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Urban Tree Classification Using Discrete-Return LiDAR and an Object-level (Local 

Binary Pattern Algorithm) 

           Abstract 

Urban trees have the potential to mitigate some of theharm brought about by rapid 

urbanization and population growth, as well as serious environmental degradation 

(e.g. soil erosion, carbon pollution and species extirpation), in cities. This paper 

presents a novel urban tree extraction modelling approach that uses discrete laser 

scanning point clouds and object-based textural analysis to (1) develop a model 

characterised by four sub-models, including (a) height-based split segmentation, (b) 

feature extraction, (c) texture analysis and (d) classification, and (2) apply this 

model to classify urban trees. The canopy height model is integrated with the object-

level local binary pattern algorithm (LBP) to achieve high classification accuracy. 

The results of each sub-model reveal that the classification of urban trees based on 

the height at 47.14 (high) and 2.12 m (low), respectively, while based on crown 

widths were highest and lowest at 22.5 and 2.55 m, respectively. Results also 

indicate that the proposed algorithm of urban tree modelling is effective for 

practical use.  

 

Keywords. Urban tree classification; LBP; Object-based; Remote sensing; GIS; LiDAR 

1. Introduction 

Over 50% of the world’s population lives in urban areas, and research indicates that this percentage 

will approach 75% by 2050 (Roberts, 2011). Land cover classification is non-specific and differs 

from vegetation classification. The classification of the tress in computer-based remote sensing 

studies is challenging due to factors such as density, shadow, size, and transition zones. 

 Urban trees supply a wide range of services for residents, such as carbon pollution mitigation and 

air quality improvement in urban environments (Janhäll, 2015), attenuation of storm-water 

flooding (Miller, 2015), energy conservation (Low et al., 2005), noise reduction (Dwyer et al., 

1992) and habitat provision for urban wildlife (McPherson et al., 2011). An urban tree inventory 

is often needed for proper planning and management to maximise these benefits. Several methods, 

including per-pixel and object-based classification can be used to prepare an urban tree inventory 

(Tehrany et al., 2014; Jebur et al, 2014; Sibaruddin et al., 2018). Different datasets are used to 
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extract urban data, such as high-resolution satellite images, aerial photos and light detection and 

ranging (LiDAR) point clouds and hyperspectral images, with different levels of precision. 

While Landsat Thematic Mapper (LTM) and SPOT are considered high-resolution visible satellite 

imaging techniques, they have been proven to be inadequate for differentiating species-level trees 

in some classification studies (Kalliola and Syrjanen, 1991; Harvey and Hill, 2001). The accuracy 

of these techniques at the level of species-wise thematic information extraction has been reported 

to be 40% or less (Czaplewski and Patterson, 2003). A wide range of high-resolution remote 

sensing images, such as multispectral airborne and space-borne imagery with a spatial resolution 

of 1 m or more, have become readily available in recent years. The importance of high-spatial 

resolution imagery must be assessed to achieve automated vegetation classification (Ehlers et al., 

2003). High-spatial resolution imagery was initially used for urban feature extraction (Jensen and 

Cowen, 1999; Benediktsson et al., 2003). High-resolution images are also used to detect spectral 

signature proximity and capture difficulties in feature texture during vegetation mapping (Carleer 

and Wolff, 2004). 

LiDAR is a cutting-edge remote sensing technique that utilises laser pulses to accurately represent 

the earth’s surface. LiDAR data are often used in elevation models due to their higher accuracy 

and faster data capturing process compared with traditional field survey techniques (Lefsky et al., 

2002). LiDAR data can also be utilised for feature extraction. Many types of features, such as 

buildings, roads and trees, can be extracted through LiDAR data (Mahmoud et al., 2011; Tehrany 

et al., 2014; Jebur et al, 2014; Sibaruddin et al., 2018; Ghasemi et al., 2018). The most recent 

application of LiDAR is urban tree extraction. Urban trees have significant importance in urban 

planning due to their many applications, such as noise mitigation, traffic emission reduction, 

temperature mitigation in urban areas and optimisation of landslide conditioning factors. LiDAR-

derived parameters have also been used in natural hazard and risk assessment (Jebur et al., 2014; 

Jebur et al., 2015; Abdulwahid et al., 2017; Liu et al., 2017; Azeez et al., 2018, 2019; Jena et al., 

2018, 2019; Pradhan et al., 2018).  

