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Abstract  

This study developed a deep learning based technique for the assessment of landslide susceptibility 

through a one-dimensional convolutional network (1D-CNN) and Bayesian optimisation in 

Southern Yangyang Province, South Korea. A total of 219 slide inventories and 17 slide 

conditioning variables were obtained for modelling. The data showed a complex scenario. Some 

past slides have spread over steep lands, while others have spread through flat terrain. Random 

forest (RF) served to keep only important factors for further analysis as a pre-processing measure. 

To select CNN hyperparameters, Bayesian optimization was used. Three methods contributed to 

overcoming the overfitting issue owing to small training data in our research. The selection of key 

factors by RF helped first of all to reduce information dimensionality. Second, the CNN model 

with 1D convolutions was intended to considerably decrease the number of its parameters. Third, 

a high rate of drop-out (0.66) helped reduce the CNN parameters. Overall accuracy, area under the 

receiver operating characteristics curve (AUROC) and 5-fold cross-validation were used to 

evaluate the models. CNN performance was compared to ANN and SVM. CNN achieved the 
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highest accuracy on testing dataset (83.11%) and AUROC (0.880, 0.893, using testing and 5-fold 

CV, respectively). Bayesian optimization enhanced CNN accuracy by~3% (compared with default 

configuration). CNN could outperform ANN and SVM owing to its complicated architecture and 

handling of spatial correlations through convolution and pooling operations. In complex situations 

where some variables make a non-linear contribution to the occurrence of landslides, the method 

suggested could thus help develop landslide susceptibility maps. 

 

Keywords landslide susceptibility; GIS; deep learning; convolutional neural networks; Bayesian 

optimization 

 

1. Introduction  

A landslide is a form of mass wasting (generally downslope) related to the movement of 

natural materials (soil, rocks, or even debris; Leynaud et al., 2017). Unfortunately, landslides are 

unavoidable natural disasters. Landslides differ in size, but usually involve significant ground 

movements causing infrastructure damage (Chitu et al., 2016). They occur on- or off-shore; gravity 

drives debris and rocks movement to a landslide. Apart from gravity, other factors such as slope 

steepness, geological setting of the area, and human activities lead to landslides (Hadmoko et al., 

2017).  

Numerous research studies were conducted to identify mathematical or statistical links 

between the conditions of landslides and their probability of occurrence (Chen et al., 2019; Pham 

et al., 2019; Nsengiyumva et al., 2019). This kind of analysis is often known as susceptibility 

assessment/mapping or spatial modelling. Gökceoglu and Aksoy (1996) investigated such analysis 

with fundamental image processing methods. Atkinson et al. (1998) has created linear modelling 

in central Apennines, Italy for spatial modelling of a landslide. For Diebyshire UK, Cross (1998) 

developed techniques to evaluate landslide susceptibility models. Since then, various new 

techniques and methods have been created to better model the susceptibility to landslides and to 

better understand the causes of landslides (Dehnavi et al., 2015; Hong et al., 2016; Youssef et al., 

2016; Pourghasemi and Rossi, 2017; Reichenbach et al., 2018; Braun et al., 2019; Mohammady et 

al., 2012; ). Overall, four primary kinds of landslide susceptibility models are developed including 

expert-based, statistical, machine learning, and a hybrid that combines two or more models from 

one or different categories (Fanos and Pradhan, 2019; Pradhan and Sameen, 2017; Pradhan et al., 
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2017; Hong et al., 2017a, b; Tien Bui et al., 2016; Youssef et al., 2015). There are many models 

of each type. For more information on these models, the reader can refer to Pradhan et al. (2017). 

Various studies have shown that logistic regression (LR), support vector machines (SVM), and 

artificial neural networks (ANN) perform well in this context (Bui et al., 2016; Hong et al., 2016; 

Wang et al., 2016). 

For the landslide susceptibility evaluation, several scientists have used ANN and a 

thorough assessment of this model can be found in Gorsevski et al., (2016). Other successful 

implementation of ANN-based models presented by Yesilnacar and Topal (2005) and Nefeslioglu 

et al. (2008). ANN was found superior to other models such as weights of evidence (WoE) (Wang 

et al., 2016), LR (Lee et al., 2016; Chen et al., 2016), Dempster-Shafer (Chen et al., 2016). ANN 

also found better than SVM, kernel LR, and a logistic model tree (LMT) in a study by Bui et al. 

(2016). In another geographic region, Yilmaz (2010) showed that ANN outperformed conditional 

probability, LR, and SVM. Although ANN considered a black-box model, it can provide the 

relative importance of the conditioning factors by several methods can be found in (Hines et al., 

1997), (Lee et al., 2004), (Kanungo et al., 2006), and (Pradhan and Lee, 2010). 

