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Abstract. Of the 829 active volcanoes distributed worldwide, 129 are located in 
Indonesia. Two recent eruptions of Mount Agung on Bali Island, Indonesia, on 
November 21, 2017 and January 11, 2018, produced massive ash, steam, and 
gas emissions. Rainwater carried these pyroclastic materials in cold lahars to 
southwestern parts of the island. Because explosive eruptions of Mount Agung 
during 1963–1964 produced voluminous ashfall and catastrophic pyroclastic 
flows, the monitoring of this volcano has been considered essential. Land cover 
(LC) mapping is one method commonly used to monitor the spread of materials 
in volcanic areas due to the inaccessibility of field data during ongoing 
eruptions. In this paper, we analyzed multispectral data using two different 
classifiers: an artificial neural network (ANN) and a support vector machine 
(SVM). Landsat imagery was used to generate a LC map with four feature 
classes: rock and sand, vegetation, cloud, and shadow. The ANN method was 
more accurate than the SVM method, with classification accuracies of 94.67% 
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and 97% for the first and second Mount Agung eruptions, respectively. The 
SVM classifier was better than ANN at classifying images taken prior to 
eruption, with an overall accuracy of 91.60%. Thus, both classifiers accurately 
distinguished eruption products and environmental features, and are suitable for 
LC classification in volcanic regions. 
 
Keywords: Artificial neural network, geographic information system, remote sensing, 
Mount Agung, support vector machine, volcanic eruption. 

1 Introduction 

Of the 829 active volcanoes distributed worldwide, 129 are located in 
Indonesia. In 1963–1964, the most massive explosive eruption to occur in 
Indonesia in the 20th century took place on Mount Agung, producing 
voluminous ashfall and catastrophic pyroclastic flows. Since that time, almost 
no activity was reported from Agung, until mid-August 2017, when seismic 
activity was recorded (Global Volcanism Program, 2018). The Center for 
Volcanology and Geological Hazard Mitigation in Indonesia incrementally 
raised the alert level from I to IV (lowest to highest) between September 14 and 
22, 2017 as the rate of seismic events increased (Global Volcanism Program, 
2018). The first ash emission appeared on November 21, 2017, increasing 700 
m above the summit and causing environmental damage, air travel disruption, 
and the evacuation of thousands of people. During the following week, ash 
plume heights increased to approximately 3,000 m; ash and steam emission 
continued until the second eruption on January 11, 2018. Because the eruption 
occurred during the rainy season, materials emitted from Mount Agung were 
carried by rainwater as cold lahar floods into the Sabuh River and Yeh Asa 
River to the south and southwest of Mount Agung, respectively. 

Because lava flows, ash falls, and lahars can cause losses such as human 
casualties, property damage, and environmental degradation (Blong, 1984), 
damage assessments from remote sensing images are needed. Land cover (LC) 
mapping is a commonly used monitoring strategy that can incorporate 
predictive flow models or risk zonation, which can be particularly useful for 
developing countries, where the damage caused by volcano eruptions to 
growing populations is continually increasing. Kadavi (2017) reported that 
remote sensing imagery could help to monitor the spread of atmospheric 
eruptive fumes, pyroclastic deposits, incandescent lava, lahar distribution, and 
dome deformation. Thus, the use of remote sensing technologies can define a 
new paradigm for volcanology activity observations (Pieri and Abrams, 2004) 
that is advantageous in all phases of volcanic eruptions disaster management 
(Van Westen, 2000). 
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Remote sensing provides a systematic, concise framework for advancing 
scientific knowledge of the Earth through interacting processes that can include 
natural disasters and their effects (Tralli, 2005). Remote sensing provides 
geospatial information products that address the operational requirements of 
multi-hazard decision support tools and systems. For example, policymakers, 
responders, and emergency managers from local to global scales can generate 
scenarios, map out mitigation plans, and design the most effective response 
measures using remote sensing imagery.  