1. Literature review 

Urban tree detection and classification methods based on traditional approaches, such as ground 

surveyes, are time-consuming, expensive and require considerable effort. Therefore, alternative 

methods, such as remote sensing, have gradually gained favour amongst researchers due to their 

lower cost compared with other approaches. Many studies based on remote sensing data have been 

conducted. Traditionally, Kettig and Landgrebe (1976) developed a spatial–spectral classifier 
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known as the extraction and classification of homogeneous objects (ECHO) for object 

classification. Some researchers have adopted ECHO classification for land use or land cover 

classification with the knowledge of image interpretation and achieved significantly improved 

results (Gong and Howarth, 1990; Herold et al., 2003b). Kettig and Landgrebe (1976) stated that 

the logic of this ECHO method is that the size of a pixel is smaller compared with that of the 

objects of interest. However, this approach has not been extensively implemented for the 

classification of land cover; instead, TM and HVR are used as prevailing available data. An 

increasing number of studies have found that the object-based approach can handle high-resolution 

images. The LBP algorithm is applicable to land cover and urban tree classification due to its high 

classification accuracy (Yang et al., 1999). The Delaunay triangulation approach, which is 

characterised by image texture primitives, was used to classify treetops for Compact Airborne 

Spectrographic Imager NIR band with a resolution of 1.2m (Bunting et al., 2006). However, they 

revealed that this technique outperforms  conventional textures. Moreover, implementing this 

technique to broadleaf forests is unreasonable because identifying treetops through this technique 

is impossible. Some studies on Delaunay triangulation explain that the efficiency of LBP for high-

resolution remote sensing images is higher than that of conventional pixel-based approaches. 

Therefore, the LBP algorithm approach is highly suggested for urban tree classification. 

 

Some of the most recent studies combining remote sensing data with different types of modelling 

approaches are described in this section. Schreyer et al. (2014) proposed a model by combining 

LiDAR data and high-resolution satellite images (QuickBird) with a spatial resolution of 60 cm to 

evaluate the carbon contents stored in trees using the canopy height model (CHM) in Berlin, 

Germany. These trees were then classified based on their carbon contents. The results were 

validated using field surveying, and an accuracy of 80.1% was obtained. This type of model 

represents a good tool for urban tree extraction, but limitations related to the spatial resolution of 

the QuickBird images exert a negative aspect on image classification. In a separate study, Zhang 

et al. (2015) presented a novel algorithm based on the integration of hyperspectral images and 

LiDAR data in order to automate the extraction of the urban trees. The developed model was 

implemented based on the relative height of the vegetation points and the digital terrain model  

used to extract the canopy height. Their results achieved a maximum accuracy of 84%. The main 

drawback of this study, the Canopy Height Model CHM did not provide sufficiently good accuracy 

in urban tree extraction.     

https://onlinelibrary.wiley.com/doi/abs/10.1029/1999JD900098
https://onlinelibrary.wiley.com/doi/abs/10.1029/1999JD900098
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Image classification based on advanced models, such as artificial intelligence algorithms, has 

recently been implemented. Liu et al. (2017) presented an approach based on the integration 

between fused LiDAR-hyperspectral images and the random forest model to evaluate urban trees 

in urban areas in British Columbia, Canada. Their results showed a significant improvement, i.e. 

an increase in accuracy from 70% to 91%, in classification accuracy and trees extraction when the 

LiDAR data were combined with hyperspectral images. The main drawback of this approach, 

however, is the use of  hyperspectral data, which requires high-quality computers and is time-

consuming for the classification of large areas.  

Shojanoori et al. (2016) presented an approach based on the integration between pixel- and object-

based image classification and the maximum likelihood and support vector machine models to 

classify tree species. The classification results were compared with the results of OBIA, which 

adopts rule-based classification. Here, the OBIA based on a rule set showed a huge potential to 

extract tree species with high precision. However, this model lacks elevation data, which are useful 

in extracting tree canopies and tree classification based on height. Although many models can 

extract and classify trees species, statistical separability reduction occurs due to spectral variations 

among pixel-based traditional approaches. The salt-pepper effect is exhibited by the classification 

results, and reduced accuracy is obtained, which is classified differently from individual pixels 

from their surrounding features. To overcome the problem of H-resolution, some object- and pixel-

based methods, including (a) low-pass filtering (image pre-processing) and texture analysis (Hill 

and Foody, 1994); (b) contextual classification (Gong and Howarth, 1992a); and (c) mode and 

morphological filtering, probabilistic relaxation and rule-based processing under post-processing 