The above-mentioned studies implemented ANN models in landslide susceptibility 

assessment. However, recent developments of neural networks have shown that other model 

architectures, such as convolutional and recurrent, can significantly outperform the classical 

feedforward ANN. Convolutional neural networks or CNN was successfully applied to remote 

sensing, computer vision, voice recognition and natural linguistic processing (Maggiori et al., 

2017; Sameen and Pradhan, 2017; LeCun et al., 2015). In the context of landslide research, CNN 

was used for landslide detection (Ding et al., 2016; Yu et al., 2017; Mezaal et al., 2017; 

Ghorbanzadeh et al., 2019). However, the performance of these models is not established for 

landslide susceptibility mapping (Wang et al., 2019). As a result, this research develops a model 

based on a one-dimensional CNN (1D-CNN) for landslide susceptibility mapping in north-east 

Korea, in the south of Yangyang Province. Also, comparing their performance to other standard 

feedforward ANN and SVM models. 

2. Study Area and Data 

Seoul is the capital and biggest town in South Korea. It has a large population density of 

over 10 million individuals. Natural hazards such as landslides are a significant threat in the region. 
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In this research, the region of concern is situated in Yangyang Province about 155 km west of 

Seoul. It includes about 53 km2 (8.43 percent of Yangyang Province). 

First, landslide inventory map was extracted from aerial photographs (http://map.daum.net). 

Additional data sources including previous landslide records and field research were also used to 

prepare landslide location data. Aerial photographs with a 0.5 m spatial resolution were obtained 

of Yangyang. A total of 219 landslides were identified through comparative analysis. The landslide 

data have been randomly split into training (70% of landslides; 164) and validation (30% of 

landslide; 55). The landslide inventory map is shown in Fig.1. Second, 17 landslide conditioning 

factors were derived from a number of sources (Table 1). These factors were in relation to natural 

processes in landslides and geo-environmental features of our research area. Some factors had 

categorical values (timber type, timber density, timber diameter, timber age, lithology, soil texture, 

land use) while others had continuous values. Those with continuous values were not reclassified 

to reduce model’s sensitivities to reclassification methods. The geomorphological factors such as 

altitude, slope gradient, slope aspect, and curvature was derived from a 5 m digital terrain model 

created based on national topographic maps (scale, 1:5,000). Altitude affects the extent of rock 

weathering and considered a significant in landslide susceptibility analysis (Pradhan et al., 2014). 

The altitude map shows that the lowest and highest elevations in our study area were respectively 

−5,88 m and 929,79 m (Fig.2a). Most of the landslides occurred at greater altitudes and some at 

lower altitudes (in the area's northeast). Slope is another important factor and used almost in all 

studies related to susceptibility analysis (Aghdam et al., 2017). The slope factor was derived from 

the 5 m digital elevation model. The slope values ranged from 0 to 79° as shown in Fig. 2b. The 

slope aspect regulates topographic moisture concentrations influenced by both solar radiation and 

precipitation (Sadr et al., 2014). Fig.2c shows the aspect map; flat regions are stated by ‘-1’ and 

other slope directions are in degrees from the north-east toward the north-west. In addition, three 

types of land curvatures namely total curvature, plan curvature, and profile curvatures were 

included in our analysis (Fig. 2d-f). Overall, curvature represents slope changes along a curve's 

tiny arcs, influencing slope instability. The curvature of the plane is the curvature perpendicular to 

the direction of the peak slope. The curvature is positive when the surface is convex and negative 

when concave. A zero-value shows linear surface. Instead, the profile curvature refers to the 

convergence and flow divergence across a surface. Combining plane and profile curvature is called 

total curvature. 
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Lithology and soil texture were extracted from the geology map provided by the Rural 

Development Administration (RDA). These factors have been used in many researches because 

they affect the type and mechanism of landslides as rocks differ in terms of internal structure, 

mineral composition, and susceptibility to landslides (Ercanoglu, 2005). In addition, human 

activities influence patterns of land use, contributing to landslides, more common in barren areas 

than forests and residential areas (Glade, 2003; Lallianthanga and Lalbiakmawia, 2013). 

Moreover, a polygon-based vegetation map (scale = 1: 25,000) was obtained from the Korean 

Forest Service. Four parameters were used as conditioning factors: timber type, timber density, 

timber diameter, and timber age (Fig. 5). Vegetation strengthens the soil by interlocking root 

networks forming erosion-resistant sloping mats. 

The hydrological parameters assessed included the stream power index (SPI), the sediment 

transport index (STI), the topographic roughness index (TRI), and the topographic wetness index 

(TWI). The SPI is described as the motion of strong particles when gravity acts on sediments (Fig. 

6a, Equation 1) (Jebur et al., 2014). The STI as shown in Fig.6b represents slope failure and 

deposition and is calculated using Equation 2 (Jebur et al., 2014). The TRI (Fig. 6c) defines the 

roughness of the local terrain and thus affects topographic and hydrological processes vital for 

landslide development. It influences landslide incidence and was calculated using the minimum 

and maximum cell values in the DTM’s nine rectangular windows (Equation 3) (Jebur et al., 2014). 

