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Abstract 19 

This study evaluates the contribution of an unsupervised factor optimisation based on sparse 20 

autoencoders (SAEs) to spatial landslide modelling with regularised greedy forests (RGFs). A 21 

total of 952 landslides were identified by field surveys, equally divided and used for training 22 

and testing of the proposed model. Ten conditioning factors related to landslides, including 23 

geo-morphometrical (i.e. altitude, slope, aspect, curvature, slope length, topographic wetness 24 

index and sediment transport index) and geo-environmental (i.e. lithology, nearness to roads 25 

and nearness to streams), were used to investigate the spatial relationships between the 26 

variables and landslides. 1The steps of the modelling were twofold. First, the factors were 27 
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optimised by SAE to reduce information redundancy and correlation in the data. Second, RGF 28 

was used to create landslide susceptibility maps with the optimised feature representations. The 29 

area under the receiver operating characteristic curve (AUROC) was used to assess the 30 

predictive ability of the proposed models. Experimental results show that the proposed SAE–31 

RGF outperforms the RGF and random forest (RF) models in terms of prediction rate and is 32 

less sensitive to overfitting and underfitting. The highest prediction rate (AUROC = 0.892) was 33 

obtained with only seven features by the SAE–RGF model, which is better than the two other 34 

methods (RGF and RF). The unsupervised factor optimisation approach not only reduces 35 

computation time but also improves the prediction accuracy of tree-based models, including 36 

RGF. The generated landslide susceptibility maps can be implemented to mitigate landslide 37 

hazards and to designate land use by stakeholders (e.g. planners and engineers).  38 

Keywords: landslide susceptibility; regularised greedy forests; unsupervised factor 39 

optimisation; GIS; Chukha Dzongkhag; Bhutan 40 

 41 

1. Introduction 42 

Landslide spatial modelling is a common study that offers helpful information to decision-43 

makers and planners (Kocaman and Gokceoglu, 2019; Comert et al. 2019; Luo et al. 2019; 44 

Wang, Fang and Hong 2019; Ozturk et al. 2019). The outcomes of this process (e.g. 45 

susceptibility maps, the significance of conditioning factors) are helpful in assessing landslide 46 

hazards and in reducing their impact on human lives and infrastructure, such as road networks 47 

and agricultural systems. Conventional techniques for assessment of landslide susceptibility 48 

are based on field surveys and aerial photograph interpretation. These techniques have been 49 

proven to be time consuming and expensive in most cases. Alternative methods are based on 50 

automated algorithms that can learn from data on historical landslide events and generalise to 51 

other areas where no prior information is accessible. Various algorithms and modelling 52 

techniques, which have improved significantly over the last decades, are available. They have 53 

been developed to learn from a limited amount of data and to be generalised to areas other than 54 

the training area (s). Statistical methods, including bivariate (e.g. frequency ratio, certainty 55 

factors, statistical index and entropy index) (Liu and Duan 2018, Shirani et al. 2018) and 56 

multivariate (e.g. logistic regression) (Sun et al. 2018, Polykretis and Chalkias 2018), have 57 

been widely used by many researchers. Although these algorithms can learn from historical 58 

landslide data, they are sensitive to the selection of factors that contribute to landslides. 59 
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Algorithms that belong to machine learning family, such as artificial neural networks (Pradhan 60 

and Lee 2010, Zare et al. 2013, Xiao et al. 2018; Can et al. 2019), support vector machines 61 

(Hong et al. 2017), tree-based models (e.g. decision tree, extra trees, random forest) (Chu et al. 62 

2019, Dou et al. 2019), fuzzy logic (Peethambaran et al. 2019) and neuro-fuzzy systems 63 

(Dehnavi et al. 2015,  Aghdam et al. 2016, Polykretis et al. 2017, Chen et al. 2019; Ozer et al. 64 

2018, 2019), have been introduced and applied to landslide susceptibility analysis to 65 

complement the limitations of statistical methods.  66 

In statistical modelling, historical landslide data provide a clue to the selection of a stochastic 67 

model that acts as an abstraction for creating landslide predictions. In machine learning, 68 

however, data drive the selection of an algorithm to predict future landslides from the input 69 

data. That is, statistical models provide distributional assumptions about the nature of the true 70 

underlying relationships, whereas machine learning requires less or not a priori belief. 71 