(Gong and Howarth, 1992a; Shackelford and Davis, 2003), have been applied. Neighbourhood 

relationships have also been used to incorporate spatial information in these methods. In a separate 

study, Wen et Al. (2017) proposed a novel framework using a three-level (pixel-object-patch) 

approach to classify urban trees as several classes (i.e. park, roadside, and residential–institutional 

trees) in Wuhan and Shenzhen, China. Their results achieved an overall accuracy of 85%, the user's 

and producer accuracy were reached higher than 80%. The proposed framework allows users to 

map urban trees that can aid in supporting decision making related to urban ecosystems and policy-

makers. On the other hand, Huang et al. (2018, 2017) proposed a framework based on the 

integration of high-resolution imagery sources and three methods such as unsupervised 

convolutional neural network (UCNN), supervised latent Dirichlet allocation (sLDA) and the bag-

of-visual-words (BOVW) model in order to map tea gardens in different areas in China. The final 

results indicated that the UCNN outperformed the other methods. On the other hand, the results 
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showed that the addition of textural features enhanced the precision of sLDA and BOVW, while 

they noticed that there is no effect on the UCNN. 

Most of the previous studies are conducted based on traditional and machine learning algorithms. 

However, research on detailed vegetation or tree classification using high spatial resolution 

imagery or LiDAR data is scarce. Moreover, the accuracy obtained from previous studies is limited 

to 70%–80%. Therefore, in the present study, an object-level local binary pattern (LBP) algorithm 

with a discrete return LiDAR is expected to improve the accuracy of urban tree classification using 

four sub-models. Firstly, the CHM model was developed by subtracting the DEM from DSM in 

the classification, leading to a successful urban tree classification. Secondly, the CHM image was 

filtered with a median filter; height-based split segmentation and spectral-difference segmentation 

must be applied before classification. Finally, the LBP algorithm is implemented to search for the 

optimal subset of features and the classification. Gradient-based features classification, such as the 

wavelet, HOG and COV, are less accurate than the LBP algorithm, which is sparse and has better 

computation ability.  

The main contributions of this study include the integration of the CHM and object-level LBP 

algorithm to obtain high discriminative power, invariance to grey-scale changes, computational 

simplicity and excellent performance of urban tree classification. Thus, this study presents a novel 

approach based on the object-level LBP algorithm and LiDAR data to extract and classify urban 

trees.  

2. Study area and methodology 

2.1 Overall methodology 

This section illustrates the overall methodology of the urban tree classification (Figure 1). An LBP 

algorithm is proposed to extract the texture information of a single urban tree. Firstly, the LiDAR 

point clouds were interpolated to construct a very high-resolution digital surface model (DSM) 

using the ArcGIS inverse distance weighting (IDW) interpolation method (Lu et al., 2008; Chen 

et al., 2012; Fanos et al., 2019). Then, the multiscale curvature algorithm was utilised to construct 

the digital elevation model (DEM) in the ArcGIS environment. Afterwards, the CHM was built 

using a simple subtraction process (i.e. DSM − DEM). A 3 × 3 median filter was applied to correct 

the CHM through ArcGIS filtering tools. Next, a height-based split segmentation was run to 

segment the CHM image in the Definiens eCognition environment. The segmentation results were 

further refined by applying additional spectral difference segmentation and small object (<130 

Pixels) removal within the constructed segments.  
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Upon completion of segmentation, the texture pattern of each segment was generated using the 

LBP algorithm implemented in MATLAB R2016b. LiDAR returns extracted a uniform local 

binary pattern (LBP) from the image. We extracted LBP features from the images to encode their 

textural specifications. Then the process continues through gauge between the LBP features 

similarity by calculating the squared error in between them using MATLAB R2016b. Visualization 

of the squared error to compare the similar texture objects was obtained. Then we extracted the 

unnormalized LBP features, which can be used for custom normalization. The next step includes 

reshaping and normalising the LBP features. Additional spatial, spectral, textural, and structural 

features were extracted for each segment for classification and modelling using MATLAB 

R2016b. The relevant features were then selected by the support vector machine (SVM) feature 

selection method. Urban trees were classified using machine learning classification (MLC) 

methods and the selected relevant features. Finally, the classified segments were exported into GIS 

to calculate the tree parameters, including height, crown area, carbon stock and stem diameter in 

the ArcGIS environment. 
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Figure 1. Overall methodology applied to this study. 
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2.2 Study area  