TWI (Fig. 6d) measures topographic control of hydrological processes, reflecting slope and 

direction of flow (Equation 4) (Jebur et al., 2014).  

 

𝑆𝑃𝐼 = 𝐴𝑠 ×  𝑡𝑎𝑛𝛽                                                                         (1) 

𝑆𝑇𝐼 = (
𝐴𝑠

22.13
)

0.6

× (
𝑠𝑖𝑛𝛽

0.0896
)

1.3

                                                        (2) 

TRI =  √max2 − min2 ,                                                                  (3) 

𝑇𝑊𝐼 = 𝑙𝑛 (
𝐴𝑠

𝛽
)                                                                         (4) 

 

where 𝐴𝑠 is the specific catchment area (m2/m), 𝛽 is slope angle in degrees, max and min are the 

highest and minimum values of the cells in the nine rectangular windows of DTM. The specific 
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catchment area is upslope area per unit contour length, taken as the number of cells times grid cell 

size (cell area divided by cell size).   

 

Fig. 1. Landslide inventory map of study area. 

 

Table 1 List of landslide causal factors used in this study. 

 

Fig. 2. Geomorphologic landslide conditioning factors, (a) altitude, (b) slope, (c) aspect, (d) total 

curvature, (e) plan curvature, and (f) profile curvature. 

 

Fig. 3. Lithology (a) and soil (b) factors. 

Fig. 4. Land use factor. 

 

 Fig. 5. Vegetation related factors, (a) timber type, (b) timber density, (c) timber diameter 

and (d) timber age 

 

Fig. 6. Hydrological landslide conditioning factors, (a) SPI, (b) STI, (c) TRI, and (d) TWI. 

 

3. Methods 

Here we describe our landslide susceptibility model. The model featured an evaluation of 

relative importance of the conditioning factors with Random Forest (RF) (Pourghasemi and 

Rahmati, 2018; Sahin et al., 2018), modelling using 1D-CNN (Kussul et al., 2017; Zhu et al., 2017; 

Tang et al., 2019), and the model’s architecture and hyperparameter optimization with a Bayesian-

based approach (Sameen et al., 2018).  

 

3.1 Preparing Datasets for Modelling 

This landslide inventories were used for the production of non-landslide samples. The 

samples have been chosen to meet the following requirements. First, any non-landslide sample 

should be at least 500 meters away from landslides. Second, the distance between any two non-
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landslide samples must be greater than 100 meters. These requirements help to prevent sampling 

in areas that have experienced landslide events. In total, 438 samples are then generated by 

merging the landslide and non-landslide sample points given that they encoded to 1 and 0, 

respectively.  

In addition, the maps of landslide conditioning factors (17 of them) were prepared in GIS 

in raster format. Each factor was represented as a single band raster. Finally, our database included 

landslide conditioning factors as well as landslide/non-landslide samples. In order to apply 1D-

CNN, multiple convolutional filters have been considered learning different portions of the data. 

The data were split from left to right across the layer from top to bottom, and a number of 1D 

sequences were generated. Landslide pixels were used to identify the 1D sequences that represent 

the landslide-prone locations. Instead, the non-landslide pixels were used to recognize the 1D 

sequences that represent the areas that are not prone to landslides. The data was then divided 

randomly into training (70%) and validation (30%). As a CNN input, the 1D sequences were used, 

which were generated using landslide conditioning factors. The 1D sequences generated by the 

sample’s layers were transformed into one hot encoding and used as a CNN output. 1D-CNN 

computes a weighted sum of input layers, allowing to select certain combinations of features that 

are useful in next layers. For ANN and SVM, the values of the landslide conditioning factors were 

extracted at the point samples. Each sample is associated with its target label (1 for landslides, 0 

for non-landslides).   

 

3.2 Selection of Significant Conditioning Factors  

A multicollinearity test did not lead to any elimination of variables. The relative importance 

of the landslide conditioning factors was evaluated using a conventional RF technique. RF is an 

ensemble method based on decision trees; RF produces (and then combines) many classification 

trees to calculate a classification by reference to the majority votes for individual decisions 

(Breiman, 2001). RF provides a good generalization, controlled by the number of trees used 

(Breiman, 2001). More importantly, RF estimates the relative importance of a predictive variable 

by identifying model errors in which the importance of the predictive variable under study is 

calculated. RF offers several benefits; features require no rescaling, transformation, or alteration; 

and less sensitive to outliers.  
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To select the best subset of the factors to include in susceptibility modelling, a percentage 

limit is required to select the subset proportion. Another alternative used in this study is to select 

various subset percentages and select the subset that provides the best accuracy using the validation 

dataset.  

 

3.3 Modelling Algorithms 

This research used different methods for landslide susceptibility assessment in the south of 

Yangyang including the proposed 1D-CNN, ANN, and SVM. These techniques are briefly 

described in this section.  