Consequently, machine learning algorithms can discover novel relationships in the data, 72 

whereas statistical models can only find such relationships when guided by a human. For 73 

landslide susceptibility modelling, machine learning will be highly efficient if the input data 74 

are incomplete or difficult to understand in their raw form. Nevertheless, machine learning 75 

algorithms can overfit or find spurious correlations, which should be carefully designed and 76 

analysed to avoid such problems.  77 

The recent trend in landslide susceptibility analysis using machine learning is hybrid models 78 

that combine the benefits of two or more machine learning models for good reasons. The 79 

combination of several algorithms into a single model is crucial because it offers higher 80 

generalisation ability than a single algorithm by reducing variance and bias or improving 81 

prediction. Significant research has developed and demonstrated the superiority of hybrid 82 

models to single models for landslide susceptibility (Huang and Zhao 2018, Pham et al. 2019). 83 

Hybrid models can be constructed by ensembles (Kadavi et al. 2018) or by integrating 84 

algorithms that do not belong to the same family or that aim at different processing stages (i.e. 85 

pre-processing, feature selection/extraction, optimisation, modelling). Examples of hybrid 86 

models recently developed for landslide susceptibility mapping include bivariate weights of 87 

evidence with multivariate logistic regression and RF (Chen et al. 2019); integrated ensemble 88 

fractal dimension with kernel logistic regression (Zhang et al. 2019); entropy and rotation 89 

forest-based credal decision tree classifier (He et al. 2019) and meta-optimisation of an 90 

adaptive neuro-fuzzy inference system with a grey wolf optimiser and biogeography-based 91 

optimisation algorithms (Jaafari et al. 2019). 92 
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Several other studies also include the development of hybrid susceptibility models using tree-93 

based methods. Kutlug Sahin and Colkesen (2019) examined decision tree-based ensembles 94 

models such as canonical correlation forest and rotation forest. The former method outperforms 95 

the other on different ensemble techniques, including AdaBoost and bagging. Random forest 96 

also found superior to decision trees in (Dou et al. 2019). Kornejady et al. (2019) created a 97 

hybrid model which combined random forest and frequency ratio for the evaluation and 98 

efficiency of landslide susceptibility and found such models have a good performance (AUC 99 

value of 0.831). In another study. Nguyen et al. (2019) found that tree-based models such as 100 

best first decision trees-based rotation forest are superior to models created using an adaptive 101 

neuro-fuzzy inference system and artificial neural networks optimized by particle swarm 102 

optimization. 103 

The selection of individual algorithms that form a hybrid model is often subjective. However, 104 

certain algorithm characteristics can be used to determine the elements of a hybrid model. For 105 

example, category (tree-based, probabilistic, neural networks), predictive ability based on 106 

previous work and computational performance are important properties to consider when 107 

selecting algorithms for a hybrid model. Tree-based models, such as decision trees, extra trees, 108 

RF and boosted trees, have demonstrated good performance, as presented in recent studies (Lee 109 

et al. 2018, Song et al. 2019, Meneses et al. 2019). Preparing high-quality spatial data and 110 

landslide inventories is also essential to enhance the performance of landslide susceptibility 111 

models (Huang and Zhao 2018, Soma et al. 2019).  112 

This research aims at improving the performance of tree-based models such as regularised 113 

greedy forests (RGF) and random forest (RF) for landslide susceptibility modelling. To achieve 114 

this aim, an integrated model namely SAE-RGF which combines sparse auto-encoders as an 115 

unsupervised factor optimisation and RGF was developed and evaluated in Chukha 116 

Dzongkhag, Bhutan. To the best of our knowledge, RGFs have not yet been applied to landslide 117 

susceptibility mapping. In this sense, this study contributes to evaluating the effect of feature 118 

compression on susceptibility mapping. The proposed model was compared with RGF (without 119 

optimization) and other tree models such as RF.  120 

2. Description of the study area 121 

For the case study, Chukha Dzongkhag is chosen to evaluate the models suggested (Figure 1). 122 

