 − 0.30R30ad 64 0.99 21 0.32 0.31

5. Landslide Susceptibility Mapping

Landslide susceptibility can be defined as the probability of spatial occurrences of slope failures
for a given set of geo-environmental conditions [48], and its determination is one of the crucial steps
needed to understand identify potentially landslide-prone sections for any study region. Several
studies around the world have been conducted towards the development of landslide susceptibility
maps (LSM) using various methods [8]; however, there seems to be no consensus as to the best method
for analysis [49]. Aleotti and Chowdhury [50] categorized LSM methods as either quantitative or
qualitative. Qualitative models are mostly based on expert opinion, whereas quantitative models are
data-driven, which makes them more reliable. The quantitative approaches include several kinds
of techniques such, including statistical, deterministic, and other approaches [51–53]. In the case of
statistical approaches, it is assumed that the parameters affecting landslide events in the past will be
the same in future [54], and these analyses can be categorized into bivariate and multivariate [49].
In bivariate analysis, the factors affecting landslides are compared with landslide inventory data
by providing weights based on landslide causative factors. The most frequently used methods in
bivariate models are overlay, index-based, and weight-of-evidence analyses [8,51,55]. Bui et al. [6]
performed a comparison between a bivariate approach (statistical index) and a multivariate approach
(logistic regression) for Vietnam, and found equal forecasting capability. However, one of the main
issues with the use of a quantitative approach is the assignment of weights to the landslide-affecting
factors [56–58]. The use of GIS has been proven to be a powerful tool with which to validate the
significance of factors, and it has been used for multi-criterion decision analysis [49,59]. The decision
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analysis technique combines primary- and secondary-level weights for every causative factor, where
primary weights are similar to the bivariate approach and secondary weights are expert-opinion-based.
For secondary weights, the analytic hierarchy process (AHP) has become popular and has been
successfully applied for decision-making systems [60,61]. AHP uses a pairwise relative comparison
between every landslide-causative factor. Generally, AHP consists of five key steps: (a) simplify the
decision process into its component factors, (b) distribute the factors in a hierarchy process, (c) allocate
numerical values to analyze the relative significance of each factor, (d) compose a comparison matrix,
and (e) provide weights to every factor by calculating normalized principal eigenvectors [62].

To determine susceptibility, a variety of factors responsible for landslides in the study region were
considered. Parameter selection depends on various factors, such as landslide type, data availability
and reliability, and adopted methods [63]. For the present study, we used eight landslide-conditioning
factors based on the characteristics of the area and prepared from various data sources (Table 2).
Figure 9a–f represents all the maps used for the analysis, derived from the Shuttle Radar Topography
Mission (SRTM) digital elevation model (DEM) with 30 × 30 m resolution, which was the only terrain
data source available for this region. The factors with continuous values were reclassified into categories
based on Jenks’ natural breaks optimization method [64] and developed using ArcGIS 10.4.1.

Table 2. Parameters Used for Landslide Susceptibility Mapping.

Parameters Data Source Explanation Scale

Slope (◦) SRTM Derived from raster DEM 1:30,000

Average daily rainfall (mm) Project DANTAK, Border Road
Organization, Govt. of India 1:30,000

Proximity to road (m) Topographical map Shape file 1:30,000

Proximity to stream (m) SRTM
Derived from Raster DEM using
the [65] order greater than 5 in

vector format
1:30,000

Aspect (N/E/S/W) SRTM Derived from raster DEM 1:30,000
Elevation (m) SRTM Derived from raster DEM 1:30,000

Landcover Ministry of Agriculture and
Forests, Royal Govt. of Bhutan Vector data 1:30,000

Geology Department of Geology and
Mines, Royal Govt. of Bhutan Geological map 1:30,000

The above-mentioned thematic layers were combined by using a weight-of-factors approach
determined by AHP to develop the landslide susceptibility map. The use of AHP to develop landslide
susceptibility maps has been successfully applied in various regions [61,66,67]. The weights required
to carry out AHP were calculated by performing pairwise comparisons for each landslide factor and
assigning values from 1 to 9 [63,68–70]. Table 3 shows the pairwise comparison and priority calculation,
along with rankings of all indicators. These values were based on an expert’s opinion and were placed
in n × n matrix, where n is the number of factors.

Table 3. Parameter Wise Weights, Matrix, and Consistency Ratio as Determined Using AHP.

