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A B S T R A C T

Geogenic dust is commonly believed to be one of the most important environmental problems in the Middle East.
The present study investigated the geochemical characteristics of atmospheric dust particles in Shiraz City (south
of Iran). Atmospheric dust samples were collected through a dry collector method by using glass trays at 10
location sites in May 2018. Elemental composition was analysed through inductively coupled plasma optical
emission spectrometry. Meteorological data showed that the dustiest days were usually in spring and summer,
particularly in April. X-ray diffraction analysis of atmospheric dust samples indicated that the mineralogical
composition of atmospheric dust was calcite þ dolomite (24%)>palygorskite (18%)>quartz (14%)>muscovite
(13%)>albite (11%)>kaolinite (7%)>gypsum (7%)>zircon ¼ anatase (3%). The high occurrence of palygorskite
(16%–23%) could serve as a tracer of the source areas of dust storms from the desert of Iraq and Saudi Arabia to
the South of Iran. Scanning electron microscopy indicated that the sizes of the collected dust varied from 50 μm to
0.8 μm, but 10 μm was the predominant size. The atmospheric dust collected had prismatic trig-
onal–rhombohedral crystals and semi-rounded irregular shapes. Moreover, diatoms were detected in several
samples, suggesting that emissions from dry-bed lakes, such as Hoor Al-Azim Wetland (located in the southwest of
Iran), also contributed to the dust load. Backward trajectory simulations were performed at the date of sampling
by using the NOAA HYSPLIT model. Results showed that the sources of atmospheric dust in the study area were
the eastern area of Iraq, eastern desert of Saudi Arabia, Kuwait and Khuzestan Province. The Ca/Al ratio of the
collected samples (1.14) was different from the upper continental crust (UCC) value (UCC ¼ 0.37), whereas Mg/
Al (0.29), K/Al (0.22) and Ti/Al (0.07) ratios were close to the UCC value (0.04). This condition favours desert
calcisols as the main mineral dust sources. Analysis of the crustal enrichment factor (EFcrustal) revealed geogenic
sources for V, Mo, Pb, Sr, Cu and Zn (<2), whereas anthropogenic sources affected As, Cd, Cr and Ni.
1. Introduction

Geogenic dust is one of the most critical meteorological hazards in the
Middle East; therefore, a thorough understanding of its physicochemical
properties and mineralogy is crucial (Middleton, 2017; Karimian Tor-
ghabeh et al., 2019). Recent studies on dust storms have extended
their scope to arid and semi-arid areas, and many surveys have been
conducted on the importance of mineral dust to human life from different
points of view (Middleton, 2017). This sedimentology phenomenon has
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wide-ranging effects on Earth’s system, including oceanic and terrestrial
ecosystems, global biogeochemical cycles, climate processes and air
chemistry, atmospheric pollution and human health (Engelbrecht and
Derbyshire, 2010).

Dust storm is different from air pollution caused by urban and in-
dustrial activities; such pollution is a temporary characteristic of the
area and limited to industrial and urban environments (�Zibret et al.,
2013). Dust storm reduces air quality in certain conditions (e.g. wind
speed, soil moisture, soil mineralogy, roughness, vegetation density and
tion Systems (CAMGIS), Faculty of Engineering and IT, University of Technology

ail.com, Biswajeet.Pradhan@uts.edu.au (B. Pradhan).

gust 2019

Production and hosting by Elsevier B.V. This is an open access article under the

mailto:amirkarimian@shirazu.ac.ir
mailto:biswajeet24@gmail.com
mailto:Biswajeet.Pradhan@uts.edu.au
http://crossmark.crossref.org/dialog/?doi=10.1016/j.gsf.2019.08.004&domain=pdf
www.sciencedirect.com/science/journal/16749871
www.elsevier.com/locate/gsf
https://doi.org/10.1016/j.gsf.2019.08.004
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.gsf.2019.08.004
https://doi.org/10.1016/j.gsf.2019.08.004


A.K. Torghabeh et al. Geoscience Frontiers 11 (2020) 783–792
topography) in an area that is not necessarily completely dry. Wind
erosion plays a central role in dust storm production and occurs when
strong and persistent winds interact with dry, fine-grained, loose soil (Li
et al., 2004; Yigiterhan et al., 2018a,b). When atmospheric dust particles
are moved by wind, they are ceaselessly deposited by dry and/or wet
deposition phenomena, such as leaching or diffusion (Bergametti and
Forêt, 2014); they ooze into soils (Dehbandi and Aftabi, 2016), settle
onto land or freshwater surfaces (Nickovic et al., 2001; Mahowald et al.,
2005), are breathed in by humans and animals (Morman and Plumlee,
2014) or collected by plants (Norouzi et al., 2015).