Multiple types of satellite-borne sensors such as the Satellite Pour 
l’Observation de la Terre, Landsat, and the Advanced Spaceborne Thermal 
Emission and Reflection Radiometer (ASTER) can provide data suitable for 
debris mapping, and allow researchers to obtain high-spatial-resolution satellite 
images (Kerle et al., 2003; Joyce et al., 2008). Techniques for the visual 
interpretation of changes in images due to volcanic activity include multiband 
displays, which incorporate images from different input dates (Calomarde, 
1998; Castro and Carranza, 2005), principal components analyses, and image 
subtraction (Torres et al., 2004). Image classification can involve artificial 
neural networks (ANNs, Foody, 2000), support vector machines (SVMs, 
Watanachaturaporn & Arora, 2004), and decision tree methods (Hansen et al., 
1996; Pal, 2003); classified images are integrated by remote sensing image 
processing software such as PCI Geomatica, Earth Resource Development 
Assessment System (ERDAS), and Environment for Visualizing Images 
(ENVI) (Liu, 2014). Recently, numerous studies have demonstrated that ANNs 
and SVMs can provide alternative methodologies for classification problems to 
which traditional statistical approaches have long been applied (Tseng, 2008). 

Although the use of satellite imagery in natural hazard damage or disaster 
assessment and prediction can be very cost effective and time effective, this 
approach has some drawbacks. A lack of spatial resolution and radiometric 
sensitivity are often caused by small-scale monitoring of volcanic activity is 
required. For example, plumes are better monitored with higher-resolution 
sensors such as ASTER (Realmuto et al., 1997; Pugnaghi et al., 2006), although 
its less frequent overpasses compromise temporal variability monitoring.  

Atmospheric disturbances such as clouds, haze, and smoke create significant 
problems in passive optical imagery analyses because they block parts of the 
image and can cause distortion (Zhan et al., 2005). Often, these clouded and 
shadowed areas must be excluded from damage assessment analyses, resulting 
in gaps in the data. Active sensors such as radar, Global Positioning System, or 
Light Detection and Ranging can avoid this problem; however significant 
limitations remain due to large pixel sizes, classification accuracy, and revisit 
times (Sanyal and Lu, 2004). The temporal resolutions of active and passive 
sensors can also pose a problem in real-time damage assessments of natural 
hazards. Sensors such as the Moderate Resolution Imaging Spectroradiometer 
have a daily revisit time, whereas sensors on satellites such as Landsat and 
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IKONOS have longer revisit times. Earthquakes, volcanic eruptions, 
landslides, and floods can occur very quickly; the peak of the disaster may only 
persist for a few hours, such that it may not be captured by sensors (Sanyal and 
Lu, 2004).  

In this study, we acquired Landsat images of the Mount Agung eruptions in 
2017 and 2018, and employed ANN and SVM classification methodologies. 
We compared the accuracies of the SVM and ANN classification methods for 
processed data collected around the Mount Agung volcanic eruptions, and 
examined the resulting LC data to predict disaster-prone areas around Mount 
Agung. 

2 Study Area 

Mount Agung is an active stratovolcano with a broad, deep crater 3,142 m 
above sea level; it is the highest peak in Bali, Indonesia (Fig. 1a). The volcano 
is located at latitude 8°25’S and longitude 115°30’E in eastern Bali Island and 
is part of the Sunda volcanic arc, which overlies northward-dipping oceanic 
crust subducted at the Java trench, in the Indian Ocean south of Bali (Whitford, 
1975). The volcanic cone is steep and almost barren at the top, with an open, 
funnel-shaped crater 520 m × 375 m in area (Dilmy, 1965). Mount Agung lies 
just outside and southeast of Mount Batur (Fig. 1b) (Wheller and Varne, 1986). 
Nearly one million people live within a 30 km radius of Mount Agung, which 
has great religious significance for the Balinese people (Gertisser, 2018). 

 

 
 

Figure 1. (a) The Mount Agung crater; Mount Batur is shown in the background. (b) 
The location of Mount Agung within Bali Island. 

