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Abstract: Gully erosion is a problem; therefore, it must be predicted using highly accurate predictive
models to avoid losses caused by gully development and to guarantee sustainable development.
This research investigates the predictive performance of seven multiple-criteria decision-making
(MCDM), statistical, and machine learning (ML)-based models and their ensembles for gully erosion
susceptibility mapping (GESM). A case study of the Dasjard River watershed, Iran uses a database of
306 gully head cuts and 15 conditioning factors. The database was divided 70:30 to train and verify
the models. Their performance was assessed with the area under prediction rate curve (AUPRC),
the area under success rate curve (AUSRC), accuracy, and kappa. Results show that slope is key
to gully formation. The maximum entropy (ME) ML model has the best performance (AUSRC =

0.947, AUPRC = 0.948, accuracy = 0.849 and kappa = 0.699). The second best is the random forest
(RF) model (AUSRC = 0.965, AUPRC = 0.932, accuracy = 0.812 and kappa = 0.624). By contrast,
the TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) model was the least
effective (AUSRC = 0.871, AUPRC = 0.867, accuracy = 0.758 and kappa = 0.516). RF increased the
performance of statistical index (SI) and frequency ratio (FR) statistical models. Furthermore, the
combination of a generalized linear model (GLM), and functional data analysis (FDA) improved
their performances. The results demonstrate that a combination of geographic information systems
(GIS) with remote sensing (RS)-based ML models can successfully map gully erosion susceptibility,
particularly in low-income and developing regions. This method can aid the analyses and decisions of
natural resources managers and local planners to reduce damages by focusing attention and resources
on areas prone to the worst and most damaging gully erosion.
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1. Introduction

By relying on the principles of systemic view, geomorphology can help understand the mechanisms
governing the natural environment. This knowledge enables humans to act in such a way that their
activities will not damage the natural environment and instead complement natural processes.
Nature-based solutions have been highlighted as a superior approach to land management based
on engineered structures, which are still preferred by many landowners and managers [1]. To work
with the landscape, geomorphologists, using their knowledge of natural morpho-dynamic factors, can
predict environmental responses to prospective remedies to ensure that ecosystem services will be
preserved or even restored. Before designing solutions to stop degradation and enable restoration, it is
wise to understand the current state of the land.

Given the destructive effects of gully erosion (GE), solutions for managing this phenomenon to
achieve sustainable development are essential [2]. Gully erosion-susceptibility mapping (GESM) is one
basic method [3] to understand the mechanisms behind gully erosion. To predict the patterns of GE,
a gully-erosion inventory and methods to identify and measure pertinent gully-erosion conditioning
factors (GECFs) are needed [4]. Technically speaking, drainage networks, soil characteristics, rainfall,
land use, topography, and lithology have been identified as the relevant GEFs controlling gully erosion
and development [5].

A geographic information system (GIS), remote sensing (RS), and statistical data analyses are
indispensable tools for examination of multidimensional outcomes like GE. Several factors are potential
influences [3]. A variety of GIS-based approaches for GESM have been proposed and they can be
classified into three types: multicriteria decision-making (MCDM), statistical modeling, and machine
learning (ML) models. MCDM models are based on the knowledge of decision makers to identify, select,
and weight conditioning factors [6–10]. These factors are combined to develop a GE model. Although
recent developments in mathematical science, computational science, and computer technology have
yielded more than 20 new MCDM models, the ranking of factors remains subjective. Statistical
models provide a general advantage of working with diverse types of independent variables, like
continues, binary, and categorical data [5]. The most successful models may be: information value
(IV) [5], conditional probability [11], frequency ratio (FR) [12], evidential belief function [3], index of
entropy (IoE) [13], certainty factor [14], weights of evidence (WOE) [15], and logistic regression [16].
The performance of statistical models is low, however. ML has proven to be efficient for GE modeling
due to its ability to handle small training sets and factors with complex relationships. The most
successful ML models for GE consist of multivariate adaptive regression spline [17], maximum entropy
(ME) [18], boosted regression tree [19], artificial neural network (ANN) [20], random forest (RF) [21],
linear discriminant analysis [22], bagging best-first decision tree [23], support vector machine [24],
classification and regression trees [20], and flexible discriminant analysis [14], generalized linear model
(GLM) [25], functional data analysis (FDA) [26], and the technique for order preference by similarity to
the ideal solution (TOPSIS) [27].

Many ML models have been used by researchers, each has its disadvantages and advantages [22].
The selection of a suitable method is critical and requires careful consideration [24]. A comprehensive
comparative assessment of MCDM, statistical, and ML models for GESM for use in arid and semi-arid
regions of the world has not been conducted. This research attempts to begin to fill this gap by
comparing seven models—MCDM-based TOPSIS, the statistically based statistical index (SI) and FR,
and the ML-based RF, ME, GLM, and FDA—for GESM. SI is a simple and quantitatively suitable model
that has been applied to landslide-susceptibility mapping [28,29], but this is the first time it has been
used for GESM.

Ensemble models, combinations of two or more statistical and ML techniques, have been proven
to work for GESM [3,11]. Theoretically, ensemble models inherit the virtues and eliminate the
shortcomings of individual techniques to form more robust models [30,31]. They ensure diversity to
guarantee high prediction performance of their models. Ensemble models for gully-erosion modeling
can be classified into simple integration models, homogeneous frameworks, and heterogeneous
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frameworks [32]. Simple integration is a simple assemblage of individual methods. A homogenous
framework (i.e., boosting, bagging, rotation forest) creates subsets from the original training set, uses
a ML algorithm to generate a classifier for each subset, and groups the classifiers into an ensemble
model. This procedure is also used for heterogenous frameworks. The difference is that different
ML algorithms are used for each of the subsets to create classifiers. Errors are dramatically reduced
by combining independent learners into ensemble models [30]. This study also combines models to
achieve a better collective performance to map gully-erosion susceptibility.