The current study was implemented in a complex urban area in the University Putra Malaysia 

within Serdang City in Selangor State, Malaysia. The study area is located between the longitude 

of 101º42´–101º43´ and the latitude of 3º0´9 ̋–3º0´27 ̋. The study area also contains many buildings 

and trees of various heights and types. The road network of the university is connected to the 

surrounding locations. The test sample surface area is approximately 1 km2 and illustrated in 

Figure 2. The dataset used in this study contains LiDAR point clouds and aerial photos. LiDAR 

data were collected using an airborne platform on March 8, 2015, with a scanning angle of 60° and 

a camera angle of ±30°. In addition, the LiDAR data density is 3–4 pts/m2, and the highest and 

lowest elevations are 69 and 36 m, respectively. Another dataset used in this study is aerial photos, 

which were collected by airborne platforms with a 10 cm spatial resolution and red/green/blue 

(RGB) bands. 

 

 
Figure 2. Study area map. 
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2.3 Canopy Height Model  

The CHM which is a representation of the tree canopy in raster form, was extracted from the 

airborne LiDAR data and used to detect all features on the ground in ArcGIS software. The model 

can be extracted based on the difference between DSM and DEM (Figure 3) and is defined as the 

shortest distance between the treetops and ground surface. Raw LIDAR data is a collection of mass 

points with XYZ coordinates. To generate DSM, the LiDAR data was filtered by selecting the first 

return and non-ground points. The point data must be interpolated into regular grid data. There are 

several surface interpolation methods, such as inverse distance weighted interpolation, kriging, 

polynomial regression, etc. Our purpose was to extracting buildings rather than constructing a 

smooth surface, therefore, an inverse distance weighted interpolation method was chosen because 

it will preserve the sharp difference between buildings and their surrounding ground. Firstly, in 

the LiDAR processing phase, the classified point clouds were converted to the ground and non-

ground points using the IDW and MCC algorithms, respectively (Pirotti, 2010). Successive 

gridding of the resulting DEM yields a 0.5 m resolution raster map. Some CHMs include the results 

of trees overlapping with buildings. Therefore, enhancement and filtering processes should be 

applied to the input data to obtain accurate results. Statistically, the CHM model can be represented 

as shown below:  

𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐷𝐷𝐷𝐷𝐶𝐶 − 𝐷𝐷𝐷𝐷𝐶𝐶                       ( 1) 

 

Figure 3. Schematic representation of the CHM.  
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2.4 Median Filter 

Median filtering is a nonlinear filtering approach frequently used to reduce and remove noise from 

images. Such a technique could be adopted as a standard pre-process to enhance later analyses, 

such as boundary detection in images. This approach has become common in digital image 

enhancement due to its ability to preserve features edges and remove noise under normal 

conditions. Similar to the mean filter, the median filter considers each pixel in the image and then 

decides, by examining it, whether its nearby neighbours are representative of its surroundings. The 

median value depends on the sorting of the surrounding pixel values into a numerical sequence 

and the change in pixel value with the middle pixel values. Figure 4 shows an example of pixel 

calculation in the median filter using ArcGIS environment.  

 

Figure 4. Median value calculation of a pixel neighbourhood. 

2.5 Image segmentation  

Spectral difference segmentation (SDS) is a merging algorithm in which adjacent objects with a 

spectral average lower than the given threshold, therefore the spectral differences will be merged 

to delineate final objects. This type of segmentation is used for further enhancement of the previous 

segmentation results. Height based split segmentation was performed, where some smooth crowns 

could be split effectively, and using the Full Lambda the Schedule algorithm could effectively 

merge the over-segmentation area, which guarantees the adequacy of the segmentation to reduce 

over-segmentation;  The key point is that multiple segmentation steps are sometimes needed to 

produce objects most suitable to classification. 
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Table 1 shows the feature specifications used in the segmentation, including the spatial 

characteristics extracted from the aerial photo (area, compactness, and roundness). The spectral 

specifications were also extracted from the aerial photo (RGB) bands using a Definiens eCognition 

environment. The height information was derived from the LiDAR data (first return elevation, last 

return elevation, intensity, CHM, number of points and maximum number of returns). In addition, 

novel information was extracted from the textural specifications containing grey-level co-

occurrence matrices (GLCMs). Thus, the threshold achieved in the present study is the maximal 

spectral difference, which is 12. Highly motivated by the study of Ostdijk et al. (2008), two 

segmentation types, namely, height-based split segmentation and spectral difference segmentation 

were adopted, and both approaches consistently helped obtain decent segmentation results across 

the datasets.   