This area lies between longitudes 89° 15′–89° 49′ and latitudes 26° 44′–27° 18′ in the 123 

southwestern part of Bhutan. It covers approximately 1,879.5 km2 and has a population of 124 
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88,342 as of 2015. Its elevation ranges between 0 m to 4,413 m above mean sea level, with a 125 

mean elevation of 1,905 m. The slope angles vary from 0° to 89°.  126 

Chukha Dzongkhag is in the subtropical and temperate climatic zones. It experiences high 127 

annual rainfall (the highest being 4,000–6,000 mm) and nearly regular heavy rains up to 800 128 

mm.day−1, mostly during the southwestern monsoon between June and September. 129 

Consequently, the area is highly vulnerable to landslides, particularly during the rainy season. 130 

Most landslides occur alongside the Phuentsholing–Thimphu dual carriageway, a lifeline 131 

infrastructure that links the capital Thimphu with neighbouring nations. The vicinity is also 132 

characterised by closely fractured and weathered rocks, such as phyllites, slates and schists, 133 

which contain excessive quantities of clay minerals (Kuenza et al. 2010). 134 

The area contains steep slope terrain, which makes it highly at risk of slope failures brought by 135 

rainfall and associated disasters due to several road cuttings (Kuenza et al. 2010). 136 

Landslides frequently block the highway, thereby resulting in huge economic losses. 137 

 138 

Figure 1: Location of the study area and landslide inventories provided in this research.  139 

3. Methodology  140 

3.1 Landslide inventories  141 
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For efficient mapping of landslide susceptibility, the first step used to train and validate 142 

machine learning methods is often regarded as a landslide inventory map. A standard landslide 143 

inventory map includes historic landslide records that consist of the location and areal 144 

coverage, prevalence facts, mass move type and landslide phenomenon volume in an area.  145 

Field investigation and analysis of historical aerial photos and satellite images are two common 146 

methods used to prepare landslide inventory maps. In this study, 952 landslides were mapped, 147 

verified, and included in a spatial database. Figure 2 shows some photographs taken in the 148 

study area. Nearly all the landslides were caused by precipitation and occurred within less than 149 

50 m from the Phuentsholing–Thimphu highway. The depths of the landslides in the study 150 

region range from several decimetres to a few metres based on visible and on-site intensity 151 

measurements. Landslides were mapped as single points (Gariano et al. 2018). The dataset was 152 

randomly divided into three subsets for training (70%, 666), validation (10%, 95) and final 153 

testing (20%, 191). The training dataset was used to train the proposed models, whereas the 154 

validation dataset was used to optimise the parameters of the same models. Finally, using the 155 

test datasets, the models were evaluated and compared with each other. 156 

 157 

3.2 Conditioning factors related to landslides  158 

In relation to a landslide inventory map, the modelling of landslide susceptibility requires 159 

conditioning factors that are representative, reliable and readily obtainable. These factors can 160 

be determined by field surveys (Oh and Pradhan, 2011) and inventory map analysis, landslide 161 

types and characteristics of the study area. In the present study, 10 landslide conditioning 162 

factors, including geo-morphometrical and geo-environmental factors, were selected based on 163 

the factors that were most commonly used in previous studies and the characteristics of the 164 

study area.  165 

 166 



7 
 

 167 

Figure 2: Sample of field photographs taken in the study area.  168 

 169 

3.2.1 Geo-morphometrical factors 170 

Seven geo-morphometrical factors were obtained with a resolution of 10 m from a digital 171 

elevation model generated from topographical maps. Subsequently, a raster resolution of 10 m 172 

was used to derive the conditioning factors. The factors were altitude, slope, aspect, curvature, 173 

slope length, topographic wetness index (TWI) and sediment transport index (STI). They were 174 

extracted using ArcGIS Pro 2.3. The factors with continuous values were reclassified into 175 

categorical classes using the Jenks natural breaks optimisation method (Hong et al. 2016) 176 

available in ArcGIS Pro 2.3, as recommended and defined by Hung et al. (2016).  177 

a) Altitude: Elevated areas impact loading on the slope; elevation is therefore an important 178 

factor in landslide modelling. High-altitude areas increase the possibility of landslides, 179 

particularly if the sliding plain has an orientation close to an open excavation (Walker and 180 