The study was conducted in the Dasjard River watershed, Iran. This watershed is an arid
region [33] that has experienced severe GE in recent years. The aims of this study are to explore the
capabilities of several individual and ensemble approaches for GESM, to evaluate the influences of
GECFs on GE, and to validate the modeled susceptibility maps using several criteria. Comparison of
MCDM, statistical, and ML approaches and their ensembles with a RS dataset to evaluate several GEFs
for GESM is novel to this study.

2. Description of the Study Area

The Dasjard River watershed is found between 35◦51′24′′ and 36◦22′32′′ N and between 55◦29′54′′

and 56◦23′14′′ E (Figure 1), covering 2820.29 km2. Elevation ranges from 793 to 2418 m above sea level
(m.a.s.l.). The steepest slope in the watershed is 73◦ and the mean is 3.8◦. The central portion of the
watershed is generally flat. In fact, 36.5% of the study area is a relatively flat plain. Precipitation ranges
from 47.34 mm to 230.43 mm annually across the region, but the average is 154.3 mm. More than 75%
of the precipitation occurs in December and January [33]. The mean annual temperature is 17.8 ◦C and
the range is from 43 ◦C to −6 ◦C [33]. The climates across the watershed are arid and semiarid [33].

Reading from the 1:100,000 scale Toroud sheet from the Geological Survey Department of
Iran [34], the region is covered by Quaternary lithotypes. Clayey material, well-sorted sand dunes, salt
concretions, mixed terrace deposits, and swamp or marsh deposits are the most important units [34].
The geological structure of the study area is crossed by an important E-to-W Quaternary strike fault
(the Toroud fault) that is responsible for uplift of a metamorphic basement in the northern part of the
study area. Morphologically, steep slopes (average > 30◦) dominate the northern third of the area.
High local relief is a product of heavy dissection of an uplifted surface. These slopes display the
rectilinear-convex profile of V-shaped valleys. The central third of the watershed has gentle slopes
where Quaternary deposits are found as outcrops. Denudation from mass wasting and water erosion
has significantly affected hill slopes. The profiles are well articulated with concave or convex shapes
and are incised by concave valleys. The landscape of the middle of the watershed is characterized by
terraces, deeply dissected by V-shaped or concave valleys. More recent fluvial terraces and alluvial
fans are also commonplace. Several soil types are found in the Dasjard River watershed. The soils are
poorly developed (Aridisols and Entisols) [35] and frequently appear truncated or strongly degraded
at the surface by water erosion.

The gully features in the study region range from 0.79 m to 365 m in length, and are at least
0.65 m deep, but can be as much as 7.2 m deep. The widths of gullies range from 0.76 m to 19.4 m.
These formations reflect the primary mechanism of landscape degradation in the area, particularly
soil erosion. Water erosion occurs relatively slowly over long periods of time, but even relatively
small rainfall events can yield significant gully incision and retrogradation. Field monitoring of gully
head cuts in the area has distinguished lateral erosion, primarily caused by instability of the perimeter
edges of the incision, which leads to gravitational collapse ranging from micro- to meso-scale impacts.
The main gullies have V- and U-shaped cross-sections that retrograde into steep, unstable scarps.
The river valley contains gullies that formed on both river terraces and slopes. Gullying degrades
agricultural land, roadways, and irrigation canals, threatening settlements and local economies.

Piping is an important process related to gully erosion. Piping dissolves soluble soil materials and
disaggregates loose soil. Like sinkholes, pipes undercut structures and create tunnels. These features
are most often caused by infiltration into susceptible materials and subsequent shallow groundwater
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flows. The Biarjamand watershed has extensive deposits of fine-grained (silt and clay) soils and in soils
with soluble (salt, gypsum, and carbonate) mineral fractions. The former, due to their clay content,
expand and contract as they moisten and desiccate. During dry seasons, the soil contracts, weakens,
and cracks. During wet seasons, the cracks provide paths for infiltration and subsurface flows. The
latter dissolve, chemically removing soil fractions and horizontally transporting minerals in solution
with flowing water and then vertically to the surface through leaching.

Tunneling and gullying also occur in formations in low- and flat-lands that contain marls and
silts. Erosion begins along gully scarps where water may stagnate and create holes from shrink and
swell processes. As a hole grows, it may eventually connect to a main gully, widening and elongating
it. Piping, tension-crack development, dispersion, bank collapse, and rill erosion are important
mechanisms initiating and developing gullies.
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Figure 1. Location of study area in Semnan province and Iran, and location of training and validation
gullies in the study area.