Table 1. Feature specifications  

No. Feature 
Category 

Feature 

1 
Spatial 

Area  
2 Compactness 
3 Roundness 
4 

LiDAR 
Structure 

First Return Elevation  
5 Last Return Elevation  
6 Intensity  
7 CHM 
8 Number of Points 
9 Maximum Number of Returns 

10 
Spectral 

Blue 
11 Green 
12 Red 
13 

Textural 

GLCM Ang. 2nd Moment (all dir.) 
14 GLCM Contrast (all dir.) 
15 GLCM Correlation (all dir.) 
16 GLCM Dissimilarity (all dir.) 
17 GLCM Entropy (all dir.) 
18 GLCM Homogeneity (all dir.) 
19 GLCM Mean (all dir.) 
20 GLCM StdDev (all dir.) 
21  Window size (3×3) 

 

2.6 LBP algorithm 

LBPs were introduced in 2002 by Ojala et al. (2002) as a texture descriptor. LBPs have been 

applied to many applications, including face recognition (Qi et al., 2015), facial expression (Chao 

et al., 2015) and wood recognition systems (Nasirzadeh et al., 2010). The main advantage of LBPs 

is that they are grey-scale and rotation invariant. The description of the LBP of a pixel is 
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demonstrated by the threshold value of the 3 × 3 neighbourhood of the pixel against the central 

pixel, and the result is interpreted as a binary number. The binary code of the centre point was 

calculated using the following equation in MATLAB R2016b: 

LBPP,R (xc,yc) = � 2i. S(gi − gc)                       (2)
P−1

i=0

 

S(gi − gc) = �1, gi − gc ≥ 0
0, gi − gc < 0                         (3) 

where (xc, yc) is the central pixel coordinates, gc is the central pixel grey value, gi is the value of 

its neighbours, P is the involved number of neighbours and R is the neighbourhood radius. 

Suppose the face image is of size (𝐶𝐶 × 𝑁𝑁). After identifying the LBP code of each pixel (xc, yc), 

the structural and statistical approaches can be effectively combined by calculating the occurrence 

histogram. 

Hr = � � f(
M−1

yc=2

N−1

xc=2

LBPP,R (xc,yc), R)                    (4) 

f(LBPP,R (xc,yc), R) = �
1, (LBPP,R (xc,yc), R) = r

0, otherwise
          (5) 

Where the value of r ranges from 0 to 2p − 1. 

2.7 Support vector machine (SVM) classification 

Vapnik (1995) developed SVM, a non-linear classification model derived from machine learning 

techniques. SVM aims to determine an optimal separating hyperplane (maximizing the margin 

width) between two classes in a feature space. The training points near the hyperplane are called 

support vectors, and they are utilized for classification once the decision surface is obtained. The 

separating hyperplane is found as follows: 

 yi(w × xi + b) ≥ 1 − ξi 

 

(6) 

where w is the coefficient vector that defines the hyper plane orientation in the feature space; b 

is the offset of the hyper plane from the origin; and ξi  is the positive slack variables (Cortes and 

Vapnik, 1995). The optimal hyper plane is found by solving the following optimization problem 

(Jebur et al., 2014): 
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Minimize �αi

n

i=1

−
1
2
��αi

n

j=1

n

i=1

αjyiyj�xixj� 

subject to �αi

n

i=1

yj = 0,            0 ≤ αi ≤ C 

 

(7) 

where αi  is the Lagrange multiplier and C is the penalty. For data classification, the following 

decision function is applied as follows:  

 

 
g(x) = sign�� yi

n

i=1

αixi + b� 
(8) 

In the case of non-linearly separating samples, the decision function (Equation 8) is rewritten as 

follows: 

 g(x) = sign�� yi

n

i=1

αiK(xi, xj) + b� (9) 

In this process, the original data are transformed into a higher dimensional space using a non-

linear kernel function (K). The common K functions used with SVM in classification studies are 

linear, sigmoid, radial basis function, and polynomial (Bui et al., 2012). However, several studies 

have shown that radial basis function is more suitable for classification applications than other 

kernel functions (Pourghasemi et al., 2013; Xu et al., 2012). The SVM model was implemented 

based on supervised classification using MATLAB application.  