Parameters Slope
Average

Daily
Rainfall

Proximity
to Road

Proximity
to Stream Aspect Elevation Landcover Geology Weights

(%)

Slope 1 0.33 4 2 2 2 3 3 19.2
Average daily rainfall 3 1 4 2 2 3 3 3 26.7

Proximity to road 0.25 0.25 1 0.33 0.33 0.5 0.5 0.33 4.1
Proximity to stream 0.5 0.5 3 1 0.5 1 2 2 11.2

Aspect 0.5 0.5 3 2 1 3 2 2 15.2
Elevation 0.5 0.33 2 1 0.33 1 0.5 0.5 7

Landcover 0.33 0.33 2 0.5 0.5 2 1 1 8
Geology 0.33 0.33 3 0.5 0.5 2 1 1 8.5

Consistency Ratio = 0.039.
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Figure 9. Landslide-conditioning factor maps: (a) slope, (b) elevation, (c) aspect, (d) mean daily rainfall,
(e) proximity to road, (f) proximity to stream, (g) geology, and (h) land use and land cover (LULC).



Water 2020, 12, 267 17 of 24

The AHP reduced the inconsistencies formed due to the subjectivity of different experts’ opinions
by computing a consistency index (CI) and consistency ratio (CR), which were determined by

CI = (λmax − n)/(n − 1) (3)

CR = CI/RI (4)

where λmax represents the largest Eigenvector of the matrix and n represents the total causative factors
(order of the matrix) used in the generation of the LSM. RI (random index) is the average value of CI
for a randomly generated pairwise matrix and can be accepted only when CR values are less than
10% [71]. For the present study, the average consistency index was estimated for a sample size of 500
and its value was 0.039 (3.9%), which was considered acceptable. Several authors have calculated
and estimated different RIs based on various simulation methods and the total number of matrices
involved in the process (Table 4). However, we have used Satty’s [71] RI values of n = 11 and up to
500 matrices, where the values are 0, 0, 0.58, 0.9, 1.12, 1.24, 1.32, 1.41, 1.45, 1.49, and 1.51.

Table 4. RI Values Obtained by Various Authors (Adopted from Reference [72]).

[71] [71] [73] [74] [75] [76] [77] [78] [79]

100 500 1000 2500 500 100,000 100,000
3 0.382 0.58 0.5799 0.52 0.5233 0.49 0.500 0.525 0.5245
4 0.946 0.90 0.8921 0.87 0.8860 0.82 0.834 0.882 0.8815
5 1.220 1.12 1.1159 1.10 1.1098 1.03 1.046 1.115 1.1086
6 1.032 1.24 1.2358 1.25 1.2539 1.16 1.178 1.252 1.2479
7 1.468 1.32 1.3322 1.34 1.3451 1.25 1.267 1.341 1.3417
8 1.402 1.41 1.3952 1.40 1.31 1.326 1.404 1.4056
9 1.350 1.45 1.4537 1.45 1.36 1.369 1.452 1.4499

10 1.464 1.49 1.4882 1.49 1.39 1.406 1.484 1.4854
11 1.576 1.51 1.5117 1.42 1.433 1.513 1.5141
12 1.476 1.5356 1.54 1.44 1.456 1.535 1.5365
13 1.564 1.5571 1.46 1.474 1.555 1.5551
14 1.568 1.5714 1.57 1.48 1.491 1.570 1.5713
15 1.586 1.5831 1.49 1.501 1.583 1.5838

The values of CR cannot be negative and can attain a maximum value of 0.3. Values of CR less
than 0.1 are considered acceptable; if this is not achieved, new attempts are made until the value is
acceptable [80]. However, the values of CR are dependent on the analysis type and the number of
criteria being considered. In some cases, CR > 0.1 may not be considered critical, and values of CR
ranging from 0.15 to 0.3 can also be considered acceptable. A matrix will be considered consistent,
according to Saaty [71], if

λmax < n + 0.1((λmax) − n) (5)

Finally, all the landslide-causative factors and classes were integrated by a method of weighted
overlay in ArcGIS to generate the landslide susceptibility index (LSI).

LSI =
∑

k=1
n WkWjk (6)

where Wk is the weight of the causative factor, Wjk is the rank value for factor class j of causative
factor k, and n represents the total causative factors selected. Ranks of criteria were calculated based
on priority or weight values. The highest priority considered was Rank 1, while the lowest priority
considered was the last rank in the AHP.
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Model Development and Validation

The landslide inventory data was randomly categorized into two datasets, i.e., training (70%) and
testing (30%). The landslide susceptibility map based on 8 causative factors using AHP is depicted in
Figure 10. The map was divided into 4 classes: very low (0–0.24), low (0.25–0.49), moderate (0.5–0.74)
and high (0.75–1) according to natural breaks to define the class intervals in the susceptibility map.
From total of 242 landslides, more than 78.1% falls under the high zone. Whereas 11.98% falls under
the moderate zone and combined 9.92% falls under the low and very low zones (Table 5).
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Figure 10. Landslide Susceptibility Map of the Study Region.