 

3.3.1 Convolutional Neural Networks (1D-CNN) 

CNN is a type of neural network that LeCun first created to analyse images and videos 

(LeCun et al., 1998). The main distinction between CNN and a traditional neural network is that 

former benefits from the properties of natural signals such as local connections, shared weights, 

pooling, and the use of multiple layers (LeCun et al., 2015). The model is constructed in a series 

of layers, the very first being convolutional and pooling layers. In the convolutional layers, units 

are structured into feature maps and connected via filter banks to local patches in the feature map 

of the previous layer. The output of this process is then passed through ReLU – a non-linearity 

activation function. In this way, CNN identifies information that is correlated and invariant to 

location within local groups of values. On the other hand, pooling layers often compute peak values 

of local unit patches in feature maps and are used to combine features that are semantically similar. 

Several stages of convolution, nonlinearity, and pooling are stacked, followed by a few fully 

connected layers and finally a softmax layer that engages in classification or prediction. CNN (like 

other neural networks) is generally trained via backpropagation and stochastic gradient descent 

algorithms. 

 

3.3.2 Feed forward Artificial Neural Networks (ANN)  

ANN is a model inspired by how biological nervous systems (e.g., the brain) operate. It 

consists of several interconnected neurons working together to solve specific problems. ANN’s 

main idea is the learning process. Learning in biological systems includes adjusting synaptic 

neuronal links. That is also true of an ANN. Stacking layers build an ANN; each layer mimics an 
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array of neurons. A typical example is the feedforward multilayer perceptron (MLP). MLP 

networks usually have three layers of processing elements and only one hidden layer but adding 

more hidden layers to the network is not restricted. The input layer’s task is to receive external 

stimuli and propagate them to the next layer. Hidden layers get weighted sums of incoming signals 

and process them using an activation function, most commonly saturation, sigmoid, and hyperbolic 

tangent functions. In turn, hidden units send output signals to the next layer. This can either be 

another hidden layer or the output layer. Information is propagated forward until the network 

produces output.  

 

3.3.3 Support Vector Machines (SVM) 

SVM is a supervised model based on the minimization of structural risk (Wan et al., 2010; 

Yao et al., 2008). SVM features a high-dimensional hyperplane or set of hyperplanes and can be 

used for classification and regression. It classifies training data into two categories. SVMs can 

perform non-linear classification efficiently using the “kernel trick”, implicitly mapping inputs 

into high-dimensional feature spaces (Table 2). 

 

Table 2 The common kernel functions used with SVM. 

 

Consider a training dataset (𝑥𝑖, 𝑦𝑖) with 𝑥𝑖 ∈ 𝑅𝑛, 𝑦𝑖 ∈ {1, ˗1}, and 𝑖 = 1, … , 𝑚. When the data are 

linearly separable, a separating hyper-plane can be defined as 

 

𝑦𝑖 (𝑤. 𝑥𝑖 + 𝑏) ≥ 1 − 𝜉𝑖,                                                           (5) 

 

where w is a coefficient vector that defines the orientation of the hyperplane in the feature space,  

bis the offset of the hyperplane from the origin, and 𝜉𝑖 is the positive slack variables (Cortes and 

Vapnik, 1995). The following optimization problem using Lagrangian multipliers is solved by 

determining the optimal hyper-plane (Samui, 2008). 

 

Minimize ∑ 𝛼𝑖

𝑛

𝑖=1

−  
1

2
∑ ∑ 𝛼𝑖

𝑛

𝑗=1

𝛼𝑗𝑦𝑖𝑦𝑗 (𝑥𝑖𝑥𝑗),                                

𝑛

𝑖=1

(6) 
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Subject to ∑ 𝛼𝑖𝑦𝑗

𝑛

𝑖=1

= 0,                      0 ≤ 𝛼𝑖 ≤ 𝐶,                               (7) 

 

where 𝛼𝑖 are Lagrange multipliers, C is the penalty, and the slack variables 𝜉𝑖 allows for penalized 

constraint violation. The decision function used for classification of new data can be written as 

𝘨(𝑥) = 𝑠𝑖𝑔𝑛 (∑ 𝑦𝑖𝛼𝑖𝑥𝑖 + 𝑏

𝑛

𝑖=1

)                                                 (8) 

 

If separation of the hyperplane using the linear kernel function is not possible, the original input 

data may be shifted into a high-dimensional feature space using certain nonlinear kernel functions. 

The classification decision function is then written as follows: 

 

𝘨(𝑥) = 𝑠𝑖𝑔𝑛 (∑ 𝑦𝑖𝛼𝑗  𝐾(𝑥𝑖, 𝑥𝑗) + 𝑏

𝑛

𝑖=1

)                                         (9) 

 

where 𝐾(𝑥𝑖, 𝑥𝑗) is the kernel function. 