3. Materials and Methods

3.1. Data Used

A gully-erosion inventory map (GEIM) was developed from an extensive field survey. Three
hundred and six gully erosion events were identified in the region and geolocated with a global
positioning system (GPS) device (Figure 2). They were randomly divided into a training set (70%,
213 gully locations) and a validation set (30%, 92 gully locations). Gullies occupy 141.3 km2, comprising
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5% of the study area. The gullies, mapped as polygons, were converted to points (locations of
the head-cut portion of each gully). The point locations were used in modeling and validation.
An equivalent number and percentage of non-gully point locations were randomly chosen and were
used in calibration and validation procedures.
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The fifteen most important gully erosion conditioning factors (GECFs) were chosen based on
a literature review [3,11,13–15], assessments of the physical characteristics of the study area, the scale,
and availability of data, and a consideration of the intended purpose of research. These GECFs are
elevation, slope, plan curvature (PC), topography wetness index (TWI), convergence index (CI), terrain
ruggedness index (TRI), topography position index (TPI), distance to stream, drainage density, distance
to road, normalized difference vegetation index (NDVI), rainfall, soil type, land use/land cover (LU/LC),
and lithology (Table 1). An ALOS DEM with a spatial resolution of 12.5 m, topography and geology
maps with 1:50,000 (www.ngo-org.ir) and 1:100,000 (Toroud sheet) scales, LANDSAT-8 images archived
by USGS (https://earthexplorer.usgs.gov/), a soil map with 1:100,000 scale, and rainfall statistics for
a 30-year period (1986 to 2016) were used to prepare GECFs (Figure 3a–o).

Elevation affects vegetation and precipitation patterns. They therefore control the spatial
distribution of gully erosion and the processes at work [36]. Slope affects surface runoff, soil
erosion, and drainage density patterns. The steepness of the slope is also important as it enhances or
attenuates the energy of erosive processes and gully erosion [37]. Plan curvature causes convergence
or divergence of water flows on slopes and influences downslope flow [36]. These three parameters
were extracted from the ALOS DEM.

Erosive-runoff capacity reflects transport capacity and flow velocity, and is determined by TWI.
TWI is crucial for identifying areas prone to gully erosion [36]. The CI measures how flow in a cell
diverges (negative CI values) or converges (positive CI values) [38]. The TRI indicates convexity and
concavity of slopes which influences gully erosion [39]. The TPI compares the height of each pixel in
the DEM to the average height of the pixels around it. This factor enables classification of landscapes
into morphological classes. Positive and negative values indicate that a pixel is higher or lower in
elevation than the pixels that surround it [40]. TWI, SPI, TRI, and TPI were calculated with Equations
(1)–(4) [41,42]:

TWI = In (AS/tanβ, (1)

SPI = As× tan σ, (2)

TRI =
√
|X|(max2 −min2), (3)

TPI =
Epixel

Esurrounding
, (4)

www.ngo-org.ir
https://earthexplorer.usgs.gov/
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where AS is the catchment area of the basin (m2/m), β is slope steepness (degrees), x is the elevation of
each neighbor cell to a specific cell (0,0) (m), and max and min are the largest and smallest elevations
among the nine neighboring pixels. Epixel is the elevation of the cell, and Esurrounding is the mean
elevation of the neighbor pixels.
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Figure 3. Gully erosion conditioning factors. (a) elevation, (b) slope, (c) plan curvature (PC),
(d) topography wetness index (TWI), (e) convergence index (CI), (f) Terrain Ruggedness Index (TRI),
(g) topography position index (TPI), (h) distance to stream, (i) drainage density, (j) distance to road,
(k) Normalized Difference Vegetation Index (NDVI), (l) rainfall, (m) soil type, (n) land use/land cover
(LU/LC), (o) lithology.

Gully erosion depends on the lithology of the material at or near the surface [43,44]. The lithology
layer was prepared by digitizing a geological map (Geological Survey Department of Iran, Toroud
sheet at 1:100,000 scale) [34]. Description of lithology units in the study area are shown in Table S1.
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Land use/land cover (LU/LC) impacts slope stability and gully formation. Bare lands are very
prone to erosion, but land with vegetative cover has significantly less erosion [45]. An LU/LC map
of the study area was produced from Landsat 8 imagery sensed on 9 August 2018. A supervised
classification using the maximum likelihood algorithm was used to create the LU/LC map. The map
was ground-truthed using 495 ground control points (GCP). The Kappa coefficient of the map generated
is 96.23%. Gullies are often linked to the drainage/stream network, and they facilitate the transport of
material eroded from upland areas [36]. Higher drainage densities generate greater amounts of surface
runoff [46]. To measure the parameter distance to stream and drainage density, the stream network
was extracted from a PALSAR DEM in Arc Hydro. To provide more accurate flow direction and flow
accumulation measures, holes in the DEM were filled, after which flow direction and accumulation
were extracted. A threshold of 500 cells was used to extract the stream network. After stream extraction,
the Euclidean Distance and Line Density tools in ArcGIS10.5 were used to calculate distances and
densities of streams.

Roads as impenetrable surfaces disrupt natural drainage with improperly constructed culverts,
by concentrating surface runoff, and by altering the hydrological functions of hillslopes. These impacts
significantly increase overland flow and enable more rapid run-off, which easily erodes bare soil
and causes gullying [47]. The distance to road measurements were computed from a road network
layer that was extracted from a 1:50,000-scale topographic map and Google Earth images. Vegetation
protects soil from many types of erosion. Vegetation can decrease the vulnerability of an area by
aiding infiltration and holding soil in places with plants’ roots [2]. The NDVI was computed from
LANDSAT-8 data and Equation (5):

NDVI = IR−R/IR + R, (5)

where IR is the infrared portion of the electromagnetic spectrum and R is the red portion of the
electromagnetic spectrum. The layers were unified using the UTM Zone39N geographic coordinate
system at a pixel size of 12.5 m (the DEM’s spatial resolution). The classes of the GECFs are presented
in Table 2.