Shiels, 2012). In this research, the elevation map was labelled into six classes (Figure 3). 181 

b) Slope: Slope is a major factor in any analysis of landslide susceptibility and has often been 182 

used in past research (Hong et al. 2018, Lee et al. 2018, Sameen et al. 2018). Slope is an 183 

important topographical parameter, and landslide frequency is often high on steep slopes. The 184 

slope map was labelled into six classes (Figure 3).  185 

c) Aspect: Slope aspect uses slope path and affects daylight, wind and precipitation exposure. 186 

Aspect also impacts vegetation and soil-related factors indirectly, such as vegetation cover, soil 187 

thickness and moisture. Slope aspect is therefore regarded as an important parameter in the 188 

evaluation of landslide susceptibility (Hong et al. 2017). In this study, aspect was divided into 189 
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nine classes: flat, north-, northeast-, east-, southeast-, south-, southwest-, west- and northwest-190 

facing classes (Figure 3).  191 

d) Curvature: Is the curvature of a line formed by the intersection of a random plane with the 192 

terrain surface (Youssef et al. 2015). The curvature value can be positive or negative. A positive 193 

curvature represents an upwardly convex surface, whereas a negative curvature represents an 194 

upwardly concave surface on a point. If its value is near zero, the curvature can also have a flat 195 

shape. Curvature plays a key role in landslide modelling and in altering landform 196 

characteristics (Mandal and Maiti 2015). A convex surface immediately drains moisture, 197 

whereas for a long period a concave surface holds moisture. In this study, a curvature map was 198 

used after reclassifying it into six classes (Figure 3). 199 

e) Slope length: This study considers slope length a landslide conditioning factor because it 200 

increases the capability of erosive agents to displace and transport materials downslope 201 

(Gomez and Kavzoglu 2005). Slope length was calculated using the digital elevation model 202 

and prepared for the modelling process with six classes (Figure 3).  203 

f) TWI: This parameter is a hydrological factor that contributes to landslide occurrence; it 204 

combines local upslope contributing area and slope (Gallant 2000). High TWI values indicate 205 

low landslide occurrence probability. In this study, TWI was calculated using the following 206 

equation: 207 

TWI = ln (
𝛼

𝑡𝑎𝑛𝛽
),                                                                    (1) 208 

where 𝛼 is the cumulative upslope area (per unit contour length), and 𝛽 is the angle of slope at 209 

the calculation point. The TWI map for the study region was categorised into six classes (Figure 210 

3).  211 

g) STI: This parameter indicates the amount of sediment transportation through overland flow 212 

and is based mainly on the erosion of catchment evolution theories and transportation capacity 213 

that restricts sediment flux. In this study, the following equation was used to calculate STI. The 214 

generated values were classified into six classes (Figure 3):  215 

STI = (
𝐴𝑠

22.13
)

0.6

. (
𝑠𝑖𝑛𝛽

0.0896
)

1.3

,                                                (2) 216 

where 𝐴𝑠 is the specific catchment area (m2/m), and 𝛽 is the slope gradient. 217 

3.2.2 Geo-environmental factors 218 
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Three geo-environmental elements, namely, lithology, proximity to roads and proximity to 219 

streams, were used in this study, as explained in the following subsection. 220 

a) Lithology: The area geologically belongs to the Lesser Himalayan formation. It includes 221 

sedimentary and low-grade metamorphic rocks. It consists primary of metasedimentary rocks 222 

like phyllite, schist, quartzite, and limestone that are tectonically active. The north part of the 223 

area is comprised of the Higher Himalayan crystalline rocks such as garnetiferous mica-shist, 224 

quartzite, and gneiss. Lithology is important in the analysis of landslide susceptibility because 225 

soft and weathered rocks are more vulnerable to landslides than hard unjointed rocks. The study 226 

area, Chukha Dzongkhag, is made up of various types of lithological units (Figure 3).  227 

b–c) Proximity to roads and streams: Anthropogenic factors, including proximity to roads 228 

and streams, are regularly utilised in landslide susceptibility evaluation. Shallow to deep 229 

excavations, application of foreign loads and eviction of vegetative cover are common actions 230 

during construction along highways and roads. In addition, the intermittent flow regime of a 231 

hydrological community and gullies encompasses erosive and saturation processes. 232 