 
Mount Agung is one of many volcanoes in Indonesia that have a minimal 

written record, probably due to their long dormancy. The earliest recorded 
eruption of Mount Agung occurred in 1843; there exists no systematic written 
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record of volcanic eruptions in Indonesia during this period. After 1843, 
increased solfataric activities were recorded until 1963, when catastrophic 
eruptions occurred, culminating in two massive explosions on March 17 and 
May 16, 1963. Previous Mount Agung eruptions in 1808, 1821, 1843, and 1963 
exhibited similar types of eruptions, both explosive (emitting sparks, lava 
fragments, pyroclastic rain, and ash), and effusive (hot cloud flow and lava flow) 
(Kusumadinata, 1979). On November 21, 2017, Mount Agung erupted again, 
beginning with a phreatic (steam) explosion that emitted pulverized volcanic 
rock and generated a 700 m eruption column above the volcano (Fig. 2a). 
Further explosions within the following few days caused ashfall and cold lahars 
to the southwest of the volcano (Fig. 2c). Explosive events on January 11 (Fig. 
2b) and 15, 2018 produced 2.5 km ash plumes above the volcano, causing thin 
ashfall in downwind areas. As of 20 January 2018, ash and steam plumes 
persisted above the Mount Agung crater rim, high-frequency volcanic 
earthquakes dominated the seismic activity, and the region remained at the 
highest alert level (Gertisser, 2018). A map of disaster-prone areas and the 
dominant ejected materials is shown in Figure 3. In this study, we used Landsat-
7 images to capture the conditions following the first eruption, and Landsat-8 
images to capture pre-eruption conditions and current conditions, due to cloud 
cover. 

 

 
 
Figure 2. (a) The first reported ash emission from Mount Agung drifted southwestward 
on November 21, 2017. (b) Mount Agung emitted a 2,500 m ash plume above its crater 
on January 11, 2018; tremors were also observed. (c) Continued ashfall on the slopes 
of Mount Agung carried by rainwater caused cold lahar flows in Muncan Village, 
Karangasem, Bali, November 29, 2017.  
 

Professor Biswajeet Pradhan
Do you have better quality figures? 



 6 

 
Figure 3. Map of disaster-prone areas around Mount Agung (Center for Volcanology 
and Geological Hazard Mitigation [29 Spetember 2017]). 

3 Landsat Imagery Data 

Landsat-7 (Fig. 4b) RGB bands 7, 4, and 2 were used for Mount Agung LC 
classification of post-eruption images taken on December 8, 2017. Landsat-8 
RGB (Fig. 4a, c) bands 7, 5, and 3 were used for LC classification of pre-
eruption images acquired on September 13, 2017 and of images acquired April 
23, 2018, showing the current conditions on Mount Agung. Satellite images 
were selected based on the apparent LC (vegetation, rock, and soil). The 
distribution of volcanic material ejected from Mount Agung including cold 
lahar, rock, and sand was classified to distinguish it from other objects such as 
vegetation and cloud. However, many of the Landsat images were inevitably 
covered by cloud, particularly in the tropics (Asner, 2001). Because Indonesia 
is a tropical country, obtaining clear Landsat images for use in the current study 
was a challenge. The Landsat images are classified into four classes; the 
classification scheme and category definitions are listed in Table 1. 
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Figure 4. Landsat imagery data for Mount Agung (a) acquired on September 13, 2017 
(Landsat-8), before the first eruption; (b) acquired on December 8, 2017 (Landsat-7), 
before the first eruption; and (c) acquired on April 23, 2018 (Landsat-8), after the 
second eruption. Landsat-8 RGB bands 7, 5, and 3 and Landsat-7 RGB bands 7, 4, and 
2 were used. 
 

Table 1. Land cover (LC) classification scheme and class definitions for the study area 
on Mount Agung in Bali, Indonesia. 
 

Class 
number Class name Class definition 

1 Rock and 
sand 

Volcanic eruption products such as rock, 
sand, and pyroclastic materials.  

2 Vegetation Natural upland forest including grass and 
trees 

3 Cloud All areas covered by cloud 
4 Shadow Shadowed areas 

 

4 Methodology 

Erupted ash and pyroclastic material do not form specific spatial patterns 
(Smith, 2002) and must therefore be mapped based on spectral or temporal 
contrasts (Mazher, 2012). In the current study, we first examined different 
classification approaches to determine which was more accurate. Our approach 
consisted of three phases: extracting the most appropriate features, comparing 
classification methods, and assessing the accuracy of these methods (Fig. 5). 
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Figure 5. A flowchart of the methodology used in this study to determine the 
effectiveness of the artificial neural network (ANN) and support vector machine (SVM) 
classification approaches for selected images. 