3.4 Bayesian Optimization  

Deep learning techniques like CNN involve many hyperparameters optimization including 

batch size, activation function, an optimization algorithm, and network structure (depth and a 

number of hidden layers). Since most hyperparameters are continuous variables with only loose 

constraints on their numerical ranges, selecting them is a basic challenge in deep learning research. 

Trial-and-error optimization approaches are slow; hyperparameters have coupling effects, and the 

optimal ranges cannot be quickly identified. Robust optimization techniques are needed.  

Three techniques for optimizing hyperparameters are frequently used to fine-tune machine-

learning algorithms; these are grid search, random search, and Bayesian optimization. The grid 

search method optimizes all possible parameter settings to select the best combination of algorithm 

parameters. This is time-consuming when the number of hyperparameters and search spaces are 

comparatively large (as with neural networks). Furthermore, the operator must define particular 

parameter search space values. The random search technique selects random hyperparameter 

values, then evaluates model accuracy. Evaluations run iteratively; the operator selects the number 
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of runs. After evaluating all runs, using an assessment metric, the best hyperparameter setup is 

chosen. In this technique (as in grid search), there is no guarantee that the next assessment will be 

better than the prior setup. The significant issue with grid and random search optimization 

techniques is ignoring historical information.  

Bayesian optimization, as the word suggests, optimizes decision-making regarding which 

parameter setup to assess next (Sameen et al., 2018). In this context, an objective function is used 

to know how prior settings (exploitation) were conducted. Bayesian optimization techniques find 

the best possible parameter setup faster than grid and random searches. Training of deep learning 

algorithms (e.g., CNN) can be highly time-consuming considering the quantity of data concerned 

and the computational density needed. In such circumstances, Bayesian optimization can be 

particularly helpful. We used Bayesian optimization to find a sub-optimal ANN, SVM, and CNN 

hyperparameters. Table 3 summarizes these hyperparameters and their search spaces.  

The Bayesian optimization in our study was based on 25 iterations, also known as a number 

of calls (𝑛). Negative minimum AUROC with 5-fold cross validation was used as objective 

function. After each iteration, better model’s configuration was found until convergence at the 25 

call. We did not see significant improvements in more iterations. The parameters found at the 

iteration 25 thus considered best in our case study. At the cost of extra computing time, one may 

find better configurations if searches for larger search spaces.  

 

Table 3 Hyperparameters and their search space of the proposed models. 

 

3.5 Evaluation Methods  

Many performance evaluation forms can be used to evaluate landslide susceptibility 

models. Three such metrics were used: overall accuracy (OA) (Hong et al., 2018), the area under 

the receiver operating characteristic curve (AUROC), and 𝑘 -fold cross-validation. OA was 

calculated based on the number of correctly classified landslides in terms of the total numbers of 

landslides used in training/validation. ROC curves plot sensitivity on y-axis and specificity on x-

axis, corresponding to decision thresholds (Fawcett, 2006; Dou et al., 2014). Sensitivity is the 

probability that landslide pixels are classified correctly as ‘landslide’. Specificity is the probability 

that non-landslide pixels are classified correctly as ‘non-landslide’. AUROC is the area under the 

ROC curve, indicating the goodness-of-fit of a landslide model (Jones and Athanasiou, 2005). A 
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perfect model has an AUROC of 1 and an AUROC of 0.5 indicates random performance. The 

closer the AUROC to 1, the better the model performance (Walter, 2002; Pourghasemi et al., 

2012).  

4. Results  

We present and discuss our main outcomes here. All experiments were implemented in 

Python using Scikit-Learn and Keras on a computer with a Core i7-4510U CPU running at 2.60 

GHz, 16 GB of RAM, and a x64-based processor.  

 

4.1 Selecting Significant Conditioning Factors  

This study initially used 17 factors, but there was no assurance that all factors are 

significant. Multicollinearity test and feature importance were analyzed. The multicollinearity test 

did not lead to any elimination of variables. We studied the feature importance using RF. The 

number of trees was initially set at 500 but converged to 130. After training, for each feature, the 

relative importance and rank were calculated. Table 4 summarizes the outcomes, importance 

values, and ranking for the landslide conditioning factors. The three most significant factors were 

altitude (importance = 1.000), soil (0.869), and plan curvature (0.815). The three minor factors 

were aspect (0.530), timber density and timber diameter (0.269, 0.353). In addition, the best subset 

percentage (12/17) was selected based on the average validation accuracy of all the models. It 

yielded 75.89% and served as susceptibility model inputs.   

 

Table 4 Random Forest importance values and ranks estimated for the landslide conditioning 

factors. 