Table 1. Classes and classification method for the various thematic data layers.

No. Factor Classes Classification
Method References

1 Elevation (m) 1. <1005, 2. 1005–1154, 33. 1154–1319, 4. 1319–1530,
5. 1530–1835, 6. >1835 Natural break [48]

2 Slope (◦) 1. <5, 2. 5–10, 3. 10–15, 4. 15–20, 5. 20–30, 6. >30 Manual [49]
3 Plan curvature (m−1) 1. Concave, 2. Flat, 3. Convex Manual [48]
4 TWI 1. <5.84, 2. 5.84–8.18, 3. 8.18–11.69, 4. >11.69 Natural break [48]

5 CI 1. <–53.7, 2. −53.7–−16, 3. −16–17.6, 4. 17.6–53.7,
5. >53.7 Natural break [48]

6 TRI (m) 1. <1.97, 2. 1.97–5.63, 3. 5.63–11.27, 4. 11.27–20.86,
5. >20.86 Natural break [50]

7 TPI 1. <−10.26, 2. −10.26–−2.85, 3. −2.85–2.28, 4. 2.28–11.4,
5. > 11.4 Natural break [50]

8 Distance to river (m) 1. <100, 2. 100–200, 3. 200–300, 4. 300–400, 5. >400 Manual [48]

9 Drainage density
(km/km2) 1. < 1.25, 2. 1.25–1.79, 3. 1.79–2.26, 4. >2.26 Natural break [51]

10 Distance to road (m) 1. <500, 2. 500–1000, 3. 1000–1500, 4. 1500–2000,
5. >2000 Manual [52]

11 NDVI 1. <−0.04, 2. −0.04–0.12, 3. >0.12 Natural break [48]

12 Rainfall 1. <114.05, 2.114.05–132.8, 3. 132.8–155.7,
4. 155.7–182.9, 5. <182.9 Natural break [48]

13 Soil 1. Rock Outcrops/Entisols, 2. Aridisols,
3. Entisols/Aridisols Soil type

14 LULC 1. Abkhan, 2. Agriculture, 3. Bareland, 4. Rangeland,
5. Rock, 6. Urban Land use type

15 Lithology 1. A, 2. B, 3. C, 4. D, 5. E, 6. F, 7. G, 8. H Lithology type
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Table 2. Multi-collinearity analysis among gully erosion conditioning factors.

* Factors
Unstandardized Coefficients Standardized Coefficients

t Sig.
Collinearity Statistics

B Std. Error Beta Tolerance VIF

(Constant) −0.272 0.164 −1.666 0.096
lithology −0.006 0.038 −0.007 −0.159 0.874 0.554 1.805
LU/LC 0.016 0.005 0.164 3.033 0.003 0.415 2.412

Soil type 0.083 0.037 0.104 2.205 0.028 0.546 1.831
Drainage density 0.073 0.029 0.107 2.517 0.012 0.672 1.489

Rainfall 0.002 0.029 0.005 0.076 0.939 0.245 4.078
Slope 0.143 0.110 0.092 1.296 0.196 0.241 4.153
TRI −0.079 0.108 −0.055 −0.729 0.466 0.214 4.668
TPI 0.048 0.079 0.027 0.601 0.548 0.586 1.706
TWI −0.082 0.059 −0.055 −1.404 0.161 0.784 1.276
PC 0.054 0.106 0.019 0.506 0.613 0.903 1.108

NDVI 0.102 0.040 0.107 2.526 0.012 0.685 1.459
Dis to stream 0.126 0.041 0.116 3.084 0.002 0.863 1.158
Dis to road 0.080 0.013 0.263 6.148 0.000 0.666 1.501
elevation 0.055 0.020 0.202 2.815 0.005 0.237 4.224

CI −0.070 0.085 −0.029 −0.818 0.414 0.940 1.063

* LU/LC: land use/land cover, TRI: Terrain Ruggedness Index, TPI: topography position index, TWI: topography
wetness index, PC: plan curvature, NDVI: Normalized Difference Vegetation Index, CI: convergence index.

3.2. Background of the Methods Used

3.2.1. Frequency Ratio (FR) and Statistical Index (SI)

Two bivariate statistical models, FR and SI (descriptions and explanations found in [53–56]),
have high potential for modeling environmental processes [53]. In these models, GECF and GEIM
are considered dependent and independent variables, respectively. Each GECF thematic layer was
analyzed relative to gullying to generate a weight of classes for that factor. The probability of gullying
for each pixel was calculated using the algebraic sum of the weights of classes of all layers.

3.2.2. Random Forest (RF)

The RF model can be used to assess environmental issues and hazards [57]. This model combines
several tree algorithms to generate repeated predictions of each phenomenon [58]. It can also learn
complicated patterns and factor in the nonlinear relationships between explanatory and dependent
variables. It can also incorporate and combine different data types because it does not assume anything
about the distributions of the data. This model can incorporate thousands of input variables without
deleting any. Details of RF can be found in [59]. In this study, RF analyses were conducted in R 3.3.1
using the ‘Randomforest’ package [60].

3.2.3. Maximum Entropy (ME)

ME is a prediction model guided by entropy maximization [61]. This model maximizes the
probabilities without parametric assumptions about the input variables [62]. A detailed explanation of
ME can be found in [63].

3.2.4. Generalized Linear Model (GLM)

GLM is the extension of the classic linear-regression model [64]. A detailed explanation of this
model can be found in [64]. The species distribution modeling (SDM) package [65] was used to run
GLM in R 3.3.3.