Subsequently, pore water pressure can be increased, which may lead to landslides in regions 233 

that adjoin drainage channels (Figure 3). Land use and land cover were not considered in this 234 

research because all the landslide points fall into one class (forest area) and no variance was in 235 

the data.  236 

 237 
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 239 

 240 
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 242 

Figure 3: Landslide conditioning factors. 243 

3.3 Proposed models 244 

A modelling approach based on two machine learning algorithms, namely, SAEs and RGFs, 245 

was developed for landslide susceptibility assessment in Chukha Dzongkhag. The flowchart of 246 

this approach is presented in Figure 4. The landslide presence-absence samples were created 247 

after collecting and preparing the landslide inventory map, the spatial digital elevation model, 248 

and thematic layers. The landslide inventory samples were counted and used to randomly 249 

generate the absence samples. The final data combined the landslide presence and absence 250 

samples with a defined label (1 and 0, respectively) for each sample. Ten landslide conditioning 251 

elements were prepared from a spatial database. The values of the landslide conditioning 252 
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elements at each sample location were utilised, and the derived information was prepared using 253 

a Microsoft Excel sheet.  254 

The independent variables in the data were scaled (zero mean, unit variance) to improve the 255 

training process of SAE (only applied to the factors with continuous values). The dependent 256 

variable was converted with one-hot encoding. The data were then categorised into three 257 

subsets: for training (70%), validation (10%) and testing (20%). The SAE model was trained 258 

in an unsupervised manner, and a set of new features was generated. These new features were 259 

used to train the RGF model. In this study, the validation of the proposed models was based on 260 

a well-known area under the receiver operating characteristic curve (AUROC). Sensitivity 261 

analysis was also considered to assess the consequences of dimensionality reduction on the 262 

RGF model.  263 

 264 

Figure 4: Flowchart of the proposed methodology. 265 
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3.3.1 Unsupervised factor optimisation by SAEs 266 

Autoencoders are neural networks that can be used to learn features from a dataset in an 267 

unsupervised manner (Hinton and Salakhutdinov 2006). They can be shallow (i.e. with one 268 

hidden layer) or deep (i.e. with two or more hidden layers). The addition of more hidden layers 269 

depends on the complexity and amount of data. The proposed SAE model structure, as 270 

presented in Figure 4, has three hidden layers in addition to the input and output layers. The 271 

input 𝑥 ∈ ℜ𝑁 is mapped into a hidden representation ℎ(1) ∈ ℜ𝑁 using ℎ(1) = 𝑓𝜃1
(𝑊1𝑥 + 𝑏1), 272 

which is then used to learn another hidden illustration ℎ(2) ∈ ℜ𝑁by ℎ(2) = 𝑓𝜃2
(ℎ(1) + 𝑏2). The 273 

output of this illustration is used to learn a third hidden illustration ℎ(3) ∈ ℜ𝑁 by ℎ(3) =274 

𝑓𝜃3
(ℎ(2) + 𝑏3). The hidden representation ℎ(3) is then utilised to regenerate an approximation 275 

�̂� of the input. The hidden layer ℎ(2) is considered the new feature representation of the input 276 

data. The dimension of the input layer 𝑥 is 10, and each ℎ(1) and ℎ(3) has 14 hidden nodes, 277 

whereas the new feature representation ℎ(2) has only 7 nodes. Therefore, the proposed SAE 278 

learns compressed representation, which can reduce the computational time of the RGF model. 279 

A sparsity constraint of L1 regularisation (10e-5) was enforced on the three hidden layers of 280 

the model to avoid overfitting in the model. The rectified linear unit activation function was 281 

used for the hidden layers (encoder), whereas the sigmoid function was used for the output 282 

layer (decoder).  283 

The optimal parameters of the SAE model were selected by minimising the binary cross-284 

entropy cost function using a backpropagation algorithm and stochastic gradient descent (i.e. 285 

Adamax). The model was trained for 1,000 epochs with a batch size of 32 and a learning rate 286 

of 0.002. The training was stopped when validation accuracy stopped improving (patience = 287 