Three important characteristics of dust storm events, namely,
morphology, mineralogy and chemical properties, are typically investi-
gated. These features provide valuable information on the positive and
negative aspects of dust phenomena and help identify the sources of these
particles.

Mineralogy studies are widely used methods of evaluating atmo-
spheric mineral dust source contributions (Li et al., 2007;
Ahmady-Birgani et al., 2018). Geochemical mass balance methods, such
as enrichment factor, have also produced useful results in dust source
identification (Weiss et al., 2002). For example, Schütz and Sebert (1987)
proposed using the high frequency of calcite and palygorskite as a source
mineral marker for dust particles originating from Northern Africa. In
several atmospheric mineral dust studies, typical elemental ratios (e.g.
Ca/Al, Mg/Al, Na/Al and K/Al) were used as markers for different
mineral dust sources. Afro-Asian geochemical mineral dust studies
accomplished by Chen and Li (2011) and Scheuvens et al. (2013) are
successful examples of the application of elemental ratio techniques.

Several studies have been conducted on chemical and mineralogical
properties to identify dust sources due to the high occurrence of dust
storms, especially in western and eastern parts of Iran (Karimian Tor-
ghabeh et al., 2019) and increased public concern about the harmful
effects of dust storms on human health. Three ideal provenances such as
(I) desert areas in Iraq and Syria, (II) sedimentary basins in Saudi Arabia
and Kuwait, and (III) dry lakebeds, such as the dry bed of Hoor al-Azim
Wetland and Hamoun dry lakes for dust storms in Iran were reported by
Zarasvandi et al. (2011); Rashki et al., (2013); Ahmady-Birgani et al.,
(2015) and Mojadam et al. (2018).
Fig. 1. Map of Iran showing Fars Province and the location
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Hojati et al. (2012) investigated the characteristics of atmospheric
dust in central parts of Iran and concluded that the palygorskite in dust
particles probably originates from and within desert areas in Iraq, Saudi
Arabia and Jordan, especially from Iraqi arid land to Zagros area and
central Iran.

Iran lies along the world’s dust belt and has an arid and semi-arid
climate that has long been affected by dust events. The intensification
of these events in recent decades in terms of severity, extent and fre-
quency in the western, southern and central parts of Iran has resulted in a
new phenomenon that needs to be addressed. Fars Province, due to its
geographical location (located on the mid-latitude belt), has a low
moisture content and is near the source of dust production in the deserts
of Iraq and Saudi Arabia. This province is constantly exposed to the dust
phenomenon. However, atmospheric dust reports on this area are un-
available, at least in literature. The first objective of this study is to
investigate the bulk composition of atmospheric dust in Shiraz City.
Given that this study provides the first reported measurements of at-
mospheric dust in the south of Iran, the second objective is to present
baseline dust data that can be used to evaluate the characteristics and
compositions of different fine fractions (e.g. PM10–2.5 μg/m3 and
PM2.5 μg/m3).

2. Materials and methods

2.1. Description of the study area

Shiraz is the largest city in southern Iran (52�540E, 29�620N) and the
capital of Fars Province (Fig. 1). The city has an area of 1268 km2; it is 28
km wide on its northwest to southeast axis and approximately 9 km wide
on its east to west axis. Its population is above 1,500,000, and it is known
as the sixth most populated city in Iran. Geologically, Shiraz is a syncline
valley city (NW–SE elongated) that formed between the Baba Kohi and
Derak anticlines (Jahandari, 2015), and it is located in the Zagros
Fold–Thrust Belt Zone (Alavi, 1994). Shiraz is mainly characterised by
sedimentary rocks, such as conglomerate, limestone, marl and shale
(Ghorbani, 2013).
s of the atmospheric dust sampling sites in Shiraz City.
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2.2. Dust sampling

Atmospheric dust samples were collected using a dry method. The
dust collectors had a dry glass surface (Menendez et al., 2007) with an
area of 1 m2. Each tray contained a flat glass-coated plastic net (2 mm
mesh openings) on its upper part to form a roughness plate, which is for
trapping atmospheric dust and preventing dust from being transported
(Fig. 2). Each sampling tray was installed 3–5 m from the ground level on
flat-roofed buildings in 10 different locations (Fig. 1). In addition to
reducing the possibility of vandalism at the sampling site, the placement
of traps at this altitude also eliminates the effects of low-altitude wind
that contains local dust, such as urban dust. Samples were gathered
weekly by using a small plastic brush to scrape off materials deposited on
the glass trays. All sampling tools (plastic brushes and glass trays) were
washed with distilled water after sampling. The dust samples were stored
in a polyethylene micro-tube, numbered and transported to the labora-
tory. Given that the highest incidence of dusty day in the study area
occurs in spring, 10 samples were collected from the sites in May 2018.