 

4.1 ANN Classification 

ANNs are used in LC mapping for pattern recognition and the classification 
of image data (Hepner, 1990) from remotely sensed satellite data (Foody, 
1996), which consist of one input layer, at least one hidden layer, and one output 
layer. Each layer in an ANN is formed by nonlinear processing units (i.e., 
neurons); the connections between neurons in successive layers are weighted 
(Xiu, 2013). In the current study, we employed the architecture of network and 
training patterns suggested by Kavzoglu (2009) and a logistic activation model. 
The Mount Agung area was classified into four groups, with five training 
samples per group. These groups consisted of rock and sand, vegetation, cloud, 
and shadow; each was differentiated by color using RGB Landsat images. The 
training threshold contribution and training momentum field were set to 0.9; 
the training rate field, number of training iterations, and training RMS exit 
criteria field were set to 0.2, 1000, and 0.1, respectively.  

4.2 SVM Classification 

Professor Biswajeet Pradhan
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SVM is another machine learning technique that has been applied in the 
classification of remote sensing data (Dixon and Candade, 2008; Yao et al., 
2008). Like ANN and other nonparametric classifiers, it is a robust 
classification approach (Foody and Mathur, 2004a; Foody and Mathur, 2004b). 
SVM separates image data into classes using a decision surface that maximizes 
the differences among the classes (Lu, 2012). In this study, we applied the ANN 
and SVM approaches to the same images, using the same training samples. The 
SVM classifier features four types of common kernels: polynomial, linear, 
radial basis function (RBF), and sigmoid (Liu, 2013). Of these, we selected the 
RBF kernel due to its wide applicability and capacity to facilitate excellent 
nonlinear classification (Mountrakis, 2011; Zhai, 2014). The gamma value was 
set to 0.33, the penalty parameter was set to 100, and the pyramid parameter 
was set to 0 to process each image in full resolution. A classification probability 
threshold of zero was selected to force the assignment of a class label to all 
image pixels.. 

5 Results and Discussion 

Landsat-7 and Landsat-8 images of Mount Agung were classified using the 
ANN and SVM methods. Each classified the image data into four groups: rock 
and sand, vegetation (trees and grass), cloud, and shadow. A stratified sampling 
method was applied on a pixel-by-pixel basis to assess classification accuracy. 
Pixels representing each class were randomly selected from the Landsat maps 
to assess the accuracy of the classification method. Error matrices were 
generated by visually interpreting the 30 m resolution images and the 
corresponding Landsat 7 images. The kappa coefficient was used to assess 
accuracy by dividing the amount of agreement between results by the amount 
that would be expected by chance (Cohen, 1960); thus, it is a measure of the 
proportionate reduction in error (i.e., the extent to which the results indicate 
statistical non-independence). The kappa coefficient adjusts for some of the 
differences between matrices, and thus can be used to compare results for 
different regions or different classifications (Khorram et al., 1999). Therefore, 
we calculated the kappa coefficient of each error matrix to determine whether 
one classifier was significantly better than the other.  

5.1.  Images Acquired Prior to the First Eruption  

5.1.1. Land Classification Map  

Mount Agung was classified into four groups based on the colors in the 
Landsat-8 images. These groups included rock and sand, vegetation (including 
houses), cloud, and shadow (Fig. 6). The images were trained into five random 
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polygon samples for each class (20 samples in total) to obtain the LC result. 
For images acquired on September 13, 2017, prior to the first eruption, SVM 
generated better recognition than ANN. SVM was computationally more 
efficient and better able to distinguish cloud from rock and sand. Images of the 
northern part of Mount Agung were free of cloud; however, the ANN classified 
darker vegetation cover as cloud, which are visually distinct (Fig. 4). Prior to 
the eruption on November 2017, the top of Mount Agung was covered only by 
volcanic rock and sand.  

 

Figure 6. Land classification maps of Mount Agung before the November 2017 
eruption created using Landsat-8 images with (a) ANN and (b) SVM classification. The 
images were classified into four land cover (LC) classes: rock and sand (red), vegetation 
(green), cloud (blue), and shadow (yellow). 

5.1.2. Accuracy Assessment 

Tables 2 and 3 show the error matrix for the LC classification map of Mount 
Agung prior to the first eruption using the ANN and SVM methods, 
respectively. Both methods used 405 pixels: 89 for rock and sand, 118 for 
vegetation, 108 for cloud, and 90 for shadow. All sample data were based on 
the LC area and its spread. For example, the rock and sand class contained the 
lowest number because its LC was lowest among the groups. The accuracy of 
the SVM method (91.60%) was much higher than that of the ANN method 
(91.36%). The accuracies of the user and producer results were high in most 
classes; however, producer accuracy was lower for the rock and sand class than 
for all other classes under both ANN (74.16%) and SVM (78.65%), due to the 
identification of darker vegetation as rock and sand. The Kappa coefficient for 
the ANN method was 90.54% and that of SVM was 90.78%. 
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Table 2. Error matrix for LC map of Mount Agung before the first eruption classified 
using the artificial neural network (ANN) method. 
 