20 epochs). After the learning process, the SAE model learned a nonlinear function that 288 

mapped an input vector 𝑥 ∈ ℜ𝑁 into a new feature representation ℎ(2).  289 
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 290 

Figure 5: Structure of the proposed SAE model. 291 

3.3.2 RGFs 292 

Decision trees are also commonly used models in landslide susceptibility analysis and other 293 

applications. These models have a tree-like structure with terminal and nonterminal nodes. The 294 

former presents the decision outcomes, whereas the latter presents the attribute tests. The major 295 

advantages of these models are easy implementation and graphical presentation of the model 296 

structure. However, these models are susceptible to data noise and can overfit the training data 297 

if inaccurately validated. Researchers have proposed many improved versions of tree-based 298 

models, including boosted trees and their ensembles, such as RF and RGF, to overcome the 299 

limitations of decision trees. RGF combines several boosted trees and additively forms a forest 300 

as a single predictive model (Johnson and Zhang 2014). In boosted decision trees, the trees are 301 

locally optimised; in RGF, the trees are globally optimised. RGF utilises a tree structure 302 

because it uses fully corrective regularised steps. RGF is also faster and frequently more 303 

accurate than boosted trees, particularly for regression problems.  304 

3.4 Model evaluation methods 305 
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AUROC was used to assess the predictive capability of the proposed model and compare it 306 

with other models. AUROC is widely adopted in landslide susceptibility studies (Pradhan et 307 

al. 2010, Shirzadi et al. 2017). The receiver operating characteristic (ROC) curve is constructed 308 

based on the sensitivity (the true positive rate) and specificity (the false-negative rate). AUROC 309 

is calculated using the following expression: 310 

AUROC =
∑ TP + ∑ TN

P + N
,                                                                  (3) 311 

where TP is the true positives, and TN is the true negative. A high AUROC value indicates an 312 

accurate model prediction. In general, values of 0.5–0.6, 0.6–0.7, 0.7–0.8, 0.8–0.9 and 0.9–1 313 

indicate insufficient, moderate, good, very good and excellent performance, respectively (Bui 314 

et al. 2014).  315 

4. Results and discussion 316 

This section presents the major findings of the research and discusses the factor optimisation 317 

analysis, application of RGF and other tree-based landslide susceptibility modelling 318 

approaches.  319 

4.1 Factor optimisation analysis 320 

Table 1 lists the results of the unsupervised factor optimisation to RGF-based landslide 321 

susceptibility modelling. The feature space of the input data had a dimensionality of 10, which 322 

was then reduced to lower dimensions (9–2) by the proposed SAE model. A number of 323 

observations can be made from the findings of this experiment. The summary is presented in 324 

Table 1. Firstly, a high linear relationship exists between the SAE reconstruction errors on the 325 

training and testing datasets (R2 = 0.991), which explains the efficiency of the SAE model in 326 

learning low representations of the input data without substantial overfitting and underfitting. 327 

The lowest reconstruction errors were 0.522 and 0.517 for the training and testing datasets, 328 

respectively, when the number of input features was reduced to eight. The largest 329 

reconstruction errors were 0.569 and 0.566 for the training and testing datasets, 330 

respectively, when the number of features was reduced to only two. These results suggest that 331 

reducing the dimensionality of the input data by using the SAE model requires careful analysis 332 

of the number of new representation features. Secondly, the success and prediction rates of the 333 

RGF model that was trained on the new representation features learned by the SAE indicate a 334 

linear relationship of R2 = 0.85 between the reconstruction errors and the associated success 335 

rates. A considerably lower R2 (0.53) was observed between the reconstruction errors and the 336 
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associated prediction rates. These results indicate that low reconstruction errors by the SAE do 337 

not necessarily yield high success/prediction rates on the RGF model. The best success 338 

(AUROC = 0.931) and prediction (AUROC = 0.892) rates for the RGF model were observed 339 

when the input features were reduced to seven. Reducing the dimensionality of the input 340 

features into only two degraded the success and prediction rates of the RGF model by 17% and 341 