Table 5. Landslide Susceptibility Results for the Samdrup Jongkhar–Trashigang Highway Region.

Inventory Susceptibility

Zone Landslides High Moderate Low Very Low

(%) (km2) (%) (km2) (%) (km2) (%) (km2)

Zone 1 39 21.23 13.84 59.90 39.05 18.71 12.19 0.15 0.10
Zone 2 119 36.6 38.82 55.7 59.08 6.8 7.25 0.9 0.94
Zone 3 84 28.31 13.69 63.45 30.67 8.06 3.89 0.16 0.08

Validation of the susceptibility maps was performed for randomly selected data from the inventory
data using receiver operating characteristics (ROC). This is an effective way to analyze the quality of
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predictive techniques [81]. The ROC curve is plotted between true positive rate (sensitivity) on the Y
axis against false positive rate (specificity) on the X axis. The terms “sensitivity” and “specificity”,
which are used to plot ROC curves, are defined as follows.

Sensitivity =
TP

TP + FN
(7)

Specificity =
TN

FP + TN
(8)

where true positive (TP) is the number of actual landslides predicted correctly, and true negative (TN)
is the total number of non-occurring landslides predicted correctly. False positive (FP) is the number
of actual landslides inaccurately predicted as non-occurring landslides, and false negative (FN) is
the number of non-occurring landslides inaccurately predicted as actual landslides. [82]. The area
under the ROC curve (AUC) was also used to determine the quality of the prediction by analyzing the
model’s ability to forecast the occurrence or nonoccurrence of predefined events [83]. The results of the
success rate curve of the AHP model had an AUC of 0.798, corresponding to a prediction accuracy of
79.8% (Figure 11).
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The results of pairwise comparison, priority estimation, and ranking of all the criteria could be
applied to other study areas for susceptibility assessment. Several high-resolution satellite image
datasets are required to better understand the locations and perform these assessments. In cases of
unavailability of high-resolution satellite images, Google Earth images could be useful for preparation
of some indicators. The use of Google Earth images could also be helpful for accurate identification of
landslide locations and conduction of extensive field studies. All the requirements for more accurate
analysis depend on study location tectonics, data availability, and proper methods. Therefore, based
on local geology and tectonic conditions, these results could be transferable and applicable in other
locations in both small- and large-scale areas.

6. Conclusions

Landslides are the most frequently occurring natural hazards, especially in the Himalayan regions,
which suffer from heavy monsoonal rainfall and subsequent landslides. In this study, the temporal
probability of landslide events was determined using rainfall and landslide data from 2014–2017 along
Samdrup Jongkhar–Trashigang highway in East Bhutan. The highway was divided into three zones
based on land use, topography, and rain gauge coverage for the determination of temporal probability.
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Thereafter, a landslide susceptibility map was developed using AHP. The results of temporal probability
were validated with landslide event dataset of 2018 to understand the applicability of the model. The
conclusions from the study can be summarized as follows.

(1) Threshold determination was performed considering the antecedent rainfall duration approach.
The selection of antecedent rainfall was based on previous studies which have highlighted its
significance, especially in the Himalayan region and in Bhutan. A trial-and-error approach was
adopted to determine the number of antecedent days required for landslide initiation, and a
30 day antecedent rainfall was adopted for threshold determination.

(2) The temporal probability of landslide occurrence was determined based on the Poisson model,
and the validation results based on 2018 data revealed that the model performed well.

(3) The landslide susceptibility map of the region was developed using AHP classified into four
categories (Very Low, Low, Moderate, and High), and the results showed that 78% of the region
falls under into high-susceptibility zone. The performance of the model was assessed using the
area under ROC and an accuracy of 79.8% was achieved. However, due to the dynamic nature of
land use and rainfall patterns, the susceptibility map will need to be updated from time to time.

The present study on rainfall threshold estimation and the development of a susceptibility map
for eastern Bhutan along Samdrup Jongkhar–Trashigang highway is an important study in the context
of the Bhutan Himalayas, for which study on both these aspects is lacking. The current study can be
regarded as a preliminary step towards risk management, which could be supported by conducting
a hazard and vulnerability assessment of the region. The temporal probabilities determined can be
integrated with the susceptibility map to obtain a landslide hazard map. However, the results might
be improved by increasing the number of landslide events and using precipitation data with a higher
temporal resolution. The results from the present study also could prove helpful to civic authorities in
identifying key sections of the road which are most vulnerable to landslides, and undertaking strict
measures to prevent slope failures, strengthening the transportation network and saving human lives.
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