 

4.2 Model Performance 

CNN performance was assessed over 500 epochs with early termination enabled, 

monitoring validation accuracy using 0.01 min_delta and 20 patience. The min_delta is the 

minimum change in the validation accuracy that counts as an improvement (i.e., an absolute 

change of less than the min_delta showed no improvement). Patience is the number of epochs 

exhibiting no improvement after which training ceased. Early termination mode was set to “auto” 

to allow automatic reduction/increase in validation accuracy.  
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Fig. 7 shows model losses and accuracies over 63 epochs using training and validation 

datasets. Training was finished after 63 epochs due to no further improvement in validation 

accuracy. Model loss with both training and validation datasets reduced over time, suggesting that 

the model was learning from the data. In other words, after several epochs, CNN learned how to 

predict landslides using the input factors. Similarly, model training and validation accuracies 

increased over time as learning performance improved. Fluctuations in model loss and accuracy 

over distinct epochs are attributable to hidden layers dropout. In addition, the low gap between 

training and validation curves suggests that overfitting was minimal; dropout was used to avoid 

overfitting and to increase computational performance. The (minimum, maximum) model loss and 

accuracy using the validation dataset were (0.477, 0.585) and (59.20%, 84.30%), respectively. 

 

Fig. 7. Performance of the CNN model. 

 

4.3 Results of Optimization 

Model hyperparameters was chosen via Bayesian optimization, which after fewer 

evaluations produced good settings with no expert intervention. Table 5 summarizes the best 

configurations for the different models. The optimization was run 25 times to find the best 

parameter values with specific search spaces. No significant improvements were apperent in extra 

iterations. Configuration always improved after each iteration. After 25 iterations, the best model 

setup was found.  

As shown in Fig. 8, Bayesian optimization achieved good results after a few iterations. The 

lines in the figure are the values of an objective function (i.e., validation accuracy) acquired by the 

best-performing setup after completing all evaluations. ANN’s accuracy improved from 72.09% 

to 76.20%.  In addition, from the initial setup, CNN’s accuracy grew by ~3%. 

 

Fig. 8. The best-found configurations for ANN and CNN by Bayesian optimization. 

Table 5 The best-selected hyperparameter values of different models. 

4.4 Sensitivity Analysis  

This sub-section describes the impacts of model hyperparameters (ANN and CNN) on the 

accuracy of landslide susceptibility modelling. These included the optimization algorithm (or 
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optimizer), activation function used by hidden layers, a number of neurons in hidden layers, batch 

size, and dropout rate. CNN had two extra parameters: number of convolutional filters and the 

length of the input sequence. 

Fig. 9 shows the impact of the optimizer and activation function on the accuracy. For both 

ANN and CNN, the optimization algorithm and the activation type considerably impacted model 

accuracy on validation dataset. In our analysis, the remaining parameters were kept at their optimal 

values. The best optimizers for models were “Adamax” and “Adagrad,” respectively. The lowest 

accuracy associated with SGD. Other optimizers provided similar results for both ANN and CNN. 

The best activation function was “ReLU” for ANN and “ELU” for CNN.  

Fig. 10 shows the impacts of hidden layer neuron numbers and batch size used to train 

ANN and CNN. In the ANN hidden layers, the best neuron numbers were 311, and 240 in CNN. 

For ANN, the use of only four neurons in hidden layers provided the worse result (< 60%). 

However, the model performed well using more than 16 hidden neurons.  In contrast, CNN 

performed likewise with all tested figures of hidden neurons. The lowest and highest accuracies 

were 75.15% and 83.11%, respectively. Best batch size values for ANN and CNN were 71 and 

117, respectively. ANN was more sensitive to batch size values given its higher value of standard 

deviation (1.46) compared to that of CNN (0.83). Furthermore, the analysis showed that dropout 

rates of 0.57 and 0.66 were optimal for ANN and CNN.  

CNN featured extra parameters (sequence length and a number of filters) (Fig. 11). The 

same optimization approach was used to find the best values of these parameters. The best 

sequence length was 10 (83.11%) compared to that of 3 (80.83%). CNN was much more sensitive 

to filter amount than sequence length.  

 

Fig.9. The effects of optimizer and activation function on the performance of ANN and CNN. 

 

Fig. 10. The effects of the number of neurons in the hidden layers, batch size and dropout rate on 

the performance of ANN and CNN. 

 

Fig. 11. The effects of the sequence length and the number of filters on CNN performance. 
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4.5 Model Comparisons 

CNN model performance was compared to other benchmark techniques, including ANN 

and SVM. The landslide susceptibility maps using ANN, SVM and CNN are showin in Fig. 12. 

Table 5 shows the model performance using training and validation datasets. NN-based models 

including ANN and CNN did better than SVM. CNN achieved the highest training (83.50%) and 

validation (83.11%) accuracy. ANN’s training accuracy was 82.60%. Model performance was also 

investigated by constructing ROCs and calculating AUROC, and 5-fold cross-validation. These 

findings verified CNN’s highest performance with both validation and cross-validation datasets. 