 Rock 
and sand 

Veget
ation 

Clo
ud 

Sha
dow 

Class 
totals 

User 
accuracy 
(%) 

Rock and sand 66 0 0 3 69 96 
Vegetation 10 115 0 6 131 87.79 
Cloud 11 2 108 0 121 89.26 
Shadow 2 1 0 81 84 96.43 
Reference 
totals 89 118 108 90 405  

Producer 
accuracy (%) 74.1 97 100 90   

Overall 
accuracy (%) 91.36 91.36     

Kappa 
coefficient 
(%) 

90.54 90.54     

 
Table 3. Error matrix for LC map of Mount Agung before the first eruption classified 
using the support vector machine (SVM) method. 
 

 Rock 
and sand 

Veget
ation 

Clo
ud 

Sha
dow 

Class 
totals 

User 
accuracy 

(%) 
Rock and 
sand 70 0 0 2 72 97 

Vegetation 15 117 2 8 142 82.39 
Cloud 0 0 104 0 104 100.00 
Shadow 4 1 2 80 87 91.95 
Reference 
totals 89 118 108 90 405  

Producer 
accuracy (%) 78.65 99 96 89   

Overall 
accuracy (%) 91.60 91.60     
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Kappa 
coefficient 
(%) 

90.78 90.78     

5.2. Images Acquired After the First Eruption 

5.2.1. LC Maps  

The image of Mount Agung acquired after the first eruption was also divided 
into four classes: volcanic rock and sand, vegetation, cloud, and shadow. We 
used 20 random training samples in total (five samples per class). The results 
of ANN classification are shown in Figure 7a and those of SVM classification 
are shown in Figure 7b. Both methods produced similar results; however, there 
were some differences. Because the acquired image was extremely cloudy, the 
classification results obtained by both methods were dominated by blue color. 
The ANN method identified some of the darker vegetation areas as rock and 
sand, particularly in the northern part of Mount Agung. SVM classified some 
darker vegetation as shadow, as shown in the southern and northern parts of the 
images (Fig. 7b).  

 

 

 

Figure 7. LC maps of Mount Agung after the first eruption created from Landsat-7 
images classified using (a) ANN and (b) SVM. LC was classified into four classes: rock 
and sand (red), vegetation (green), cloud (blue), and shadow (yellow). 

5.2.2. Accuracy Assessment 
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The ANN and SVM error matrices were generated using 507 test pixels: 119 
for rock and sand, 110 for vegetation, 137 for cloud, and 141 for shadow. 
Accuracy assessment results for the ANN and SVM classification of the image 
acquired after the first eruption image are shown in Tables 4 and 5. ANN and 
SVM provided very similar overall accuracies, at 94.67% and 94.28%, 
respectively. The results were very similar between methods; however, the user 
accuracy results for the rock and sand class were significantly different, with 
92% for ANN and 82% for SVM. The kappa coefficients for ANN and SVM 
were 93.96 and 93.46%, respectively. 

 
Table 4. Error matrix for LC map of Mount Agung after the first eruption classified 
using the ANN method. 
 

 Rock 
and sand 

Veget
ation 

Clo
ud 

Sha
dow 

Class 
totals 

User 
accuracy 
(%) 

Rock and sand 92 5 3 0 100 92 
Vegetation 0 111 2 0 113 98.23 
Cloud 5 10 136 2 153 88.89 
Shadow 0 0 0 141 141 100.00 
Reference 
totals 97 126 141 143 507  

Producer 
accuracy (%) 94.85 88 96 99   

Overall 
accuracy (%) 94.67 94.67     

Kappa 
coefficient 
(%) 

93.96 93.96     

 

 

 

Table 5. Error matrix for LC map of Mount Agung after the first eruption classified 
using the SVM method. 
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 Rock 
and sand 

Veget
ation 

Clo
ud 

Sha
dow 

Class 
totals 

User 
accuracy 
(%) 

Rock and 
sand 97 12 9 1 119 82 

Vegetation 0 109 1 0 110 99.09 
Cloud 0 5 131 1 137 95.62 
Shadow 0 0 0 141 141 100.00 
Reference 
totals 97 126 141 143 507  