3.2.5. Functional Data Analysis (FDA)

The FDA model, suitable for observation data consisting of a series of real functions, was proposed
by Ramsay and Dalzell [66]. A detailed explanation of the FDA model can be found in [67]. The FDA
model was used to construct the GESM with the SDM package in R [65].
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3.2.6. Technique for Order Preference by Similarity to Ideal Solution (TOPSIS)

TOPSIS was introduced by Hwang and Yoon [68]. The underlying logic of TOPSIS is to define
the positive and negative ideal solutions. Details of this model are found in [69]. To prepare GESM
with TOPSIS, the qualitative parameters were converted into quantitative parameters using the FR
method. The parameters should have ascending or descending trends. Parameters that did not follow
either of these trends were also weighted using the FR method. Once weighted, GECF values for
500 randomly selected points in the study area were extracted and input into SPSS. A decision matrix
with 15 columns and 500 rows was prepared. The TOPSIS model was then applied in SPSS and the
final weight of each point was determined. The GIS point layer was populated using interpolation
(kriging), thus creating a GESM.

3.2.7. Ensemble Approaches (GLM–FDA, FR–RF and SI–RF)

The consensus is that each model has its apparent advantages and disadvantages [3]. In this
study, an ensemble of five models—FR, SI, GLM, FDA and RF—were used to produce GESMs. These
integrated methods eliminate several disadvantages of bivariate methods: the failure to calculate
the importance of parameters and non-calculation of the spatial relationships between the feature of
interest (e.g., gullying) and the parameters that affect their formation.

3.3. Methodology

This research consists of several main steps (Figure 4). Data collection occurred either in the
library, in the field, or in the laboratory.

Step 1: Database preparation.
Step 2: Multicollinearity analysis. If collinearity occurs among the parameters, the prediction

accuracy of a model will decrease [3]. Indices of tolerance (TOL) and variance inflation factor
(VIF) were used to evaluate collinearity [70]. If VIF ≤ 5 or 10 and TOL≤ 0.1 or 0.2, then no
collinearity exists between factors [71].

Step 3: Configuring and training the GE models.
Step 4: Performance assessment using cutoff dependence (Area under prediction rate curve [AUPRC]

and area under success rate curve [AUSRC]) and cutoff independence (accuracy and kappa).
Step 5: GESM generation.
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4. Results

4.1. Multicollinearity Test (MT)

The MT (Table 2) showed that no collinearity existed amongst conditioning factors. The minimum
and maximum of TOL and VIF were (0.214–0.940) and (1.108–4.66), respectively. All thematic layers
were used in the modeling processes.

4.2. Spatial Relationship between Conditioning Factors and Gully Locations

The spatial relationships between gully locations and the GECFs calculated with the FR and SI
models are shown in Table 3. Elevations below 1005 m, slopes < 5◦, flat plan curvature, TWI > 11.69,
and CI > 53.7 are strongly correlated with gullies. Regarding TRI < 1.09, TPI from −2.85 to 2.28,
<100 m from a stream, drainage densities ranging from 1.79 to 2.26 km/km2, and places between
500 to 1000 m to the nearest road were the most susceptible to GE. NDVI between −0.04 and 0.12,
<114.05 mm rain, aridisols, bareland (LU/LC) and Quaternary lithotypes (clayey material, well-sorted
sand dunes, salt concretions, mixed terrace deposits and swamp or marsh deposits) were strongly
correlated with gullies.

Table 3. Spatial relationship between conditioning factors and gully locations using frequency ratio
and statistical index.

* Factor Class
Pixels in Domain Gullies FR SI

No % No %

Elevation (m)

<1005 409583 16.47 143 67.45 4.09 1.41
1005–1154 778,768 31.32 45 21.23 0.68 −0.39
1154–1319 675,092 27.15 17 8.02 0.30 −1.22
1319–1530 314,348 12.64 7 3.30 0.26 −1.34
1530–1835 290,378 11.68 0 0.00 0.00 None

>1835 18,056 0.73 0 0.00 0.00 None

Slope (◦)

<5 2,018,483 81.19 205 96.70 1.19 0.17
5–10 235,497 9.47 7 3.30 0.35 −1.05

10–15 98,979 3.98 0 0.00 0.00 None
15–20 46,006 1.85 0 0.00 0.00 None
20–30 44,839 1.80 0 0.00 0.00 None
>30 42,421 1.71 0 0.00 0.00 None

PC (100/m)
Concave 792,994 31.90 55 25.94 0.81 −0.21

Flat 907,578 36.50 94 44.34 1.21 0.19
Convex 785,652 31.60 63 29.72 0.94 −0.06

TWI

<5.84 805,518 32.40 33 15.57 0.48 −0.73
5.84–8.18 1,120,812 45.08 123 58.02 1.29 0.25

8.18–11.69 408,848 16.44 38 17.92 1.09 0.09
>11.69 151,046 6.08 18 8.49 1.40 0.33

CI (100/m)

<−53.7 170,770 6.98 16 7.55 1.08 0.08
−53.7–−16 614,268 25.10 44 20.75 0.83 −0.19
−16–17.6 994,363 40.63 83 39.15 0.96 −0.04
17.6–53.7 535,208 21.87 54 25.47 1.16 0.15

>53.7 133,049 5.44 15 7.08 1.30 0.26

TRI

<1.97 1,995,829 80.28 207 97.64 1.22 0.20
1.97–5.63 314,118 12.63 5 2.36 0.19 −1.68

5.63–11.27 120,287 4.84 0 0.00 0.00 None
11.27–20.86 45,815 1.84 0 0.00 0.00 None

>20.86 10,176 0.41 0 0.00 0.00 None



Sensors 2020, 20, 335 11 of 22

Table 3. Cont.