CNN’s training, validation, and cross validation AUROC were 0.881, 0.88, and 0.893, 

respectively. SVM achieved AUROC 0.858 and 0.808 on training and validation datasets.  

 

Table 6 Performance of the proposed deep learning models and the benchmark methods using 

the training and validation datasets. 

4.6 Computational Performance  

Table 7 summarizes the times (in seconds) required for the model’s optimization, training, 

and making predictions on new data. Optimization was most time-consuming. It took 3,408.83 to 

optimize the CNN model. SVM optimization only required 9.27 s. In terms of training time, CNN 

and ANN took 0.59 s and 0.22 s, respectively, and only 0.08 s of SVM. However, the times 

required to make predictions based on new data were relatively short. If training is big, graphical 

processing units (GPUs) or cloud computing services such as Amazon AWS and Google Cloud 

among others may be required. 

 

 

Fig. 12. Landslide susceptibility maps of the study area (a) ANN, (b) SVM, and (c) CNN. 

 

Table 7 Computing performance of the models in seconds. 

 

5. Conclusion 
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Deep learning has got a lot of attention from many scientists, including remote sensing and 

GIS. Deep learning was effectively implemented in several remote sensing applications such as 

classification, object detection, and feature selection. This research used CNN to create a landslide 

map for the South Yangyang Province. Since CNN includes many hyperparameters to be tuned, 

Bayesian optimization was used to search for their best values. Model performance was compared 

to ANN and SVM.  

Yangyang region data showed a complicated scenario. Some previous landslide 

occurrences were spread in high-steep lands, while others in low-steep lands. To model such 

information, a comparatively complicated model is required to identify the non-linear relationship 

between landslide conditioning variables and the study area landslide occurrence. Our findings 

showed that CNN could outperform ANN and SVM owing to its complicated architecture and 

handling of landslide spatial correlations through convolution and pooling operations. This is also 

a sign of why SVM results are not very accurate or at least less accurate than CNN. SVM is 

comparable to a one-hidden layer neural network, which is obviously not complex enough to 

model such a scenario.  

However, when models get complicated, the problem of overfitting arises. To handle this 

issue in our study, CNN was designed with 1D convolutions to reduce the number of its parameters 

significantly. We also used a high dropout rate (0.66) which contributed in reducing the number 

of CNN parameters. These techniques were found useful in dealing with small datasets as we had 

in our study. Not forgetting that selecting importance factor (12 in our case) could also reduce the 

dimensionality of the data, thus playing a significant role in avoiding model overfitting due to 

small training samples. 

CNN is a promising solution to evaluating landslide susceptibility. Non-significant 

conditioning factors are suggested to be removed prior CNN application. We found no 

multicollinearity problem, but RF revealed that five conditioning variables (vegetation-related and 

aspect factors) were not important statistically; excluded from further analysis. After 25 iterations, 

Bayesian optimization recognized sub-optimal CNN hyperparameters in 3,408.83s, enhancing 

precision by 3%. Sensitivity analysis showed that some parameters (such as filter numbers in 

convolutional layers) and sequence length had greater impacts on CNN accuracy than other 

parameters.  
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A comparative research showed that CNN had the best OA, AUROC (validation and cross-

validated datasets) outcomes relative to ANN and SVM. Overall, CNN performed well considering 

the assessment metrics used, and extra training and optimization could further boost efficiency. 

Our findings help investigate other deep learning models (recurring neural networks, generative 

models, and auto encoders) in terms of assessing landslide susceptibility. The landslide community 

must have these fresh models accessible. Our findings open several research directions for using 

synthetic data and sophisticated algorithms, as well as herald novel apps. 
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Fig. 1 Landslide inventory map of study area. 
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Fig. 2 Geomorphologic landslide conditioning factors, (a) altitude, (b) slope, (c) aspect, (d) total 

curvature, (e) plan curvature, and (f) profile curvature. 
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Fig. 3 Lithology (a) and soil (b) factors. 
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Fig. 4 Land use factor. 
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Fig. 5 Forest-related landslide conditioning factors, (a) forest type, (b) forest density, (c) forest 

diameter, and (d) forest age. 
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Fig. 6 Hydrological landslide conditioning factors, (a) SPI, (b) STI, (c) TRI, and (d) TWI. 
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Fig. 7 Performance of the CNN model. 
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Fig. 8 The best-found configurations for the ANN and CNN models by Bayesian optimization. 

f(x) represents the objective function (negative minimum AUROC with 5-fold cross validation). 
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Fig.9 The effects of optimizer and activation function on the performance of the ANN and CNN 

models. 
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Fig. 10 The effects of the number of neurons in the hidden layers, batch size and dropout rate on 

the performance of the ANN and CNN models. 
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Fig. 11 The effects of the sequence length and the number of filters on the performance of the 

CNN model. 
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Fig. 12 Landslide susceptibility maps at the south of Yangyang using (a) ANN, (b) SVM, and (c) 

CNN. 
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Table 1 Landslide conditioning factors used in this research. 