2.8 The Accuracy assessment    

Four quality measures, including root mean square (RMS) error, correctness, completeness, and 

overlay error, are used to assess the accuracy of the training and validation datasets. Correct 

extraction is represented by completeness, whilst RMS error is related to geometrical accuracy 

(Lee et al., 2003; Dehnavi et al., 2015; Mojaddadi et al., 2017; Naghibi et al., 2017). Area 

difference and overlay errors are used to determine the shape similarity between the trees (Azeez 

et al., 2018). We collected GTPs using a random method of data collection approach. The accuracy 

of the result was conducted by using the confusion matrix depending on Test samples 552 samples, 
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a confusion matrix is a summary of prediction results on a classification problem. The number of 

correct and incorrect predictions are summarized with count values and broken down by each class. 

This is the key to the confusion matrix. The confusion matrix shows the ways in which your 

classification model is confused when it makes predictions (Table 2). It gives us insight not only 

into the errors being made by a classifier, but more importantly the types of errors that are being 

made. a is the number of correct predictions that an instance is negative, b is the number of 

incorrect predictions that an instance is positive, c is the number of incorrect predictions that an 

instance negative, and d is the number of correct predictions that an instance is positive. 

Table 2. Confusion matrix for two classes. 

 

 
Predicted 

Negative Positive 

Actual

  

Negative A B 

Positive C D 

 

Several standard terms have been defined for the 2 class matrix: 

• The accuracy (AC) is the proportion of the total number of predictions that were correct. It is 

determined using the equation:   𝐴𝐴𝐶𝐶 = 𝑎𝑎+𝑑𝑑
𝑎𝑎+𝑏𝑏+𝑐𝑐+𝑑𝑑

      [1] 

 

The recall or true positive rate (TP) is the proportion of positive cases that were correctly identified, as 

calculated using the equation: 𝑇𝑇𝑇𝑇 = 𝑑𝑑
𝑐𝑐+𝑑𝑑

   [2] 

• The false positive rate (FP) is the proportion of negative cases that were incorrectly classified as 

positive, as calculated using the equation:   𝐹𝐹𝑇𝑇 = 𝑏𝑏
𝑎𝑎+𝑏𝑏

   [3] 

The true negative rate (TN) is defined as the proportion of negative cases that were classified correctly, as 

calculated using the equation: 𝑇𝑇𝑁𝑁 = 𝑎𝑎
𝑎𝑎+𝑏𝑏

       [4] 
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• The false negative rate (FN) is the proportion of positive cases that were incorrectly classified as 

negative, as calculated using the equation: 𝐹𝐹𝑁𝑁 = 𝑐𝑐
𝑐𝑐+𝑑𝑑

    [5] 

• Finally, precision (P) is the proportion of the predicted positive cases that were correct, as calculated 

using the equation:                                 𝑇𝑇 = 𝑑𝑑
𝑏𝑏+𝑑𝑑

           [6] 

 

The accuracy determined using equation 1 may not be an adequate performance measure when the number 

of negative cases is much greater than the number of positive cases (Kubat et al., 1998). Suppose there 

are 1000 cases, 995 of which are negative cases and 5 of which are positive cases. If the system classifies 

them all as negative, the accuracy would be 99.5%, even though the classifier missed all positive cases. 

Other performance measures account for this by including TP in a product: for example, geometric 

mean (g-mean) (Kubat et al., 1998), as defined in equations 7 and 8, and F-Measure (Lewis and Gale, 

1994), as defined in equation 9. In equation 9, F has a value from 0 to infinity and is used to control the 

weight assigned to TP and P. Any classifier evaluated using equations 7, 8, or 9 will have a measured 

value of 0 if all positive cases are classified incorrectly.   

                                                                    𝑔𝑔 −𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚1 = √𝑇𝑇𝑇𝑇 ∗ 𝑇𝑇       [7] 

                                                         𝑔𝑔 −𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚2 = √𝑇𝑇𝑇𝑇 ∗ 𝑇𝑇𝑁𝑁    [8] 

𝐹𝐹 = �𝛽𝛽2+1�∗𝑃𝑃∗𝑇𝑇𝑃𝑃
𝛽𝛽2∗𝑃𝑃+𝑇𝑇𝑃𝑃

                  [9] 
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3. Results and discussion 

3.1 Classification of urban tree 

4.1.1 Results of CHM and segmentation 

The DEM map presents the highest and lowest elevations of 47.70 and 36.42 m, respectively. The 

DSM provides the same resolution due to gridding by combining the triangulated surfaces of the 

first and unique return points. The highest and lowest heights are respectively indicated as 89.26 

and 36 m in the DSM map. Further processing prior to the production of the CHM model is no 

longer necessary due to the good result obtained. The difference between the two models provides 

the CHM. The result of the CHM indicates a maximum height of 44.55 m (Figure 5). 