* Factor Class
Pixels in Domain Gullies FR SI

No % No %

TPI

<−10.26 27,479 1.11 0 0.00 0.00 None
−10.26–−2.85 202,970 8.16 5 2.36 0.29 −1.24
−2.85–2.28 2,103,205 84.59 207 97.64 1.15 0.14
2.28–11.4 130,891 5.26 0 0.00 0.00 None

>11.4 21,679 0.87 0 0.00 0.00 None

Dis to stream (m)

<100 881,433 35.45 117 55.19 1.56 0.44
100–200 625,868 25.17 54 25.47 1.01 0.01
200–300 443,260 17.83 25 11.79 0.66 −0.41
300–400
> 400

224,458
311,205

9.03
12.52

10
6

4.72
2.83

0.52
0.23

−0.65
−1.49

Drainage density
(km/km2)

<1.25 461689 18.57 2 0.94 0.05 −2.98
1.25–1.79 746549 30.03 55 25.94 0.86 −0.15
1.79–2.26 712235 28.65 124 58.49 2.04 0.71

>2.26 565752 22.76 31 14.62 0.64 −0.44

Dis to road (m)

<500 177023 7.12 32 15.09 2.12 0.75
500–1000 168791 6.79 68 32.08 4.72 1.55

1000–1500 159125 6.40 31 14.62 2.28 0.83
1500–2000 151080 6.08 26 12.26 2.02 0.70

> 2000 1830206 73.61 55 25.94 0.35 −1.04

NDVI
<−0.04 918021 36.92 17 8.02 0.22 −1.53
−0.04–0.12 1541694 62.01 192 90.57 1.46 0.38

>0.12 26510 1.07 3 1.42 1.33 0.28

Rainfall (mm)

<114.05 688309 27.68 161 75.94 2.74 1.01
114.05–132.8 694011 27.91 21 9.91 0.35 −1.04
132.8–155.7 619724 24.93 23 10.85 0.44 −0.83
155.7–182.9 259107 10.42 7 3.30 0.32 −1.15

<182.9 225074 9.05 0 0.00 0.00 None

Soil type

Rock
Outcrops/Entisols1035170 41.64 12 5.66 0.14 −2.00

Aridisols 1443591 58.06 199 93.87 1.62 0.48
Entisols/Aridisols7464 0.30 1 0.47 1.57 0.45

LU/LC

Abkhan 5419 0.22 0 0.00 0.00 None
Agriculture 73837 2.97 11 5.19 1.75 0.56
Bareland 124293 5.00 124 58.49 11.70 2.46

Rangeland 2182822 87.80 76 35.85 0.41 −0.90
Rock 98132 3.95 1 0.47 0.12 −2.12

Urban 1722 0.07 0 0.00 0.00 None

Lithology

A 697041 28.04 20 9.43 0.34 −1.09
B 79375 3.19 1 0.47 0.15 −1.91
C 114582 4.61 3 1.42 0.31 −1.18
D 190539 7.66 10 4.72 0.62 −0.49
E 2747 0.11 0 0.00 0.00 None
F 153705 6.18 4 1.89 0.31 −1.19
G 1236071 49.72 174 82.08 1.65 0.50
H 12165 0.49 0 0.00 0.00 None

* LU/LC: land use/land cover, TRI: Terrain Ruggedness Index, TPI: topography position index, TWI: topography
wetness index, PC: plan curvature, NDVI: Normalized Difference Vegetation Index, CI: convergence index.

4.3. Relative Importance of Conditioning Factors Using the RF Model

The relative importance of conditioning factors was determined using the RF model (Figure 5).
Slope (21.46), TPI (17.96), and elevation (16.89) were keys to GE in the study area. By contrast,



Sensors 2020, 20, 335 12 of 22

NDVI, convergence index, and drainage density are least important determinants of gully formation.
The distance to stream, soil type, LU/LC, lithology, distance to road, rainfall, TRI, plan curvature, and
TWI rank from 4th to 12th, respectively.
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4.4. Gully Erosion Susceptibility Mapping (GESM)

The minimum and maximum values (Table 4) of the GESMs (Figure 6a–j) produced with the
10 models are diverse. The proportions of the study area classified into the five susceptibility classes
by each model (Figure 7) display significantly different results, with SI–RF and SI generating the most
widespread classification of land into high or very high susceptibility and ME classifying the greatest
percentage of the area as low or very low.
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(c) random forest (RF), (d) maximum entropy (ME), (e) generalized linear model (GLM), (f) functional
data analysis (FDA), (g) TOPSIS, (h) GLM–FDA, (i) FR–RF, (j) SI–RF.
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Table 4. Values of resulted gully erosion maps using ten models.