16%, respectively. Furthermore, transforming the input features into a new set of feature 342 

representations with the same size as the input data (10 features) did not yield the best success 343 

and prediction rates for the RGF model.  344 

Table 1: Reconstruction errors estimated for the SAE and the associated success/prediction 345 

rates of the RGF model based on the training and testing datasets. 346 

Number of 

compressed 

features 

Reconstruction 

error (training 

data) 

Reconstruction 

error (testing 

data) 

SAE–RGF 

success 

rate 

SAE–RGF 

prediction 

rate 

2 0.569 0.566 0.765 0.736 

3 0.553 0.548 0.819 0.715 

4 0.545 0.539 0.880 0.829 

5 0.532 0.529 0.904 0.826 

6 0.541 0.538 0.896 0.763 

7 0.540 0.534 0.931 0.892 

8 0.522 0.517 0.928 0.848 

9 0.533 0.527 0.919 0.889 

10 0.534 0.528 0.908 0.830 

 347 

4.2 Application of SAE–RGF, RGF and RF 348 

Three susceptibility maps were generated for the study area using the proposed SAE–RGF 349 

model and the RGF model without unsupervised factor optimisation, and for comparison, with 350 

another tree-based model (RF) (Figure 6). The susceptibility maps were recategorized into five 351 

classes, namely, very low, low, moderate, high and very high area. The landslide inventories 352 

were overlaid with the susceptibility maps to support the visual interpretation of the maps. The 353 

SAE–RGF model divided the study area into the five susceptibility classes with percentages of 354 

9%, 32%, 32%, 20% and 7%. The result indicated that 27% of the area, particularly along the 355 

Phuentsholing–Thimphu highway and nearby areas, is under high and very high risks due to 356 
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landslides. Using the RGF model without applying SAE factor optimisation yielded a reduction 357 

in the very low and high susceptible zones by 6% and 7%, respectively. The RGF model 358 

predicted that 36% of the area is under low and moderate landslide susceptibility classes. The 359 

RGF model also predicted a higher percentage of the area (12%) than what the SAE–RGF 360 

model predicted. Significantly different results were observed for the RF model. The study area 361 

was divided into 44%, 38%, 10%, 3% and 4% susceptibility classes by the RF model. This 362 

model suggested that only 7% of the area is under high and very high susceptible zones.  363 

Table 2 lists the success and prediction rates of the three models. The best success rate (0.972) 364 

was achieved by the RGF model, which outperformed the proposed SAE–RGF (0.931) and RF 365 

(0.876) models. However, the results regarding the prediction rates suggested that the proposed 366 

SAE–RGF model exhibited the best generalisation capability with a prediction rate of 0.892 367 

compared with 0.865 and 0.824 for the RGF and RF models, respectively. Reducing the 368 

dimensionality of the input data from 10 to 7 helped improve the prediction capability of the 369 

RGF model. The percentage of landslides in the susceptibility classes was utilized by 370 

comparing landslide occurrences with the results of the landslide susceptibility maps (Figure 371 

7). Approximately 43% and 33% of landslide inventories were identified in the very high and 372 

high susceptible zones, respectively, by the SAE–RGF model. The very high susceptible zone 373 

for the map produced by the RGF model contained 82% of the landslides. However, the map 374 

and AUROC values (success rate = 0.972, prediction rate = 0.865) implied that this 375 

phenomenon was due to the overfitting of the training data, and the model failed to predict the 376 

absence samples correctly. The very high and high susceptibility classes for the map produced 377 

by the RF model contained 27% and 13% of the landslides, respectively. This finding also 378 

suggested that the proposed SAE–RGF model helped identify numerous landslides located in 379 

the very high susceptible zone without considerable overfitting to the training data and 380 

produced reliable landslide susceptibility maps in the study region.   381 
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 384 

Figure 6: Landslide susceptibility maps produced by (a) SAE–RGF, (b) RGF and (c) RF.  385 

Table 2: Success and prediction rates of the landslide susceptibility models.  386 