 

                                         Figure 5. Results of CHM extraction. 

In this study, the SDS algorithm merges the objects in the surrounding pixels with mean values 

lower than that of a specified threshold. Figure 6 illustrates the segmentation sample results using 

the multi-resolution and spectral difference segmentation algorithms.  
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Figure 6. Results of spectral difference segmentation. 

4.1.2 Extraction of the LBPs of urban trees 

The ability of the LBP algorithm and LiDAR data to distinguish urban trees from buildings and 

other features by using various parameters, such as elevation, spectral and textural specifications, 

was examined in this study. The urban trees were extracted and classified using the proposed LBP 

model. Principally, the LBP algorithm was chosen to accord to the following criteria: 1) state-of-

the-art algorithm with significant accuracy, 2) appropriate for diversification of feature type 

classification and 3) preference to a few parameters to be used for classification. The proposed 

model showed improved segmentation performance compared with other models due to its 

application of the LBP of an urban tree. A new level of segmentation cannot be simply created by 

applying the spectral difference segmentation algorithm (Ryherd and Woodcock, 1996). Thus, 

SDS algorithm was applied to modify the segmentation over the previous segmentation, i.e. height-

based split segmentation. Using the previously generated segmentation, the new process tool was 

appended, and the spectral difference segmentation was processed. Segmentation adjustment of 

the scale parameters is necessary to best indicate the exact position of small homogenous urban 

tree patches, which are roughly in size. The criteria of segmentation comprise geometric indices 

and spectral homogeneity. The adopted spectral-based segmentation reduces the amount of data 

required for advanced processing and classification whilst preserving the information of spectral 

variation. Figure 7 illustrates the refinement of tree boundary extraction after implementation of 

the LBP model. 
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Figure 7. Extraction of the local binary pattern of an urban tree at the object level after 

segmentation. 

4.1.3 Classification of urban trees based on height and crown width 

 Figure 8 shows the classification of urban trees based on height; the highest and lowest heights 

are 47.14 and 2.12 m, respectively. The crown width is measured based on the OBLP algorithm, 

and the highest and lowest crown widths are found to be 22.5 and 2.55 m, respectively.  
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Figure 8. Urban tree classification based on tree height. 

In this study, the objects based on LBP classification, which helps overcome salt-and-pepper 

effects arising from traditional pixel-based classification methods and is highly convenient. 

Amongst the topographic, geometric, spectral and textural features of an object, topographic 

information provides primary support, which is the most important feature of urban tree canopy or 

vegetation classification at this scale of spatial study. Therefore, in the study area predominantly 

for environment-dependent alliances, the urban trees were classified based on height. No 

significant contribution to urban tree classification of new geometric features was found. 

Researchers have used the hierarchical classification scheme to improve accuracy predominantly 

because optimal features are selected in a wide range of categories during classification. In some 

studies, pixel-based methods achieved an accuracy of 15%–40%. Pixel-based MLC, in particular, 

achieves significantly high accuracy due to its satisfactory classification performance with small-

sized samples. According to our results, the LBP approach is more robust than the pixel-based 

MLC technique because of the specific characteristics of urban tree classification in the study 

location. 

Segmentation was performed in MATLAB because of its coding advantage, and the relevant 

features were selected using the SVM and classified using the MLC algorithm to achieve high 

accuracy. LBP classification was conducted with all the selected attribute features. From all 

features, 20 features with four categories were selected for classification, and numerous overlaps 

were found. Table 3 shows the confusion matrix and the classification accuracy for each class. The 

urban tree accuracies varied considerably. In addition to the objective similarity of spectral 

characteristics, low accuracy may result from the following: (a) small sample size, such as those 

in Gorse and Cordgrass; (b) understory vegetation, such as mixed-vegetation types; and (c) species 

alliance composed of a dominant and minor species. 

The results of the LBP classification approach are presented as raster maps in Figures 8 and 9. The 

calculated accuracy was based on the correctly classified number of pixels for each class. The 

overall and average accuracies of LBP classification are described in the accuracy assessment and 

may be low if the pixel-based MLC or any traditional methods are applied. The accuracy 

assessment results can then be compared and analysed (Figures 8 and 9). Our findings illustrate 

that the LBP algorithm is significantly good in classifying urban trees with small sample sizes. 
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Figure 9. Urban tree classification based on crown width. 