* Models
Classification with a Natural Break Model

Very Low Low Moderate High Very High

FR 3.66–9.63 9.63–13.79 13.79–17.96 17.96–26.57 26.57–39.06
SI −19.3–−10.5 −10.5–−6 −6–−2.27 −2.27–2.25 2.25–10.25
RF 0.01–0.21 0.21–0.37 0.37–0.53 0.53–0.72 0.72–1
ME 0.00–0.06 0.06–0.17 0.17–0.34 0.34–0.57 0.57–0.97

GLM 0.00–0.12 0.12–0.3 0.3–0.49 0.49–0.69 0.69–0.98
FDA 0.00–0.13 0.13–0.31 0.31–0.51 0.51–0.73 0.73–0.99

TOPSIS 0.15–0.29 0.29–0.38 0.38–0.48 0.48–0.61 0.61–0.78
GLM-FDA 0.00–0.13 0.13–0.31 0.31–0.5 0.5–0.71 0.71–0.99

FR-RF 21.72–84.7 84.7–131.2 131.2–183.2 183.2–268.1 268.1–370.8
SI-RF −190–−99.9 −99.9–−59.3 −59.3–−23.2 −23.2–18.4 18.4–97.4

* FR: frequency ratio, SI: statistical index, RF: random forest, ME: maximum entropy, GLM: generalized linear model,
FDA: functional data analysis, TOPSIS: Technique for order preference by similarity to ideal solution.

4.5. Validation of Results

Validation employed AUSRC (Figure 8) and revealed the RF model (AUSRC = 0.965) (Table 5)
performed best, whereas considering AUPRC, accuracy, and kappa criteria, the ME model (AUPRC
= 0.948, accuracy = 0.849 and kappa = 0.699) performed best, followed by RF (Table 5 and Figure 9).
Results indicate that combining the RF model with FR and SI models increased the performances of
the latter compared to them as stand-alone models.
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Table 5. Validation of gully erosion susceptibility maps using cutoff-dependent and independent criteria.

* Models

* Criteria
TN FP FN TP TPR TNR FPR

Cutoff-Dependent
Criteria

Cutoff Independent
Criteria

AUSRC AUPRC Aaccuracy Kappa

FR 71 22 22 71 0.76 0.76 0.23 0.890 0.900 0.763 0.527
SI 73 20 22 71 0.76 0.78 0.21 0.884 0.897 0.774 0.548
RF 76 17 18 75 0.80 0.81 0.18 0.965 0.932 0.812 0.624
ME 79 14 14 79 0.84 0.84 0.15 0.947 0.948 0.849 0.699

GLM 74 19 18 75 0.80 0.79 0.20 0.869 0.887 0.801 0.602
FDA 74 19 21 72 0.77 0.79 0.20 0.868 0.894 0.785 0.570

TOPSIS 71 22 23 70 0.75 0.76 0.23 0.871 0.867 0.758 0.516
GLM-FDA 75 18 20 73 0.78 0.80 0.19 0.870 0.891 0.796 0.591

FR-RF 73 20 21 72 0.77 0.78 0.21 0.893 0.908 0.780 0.559
SI-RF 71 22 21 72 0.77 0.76 0.237 0.889 0.914 0.769 0.538

* FR: frequency ratio, SI: statistical index, RF: random forest, ME: maximum entropy, GLM: generalised linear model,
FDA: functional data analysis, TOPSIS: Technique for order preference by similarity to ideal solution; * TN: true
negative, FP: false positive, TP: true positive, FN: false negative, TNR: true negative rate, FPR: false positive rate,
AUSRC: area under success rate curve, AUPRC: area under prediction rate curve.
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5. Discussion

In this study, 10 GIS-based statistical, machine-learning, and multicriteria models were integrated
with RS data to generate GESMs. The statistical models FR and SI were included because of their
simplicity and high efficiency, and to ease of interpretation of the results [72–74]. The TOPSIS method
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was used because it requires only simple calculations and minimal computation time, has the capacity
to rank the alternatives, uses both quantitative and qualitative criteria, and can determine the relative
importance of alternatives and compliance with the conditions. The TOPSIS method, being local and
experimental, is known as one of the best methods for decision making [75]. It is well suited for several
scenarios and criteria [67,75]. The RF, MI, FDA, and GLM models were included because of their
capacities to predict environmental phenomena [63,66]. In cases in which key data are missing, the FDA
model is more efficient than traditional methods. The GLM method solves nonlinear and multiclass
problems well [63]. Any of the models in this set of selected models could produce a reliable GESM.

Assessments of the spatial relationships between the GECFs and the gullies show that gullies
formed mainly in areas below 1005 m elevation and on slopes angles less than 5◦. Topography affects
vegetation types, drainage area, geomorphological processes, weathering, soil moisture, drainage
density, soil types, and precipitation. All these directly or indirectly influence GE potential [17,76,77].
Areas with gentle slopes have a high potential for accumulation of overland flows that can initiate
gullying [78]. Surface and subsurface water are also key factors for gullying [79]. In both circumstances
(above and below ground), the slope is the main factor initiating gully formation [80].

Flat topography is highly correlated with susceptibility to GE. This agrees with the findings
of [51]. High TWI is strongly correlated with gullies in the study area. Arabameri et al. [72] used an
integrated model to predict GE in the Mahabia watershed and also stated that areas with high TWI
also had high positive susceptibility. Drainage density is highly correlated with susceptibility to GE,
confirming the findings of [19,81,82]. Proximity to rivers and roads was positively correlated to gullies,
as was reported by [11,83,84]. Natural drainage patterns are often disrupted by poorly located or
poorly constructed culverts placed during road construction. Subsequently, soil is easily eroded by
concentrated runoff created by impervious surfaces [85].

NDVI analysis reveals that areas with more vegetation growth had fewer gullies; areas with less
vegetation had higher frequency of gully formation. This finding corroborates the results of [5,11].
Vegetation greatly reduces runoff and limits erosion by increasing infiltration and by protecting soil
with root growth [86,87]. Aridisols are highly susceptible to GE in this region, and this agrees with [88].