Producer 
accuracy (%) 100.00 87 93 99   

Overall 
accuracy (%) 94.28 94.28     

Kappa 
coefficient 
(%) 

93.46 93.46     

 

5.3.  Images Acquired After the Second Eruption 

5.3.1. LC Maps  

LC maps of Mount Agung after the second eruption are shown in Figure 8. 
The image was divided into four classes based on color: red for pyroclastic 
material including volcanic rock and sand, green for vegetation, blue for cloud, 
and yellow for shadow. For this image, we selected 20 random polygon samples 
in total for training (five samples per class). The ANN method yielded a better 
result than SVM, which misclassified some light vegetation as cloud. Some 
darker vegetation was also classified as shadow, particularly in the 
northwestern parts of Mount Agung. Similar results for the other classes were 
obtained by both methods; notably, pyroclastic material was shown to have the 
same flow direction as the first eruption (i.e., to the southwest). These images 
were acquired on April 23, 2018; therefore, little pyroclastic material remained.  
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Figure 8. LC maps of Mount Agung after the second eruption created from Landsat-8 
images classified with the (a) ANN and (b) SVM methods. LC was classified into four 
classes: rock and sand (red), vegetation (green), cloud (blue), and shadow (yellow). 

5.3.2. Accuracy Assessment 

Error matrices for LC maps of Mount Agung after the second eruption 
classified using the ANN and SVM methods are shown in Tables 6 and 7. 
Accuracy assessment used 551 pixels for the ANN method: 144 pixels for rock 
and sand, 161 pixels for vegetation, 114 pixels for cloud, and 132 pixels for 
shadow. The SVM method classified 139 pixels as rock and sand, 178 pixels as 
vegetation, 112 pixels as cloud, and 122 pixels as shadow. The ANN method 
had better overall accuracy (97%) than the SVM method (92%). User accuracy 
and producer accuracy were higher for the ANN method (92.81%) than the 
SVM method (86.93%) in the rock and sand class (i.e., ANN classified 
pyroclastic materials better than SVM). The kappa coefficients were 87.80% 
for ANN and 92.89% for SVM.  
 
Table 6. Error matrix for LC map of Mount Agung after the second eruption classified 
using the ANN method.  

 

 
Rock 
and 
sand 

Vege
tatio

n 

Clou
d 

Shado
w 

Class 
totals 

User 
accuracy 

(%) 
Rock and sand 142 0 1 1 144 98.61 

Vegetation 4 157 0 0 161 97.52 
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Cloud 0 0 114 0 114 100.00 
Shadow 7 5 0 120 132 90.91 
Reference 
totals 153 162 115 121 551  

Producer 
accuracy (%) 92.81 96.91 99.13 99.17   

Overall 
accuracy (%) 97 97     

Kappa 
coefficient (%) 96 96     

 
Table 7. Error matrix for LC map of Mount Agung after the second eruption classified 
using the SVM method. 

 

 
Rock 
and 
sand 

Vege
tatio

n 

Clou
d 

Shad
ow 

Class 
totals 

User 
accuracy 

(%) 
Rock and sand 133 0 1 5 139 95.68 
Vegetation 20 152 6 0 178 85.39 
Cloud 0 4 108 0 112 96.43 
Shadow 0 6 0 116 122 95.08 
Reference 
totals 153 162 115 121 551  

Producer 
accuracy (%) 86.93 93.83 93.91 95.87   

Overall 
accuracy (%) 92 92     

Kappa 
coefficient (%) 91 91     

6 Conclusions 

The ANN and SVM algorithms both successfully classified LC on Landsat 
images of Mount Agung. ANN classifications were more accurate than those 
performed using the SVM method for post-eruption images of Mount Agung. 
Based on these results, ANN is suitable for LC classification even with a small 
number of pixels. Overall, both classifiers were able to accurately distinguish 
pyroclastic material such as lahar, volcanic rock, and sand. Because spatial 
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resolution affects LC accuracy, high-resolution images provided better LC 
accuracy results. Information provided by LC maps can be used in the 
generation of maps of disaster-prone regions, particularly pyroclastic material 
debris area. Therefore, the results of the current study may be useful for 
predicting the susceptibility of volcanic regions to pyroclastic debris damage.  
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