 

Finally, OBLP classification may be an excellent alternative to traditional pixel-based 

classification methods. Contiguous pixel groups should be analysed as objects as an alternative to 

using the classification unit of the conventional pixel-based approach to solving H-resolution 

issues and the salt-and-pepper effect (Yu et al., 2006). Reduction of local spectral variation can 

generally be conducted through groups of contiguous pixels caused by gaps, crown textures, and 

shadows (Yu et al., 2006). For further classification, spatial properties, such as shape and size 

roundness, along with spectral properties, can be employed as features for spectrally homogeneous 

segments of study location images. Spatially adjacent pixels are initially categorised into spectrally 

homogenous objects, and then the classification of objects is performed, which is the basic idea of 

object-based classification. This method may be perfect for the preferred characteristic of urban 

trees with few or no dominant trees. In this study, canopy shape does not create difficulty, therefore 

providing good results than that of other methods.  

3.2 Accuracy Assessment  

Validation of the data was conducted based on comparisons between the classified images and the 

ground truth data collected in the field. According to the confusion matrix, the overall accuracy of 

the proposed method is 92%, and the Kappa index is 0.9012. Table 3 shows the accuracy 

assessment results. 
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                    Table 3. Confusion matrix and accuracy values of classification 

Ground Truth (Pixels) Ground Truth (Percent) 

Class Buildings Trees Total Class Buildings Trees Total 

Unclassified 289 36 325 Unclassified 3.846 0.13 23.56 

Buildings 7152 0 7152 Buildings 96.1 0 41.93 

Trees 4 5515 5519 Trees 0.054 99.87 36.07 
Total 7445 5551 12996 Total 100 100 100 

 

The total number of extracted trees is 1729, and the original number of trees is 1839. In addition, 

the completeness is 94%; the RMSE is 0.2 m and the overlay error is 12%. 

3.3 Comparison with traditional methods  

We compared the obtained results with other methods such as Neural Network (NN) model and 

Maximum Likelihood model, and we achieved 90.5 and 89.7 for NN and Maximum Likelihood, 

respectively. On the other hand, Kappa coefficients were recorded 0.88 and 0.85. Therefore, the 

SVM classification was achieved the highest accuracy among these models. Then we generated a 

thematic map for the study area based on the final accuracy assessment. Figure 10 shows the 

accuracy comparison between the three models (neural network, SVM and maximum likelihood 

models).    

 

 
Figure 10. Comparison with traditional models  
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4. Conclusion 

The main objective of this study is to develop a novel modelling approach to classify urban trees 

and test the ability of the proposed LBP algorithm at the object level. The LBP algorithm was 

utilised in this study and applied after the segmentation process. The results illustrate that urban 

trees are characterised by deformations in their shapes. These deformations were refined by using 

the LBP algorithm, which is employed to improve the segmented objects based on different 

parameters, such as textural information and canopy height. 

Different modelling approaches were used in this study for the exact analysis of positioning and 

extraction of tree and height measurement. Urban forest environments are generally heterogeneous 

in size and shape. This method is not expected to be accurate in all contexts, but an alternative to 

traditional methods that may work better in different situations is provided. The ideal context of 

this model is significant, and its application is not necessarily regularly spaced trees. The model 

can be applied to dominant layers and the canopy of ellipsoid-shaped trees. Embedded canopies 

within a clustered spatial distribution can be detected using the developed approach. The important 

parameter is the kernel and canopy size. While a large window filter provides low correlations that 

can handle multiple canopies, small windows produce noise effects and overestimate the tree 

position. Therefore, the filter should be chosen based on the expected output.  

The presented dataset notably contains duplications between buildings and urban trees. However, 

the proposed model still manages to present refined boundaries of urban trees. In future work, the 

model will be extended to extract 3D tree models based on terrestrial LIDAR data, and parameters 

with complex shapes will be extracted and refined. Future investigations will also be performed to 

analyse the effect of the LiDAR point cloud and corresponding CHM resolution on the 

performance of the filter. Whether high point density and CHM resolutions could improve the 

results must also be investigated. The ability of the LBP algorithm to obtain expected results using 

a semi-automatic process is proven. In addition, some ground-truth surveys are necessary and 

could be applied to control the obtained results, conducting an economical edge. On the other hand, 

the urban trees or building deformations in high-resolution images can be reduced by using multi-

view images as presented by (Huang, 2018 and Huang, 2017).    
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