Susceptibility 

model 

Success 

rate 

Prediction 

rate 

SAE–RGF 0.931 0.892 

RGF 0.972 0.865 

RF 0.876 0.824 

 387 
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 388 

Figure 7: Graph showing landslides (in %) for different susceptibility classes for the three 389 

models. 390 

Tree-based landslide susceptibility modelling methods, including their ensemble, such as RF, 391 

are frequently affected by variations and noise in data. The SAE model proposed in this study 392 

helps reduce information redundancy and noise in the data by learning a new set of nonlinear 393 

feature representations from the input data with a lower dimension than that of the original 394 

feature set. Previous methods on factor optimisation for landslide susceptibility mappings, such 395 

as the methods presented by Jebur et al. (2014) and Dou et al. (2015), are supervised and select 396 

a subset from the original data without any transformation to the input features. Although these 397 

methods help improve the prediction ability of statistical and machine learning methods, such 398 

as statistical index, logistic regression and support vector machines, they require high-quality 399 

training data and do not reduce noise nor improve input features in terms of information 400 

content. By contrast, the proposed SAE–RGF is unsupervised (no training data are required) 401 

and helps tree-based models that are highly sensitive to noise and data variations. 402 

Consequently, using the new representations learned by the SAE–RGF model can help improve 403 

tree-based models, such as RGF and RF, for landslide susceptibility within a study region. The 404 

proposed SAE–RGF model also helps reduce the training and inference prediction times of the 405 

RGF and RF models by reducing the input data dimension from 10 to 7 features.  406 

However, the model also has several limitations at the current implementation. First, the 407 

selection of a new dimension, which is often lower than the original dimension of the landslide 408 

factors, can be challenging. It requires several experiments to evaluate different alternatives 409 

until the optimum one can be found. This challenge is getting harder when the original 410 

dimensionality is larger. Search methods can be used such as a grid or random search but that 411 

can be computationally expensive. To address this challenge, future implementations should 412 
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focus on either automating this process within the workflow or developing a statistical measure 413 

that allows a good selection of this parameter. Second, after transforming the factors with a 414 

non-linear function learnt by the SAE model, the interpretation of the models is getting much 415 

harder than the original models. So, the current strategy is focused on prediction accuracy 416 

improvement rather than model interpretation and explainability. Those issues can be explored 417 

in future works by using interpretable models to perform factor optimisation.  418 

6. Conclusions  419 

This research demonstrated the use of an unsupervised factor optimisation approach based on 420 

sparse autoencoders (SA) to improve the performance of tree-based landslide susceptibility 421 

models in Chukha Dzongkhag, Bhutan. The model enables learning a new set of nonlinear 422 

feature representations with richer information and lower dimensionality. It is an important 423 

pre-processing step for landslide susceptibility modelling that requires neither additional 424 

training data nor human supervision. The success and prediction rates estimated based on 425 

AUROC indicated the prevalence of the proposed model over RGF and RF models, particularly 426 

in terms of generalisation to the test dataset. 427 

Originally, the model used 10 landslide conditioning factors, including geo-morphometrical 428 

and geo-environmental. The performance of RGF was about 0.972 and 0.865 as for success 429 

and prediction rates, respectively. After transforming the factor values with a non-linear 430 

function learnt by the SAE, the accuracy of RGF has dropped to 0.908 and 0.830 as for the 431 

success and prediction rates, respectively. But interestingly, when the dimensionality of the 432 

factors was reduced to only 7 features, the prediction rate of RGF went up to become 0.892. 433 

As several landslide conditioning factors are often derived from a single source (DEM), those 434 

factors are statistically correlated to each other. Reducing the dimensionality of these factors is 435 

therefore useful and boosts the performance of the landslide susceptibility models. However, 436 

this comes with a challenge, which is that selecting a good dimension size to transform the 437 

factors requires additional experiments and statistical analysis. Further research is thus needed 438 

to improve our understanding of how these models should be applied to different geographical 439 

regions. Also, automating the selection of an optimised dimension to improve landslide 440 

susceptibility can be a good research direction. 441 

The proposed model can be useful for disaster managers, urban planners and technicians in 442 

landslide-prone regions to improve landslide susceptibility evaluation procedures without 443 

raising information and computational resource expenses. Landslide susceptibility maps can 444 
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be useful in enforcing reconstruction strategies in other geospatial apps and in choosing spatial 445 

sites. 446 
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