Land use underpins geomorphological and hydrological processes by affecting runoff generation,
sediment dynamics, and overland flows [89]. LU/LC analysis showed that agricultural and bare
landscapes, where soil is often disturbed, where surface water is often concentrated [90–93], and
where the surface is often unprotected by vegetation [88], had the highest susceptibility to GE in our
study region. Because GE depends on the lithology of materials at or just below the surface [5] the
spatial patterns of sediment origins were evaluated. Quaternary lithotypes in the study area have
the highest susceptibility to GE, which is coincident with the findings of [88]. Gullying is a natural
phenomenon that depends on the thresholds of several conditioning factors (e.g., rainfall, topography,
flow hydraulics, pedology and land use). It is more likely to occur at locations where thresholds have
been exceeded [94].

Examination of the relative importance of GECFs shows that slope, TPI, and elevation were the
most important in the study area and corroborates [11–13,23]. Zabihi et al. [13] tested three models (FR,
WoE and IoE) to model GE in Iran and found that of 12 GECFs, elevation and LU/LC were the most
important in their study area. Meliho et al. [12] used IV and FR for GESM in the Ourika watershed in
Morocco, and they found that LU/LC and slope had the most influence on gully formation.

The GESMs were classified into five different gully-erosion susceptibility classes (very low to very
high) using four classification methods: geometrical interval, quantile, equal interval, and natural
breaks. Comparing the results of each classification method with the high and very high gully-erosion
susceptibility classes, it is clear that the natural break method provides the most accurate classification
scheme. This agrees with the findings of [3].

The validation results using cutoff-dependent (AUPRC and AUSRC) and cutoff-independent
(accuracy and kappa) criteria shows that ML models outperform statistical and MCDM-based
models [19,70,88,95]. ML models are advantageous because they do not require a strict set of
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assumptions as is the case with many statistical methods [22]. ML models also use algorithms to
discern the relationships between GECFs and gullies and therefore do not rely on a structural model [19].
These models also benefit from iterative learning algorithms which help them learn and improve [19].

AUSRC shows that RF had the best performance among the 10 models. This confirms the
findings of [88,96]. Arabameri et al. [88] used three data-mining models for gully-erosion assessment
in the Shahroud watershed in northeastern Iran, and found that RF performed best. When there
is considerable noise in data, this method is less sensitive to ANNs and can better assess factors
compared with others [97,98]. The most important advantages of RF models are their capacities to
learn nonlinear relationships, that they have high predictive accuracy, they are able to determine
relative factor importance, they can deal with distorted data, and they have high categorization ability.

Based on the AUPRC, accuracy, and kappa results, ME was shown to have the best overall
performance. This reflects similar findings in [98–101]. ME exceeds other ML models because it uses
search-based optimization to determine the relative importance of factors [101]. Results of the ensemble
RF–FR and RF–SI statistical models reveal that RF is one of the best classification algorithms to use to
considerably improve the performance of single classifiers [102,103]. Moreover, RF can decrease the
dependence of statistical models on the relationships among the conditioning factors [30].

6. Conclusions

GE is a bane of rural sectors in arid and semi-arid regions of the world. To combat the formation
of gullies, it is often necessary to diagnose the scope of the problem and the causes endemic to the local
environment. GESM is a key tool for sustainable management and use of soil and water resources.
The foundation of GESM is the spatial predictive model. There is no consensus among scholars about
the best modeling approach (statistical, ML, or MCDM) to generate an accurate spatial assessment
of GE. There are constant technological advancements that make data available for incorporation
and analysis in ways that are more efficient and economical. These conditions are very important in
regions that are more remote or that have fewer financial resources. This study attempted to tackle this
question by comparing ten individual and ensemble models—FR, SI, RF, ME, FDA, GLM, TOPSIS,
SI–RF, FR–RF and GLM–FDA—from among the extant statistical, ML, and MCDM approaches to
model gully-erosion susceptibility in the Dasjard River watershed, Iran. RS data and GIS techniques
were used to compile and analyze 15 environmental, geological, geomorphological, and anthropogenic
GECFs that were selected according to the MT. VIF and TOL indicate that there is no multicollinearity
among them. The results show that the RF ML model performed the best according to the AUROC.
In this model, slope, TPI, and elevation were the key factors generating gullying in the study area.
The RF model combines several tree algorithms to iteratively predict a phenomenon. RF can learn
complicated patterns and can consider nonlinear relationships between dependent and independent
variables. Furthermore, it can integrate data of different types, requires no assumptions about the
normality of the data used, and can incorporate thousands of variables without discarding any of them.
Based on the AUSRC, AUPRC, accuracy, and kappa values, ME outperformed even RF. Validation tests
indicate that RF and ME, which are both ML models, outperformed all statistical and MCDM models
tested. Ensemble models, particularly the combinations of RF with FR and SI, improved the prediction
accuracy and success achieved by the individual models on their own. The scientific achievement
of this study is that, by combining ML models with a suitable set of GECFs, data describing extant
gullies, RS data, and GIS, one can produce reliably accurate GESMs. These GESMs were achieved
with a method that is easy to use and can provide valuable information for planners or managers to
prevent or respond to gully-erosion problems. This methodology can be used to assess gully-erosion
susceptibility in similar regions of the world, especially in arid and semi-arid environments.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/20/2/335/s1,
Table S1: Lithology of study area.
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