Original data Factors Data type Scale 

Aerial photographa Landslide location Point 1:1,000 

Topographical mapb Altitude  

Slope gradient  

Slope aspect 

Total curvature 

Plan curvature 

Profile curvature 

Stream Power Index (SPI) 

Sediment Transport Index (STI) 

Topographic Roughness Index (TRI) 

Topographic Wetness Index (TWI) 

GRID 1:5,000 

Vegetation mapc Timber type 

Timber density 

Timber diameter 

Timber age 

Polygon 1:25,000 

Geology mapd Lithology Polygon 1:25,000 

Soil mape Soil texture Polygon 1:25,000 

Land usef  Land use type Polygon 1:25,000 
a http://map.daum.net 
b National Geographic Information Institute (NGII) 
c Korea Forest Service (KFS) 
d, e, f Rural Development Administration (RDA) 
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Table 2 The common kernel functions used with SVM. 

 

Kernel Equation Kernel Parameters 

Radial basis 

function 

(RBF) 

𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑒𝑥𝑝(−𝛾ǁ𝑥𝑖 − 𝑥𝑗ǁ  2) γ 

Linear 𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑥𝑖
𝑇𝑥𝑗 - 

Polynomial 𝐾(𝑥𝑖 , 𝑥𝑗) = (−𝛾𝑥𝑖
𝑇𝑥 + 1)𝑑 γ, d 

Logistic  𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑇𝑎𝑛ℎ(−𝛾𝑥𝑖
𝑇𝑥 + 1)𝑑 γ 
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Table 3 Hyperparameters and their search space of the proposed models. 

Model Parameters  Search Space 

ANN 

Batch Size  (4, 128) 

Activation Function  [ReLU, Linear, Sigmoid, Tanh, ELU] 

Optimization Method 
[SGD, Adam, Nadam, Adamax, Adadelta, Adagrad, 

RMSprop] 

Neurons in Hidden Layers (4, 512) 

Dropout Rate (0, 0.8) 

SVM 

Kernel Function  [RBF, Linear, Logistic, Polynomial] 

C Value  (1, 500) 

Gamma Log space (-9, 3, 13) 

CNN 

Number of Filters  (4, 512) 

Sequence Length  [3, 5, 10, 12] 

Batch Size  (4, 128) 

Activation Function  [ReLU, Linear, Sigmoid, Tanh, ELU] 

Optimization Method 
[SGD, Adam, Nadam, Adamax, Adadelta, Adagrad, 

RMSprop] 

Neurons in Hidden Layers (4, 512) 

Dropout Rate  (0, 0.8) 
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Table 4 Random Forest importance values and ranks estimated for the landslide conditioning 

factors. TRI (terrain roughness index), LULC(land use and land cover), STI (sediment transport 

index), SPI (stream power index), and TWI (terrain wetness index). 

Landslide causal Factor Rank Importance 

*Altitude 100 1.000 

*Soil 87 0.869 

*Plan Curvature 82 0.815 

*TRI 80 0.802 

*Total Curvature 76 0.759 

*Lithology 76 0.757 

*LULC 69 0.692 

*STI 65 0.652 

*SPI 65 0.650 

*Profile Curvature 65 0.648 

*TWI 65 0.647 

*Slope 64 0.639 

Timber Type 53 0.534 

Timber Age 53 0.532 

Aspect 53 0.530 

Timber Diameter 35 0.353 

Timber Density 27 0.269 
* factors are significant at α = 0.05. 
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Table 5 The best-selected hyperparameter values of different models. 

Model Parameters  Search Space 

ANN 

Batch Size  

Activation Function  

Optimization Method 

Neurons in Hidden Layers 

Dropout Rate 

71 

ReLU 

Adamax 

311 

0.57 

SVM 

Kernel Function  

C Value  

Gamma  

RBF 

397 

0.193 

CNN 

Number of Filters  

Sequence Length  

Batch Size  

Activation Function  

Optimization Method 

Neurons in Hidden Layers 

Dropout Rate 

117 

10 

16 

ELU 

Adagrad 

240 

0.66 
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Table 6 Performance of the proposed deep learning models and the benchmark methods using 

the training and validation datasets. 

Model 
Training 

Accuracy (%) 

Testing 

Accuracy (%) 

Training 

AUC 

Testing 

AUC 

5-CV 

AUC 

ANN 82.60 74.00 0.903 0.797 0.792 

SVM 76.40 76.50 0.858 0.808 0.807 

CNN 83.50 83.11 0.881 0.880 0.893 
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Table 7 Computing performance of the models in seconds. 

Model 
Computing Time (seconds) 

Optimization Training Prediction (× 𝟏𝟎−𝟑) 

ANN 2378.89 0.22 1.12 

SVM 9.27 0.08 1.09 

CNN 3408.83 0.59 2.92 
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