2.3. Chemical and mineralogical analysis

We combined several geochemical methods, including X-ray diffrac-
tion (XRD) and inductively coupled plasma-optical emission spectrom-
etry (ICP-OES), to understand the dust geochemistry of bulk samples,
particularly with respect to the mineral assemblage of particles and trace
elements, and determine their geological sources.

The minerals of atmospheric samples were identified through XRD
analysis. ATESCAN-Vega 3 scanning electron microscope at the central
laboratory of Shiraz University was used to identify the morphology and
textural features of the dust samples.

The elemental concentrations of dust samples were determined using
a strong acid (HNO3–HCl4) pseudo-total digestion method via ICP-OES
(Agilent model 735, United States). Quality assurance and control
included duplicate analyses, certification of materials and analysis of
blanks. The relative standard deviations were 1.8% for As, 9% for Cd,
3.8% for Co, 1.4% for Cr, 5.1% for Cu, 1.6% for Mo, 3% for Ni, 8.3% for
Pb, 4.6% for Sr and 0.69% for Zn.
Fig. 2. Schematic of atmospheric dust samplers that consist of a glass tray (1 m
� 1 m) covered with a 2 mm mesh PVC net modified by Men�endez et al. (2007).
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2.4. Enrichment factor

The crustal enrichment factor is commonly used to study the
elemental composition of atmospheric dust, assess crustal/non-crustal
sources of elements and evaluate the degree of anthropogenic influence
(Lammel et al., 2002; Khillare et al., 2004). The formula to calculate the
EFcrustal value is expressed as:

EFcrustal ¼

�
Cx
Cr

�
sample�

Cx
Cr

�
crustal

(1)

where Cx refers to the concentration of target elements and Cr is the
content of the reference element in the samples and upper continental
crust (UCC). In the present study, aluminum (Al) was employed as the
lithogenic tracer due to its abundance in the Earth’s crust, lack of
anthropogenic origin and non-mobility in weathering processes (Taylor
and McLennan, 1995). According to Chester et al. (1984), the EFcrustal
value of 1 pertain to a crustal origin, whereas ratios greater than 10
denote a non-crustal source. Moreover, EFcrustal ratios in the range of 1–5
indicate that anthropogenic processes significantly affect the elemental
compositions of atmospheric dust. In general, increasing values of the
crustal enrichment factor indicate an increase in the contribution of
non-crustal processes to the chemical composition of atmospheric dust.

2.5. Annual occurrence of dusty days and meteorological parameters

The meteorological condition of the sampling period was established
using 42-year archives from 1971 to the end of 2013. Fars Province has
been affected by drought in the past few years (Moradi et al., 2011). This
situation suggests that due to the reduction of the moisture content of
soil, the frequency of dust events in the region has increased in recent
years. In this regard, Figs. 3 and 4 show diagrams of long-term monthly
precipitation and wind speed in the study area, respectively. The mean
maximum long-termmonthly precipitation occurred in January (77.6%),
and the mean maximum long-term wind speed jointly occurred in April,
May and June. Omidvar and Omidi (2013) analysed dust phenomena in
southern and central Fars Province from 1992 to 2008 and argued that
most stormy days in this province occur in spring and summer, with
Shiraz and Fasa stations having the highest monthly frequency. The re-
sults of previous studies that analysed dusty days in Shiraz City show that
spring (44.31%) and autumn (6.1%) have the highest and lowest sea-
sonal frequency of dust phenomena, respectively. Meteorological data
recorded in Fars Province from 1992 to 2008 show that Shiraz experi-
ences the largest number of monthly dust storms in May, with a total of
24 days, and the smallest number monthly dust storms in January, with a
total of nine days (Omidvar and Omidi, 2013). The authors suggested
that because the average annual wind speed of dust in this region is
Fig. 3. Long-term mean maximum wind speed (m/s) in Shiraz meteorological
station during the 29-year study period.



Fig. 4. Long-term monthly precipitation in Shiraz meteorological station during
the 29-year study period (unit: %).

Fig. 5. Rose plot of wind speed direction from 2016 to 2017 in the study area.
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almost 1 m/s, the dust phenomenon in Fars Province does not have a
local source. Fig. 5 shows the dominant wind direction (rose plot) from
1993 to 2012 in Shiraz City obtained using archived data on recorded
meteorological parameters. Similar to the situation in other southern and
western cities of Iran, such as Ahwaz, western and southwestern winds
are the most frequent winds in Shiraz. Broomandi et al. (2017) suggested
that Arabian countries around the south of the Persian Gulf, particularly
Kuwait, Iraq, and the Arabian Peninsula, can act as dominant origins of
dust storms in west and southwest areas of Iran.

3. Results

3.1. Morphology of atmospheric dust samples

Several high-resolution SEM images with different magnifications of
selected samples revealed different ranges in the size of particles and
surface coatings of calcite, quartz and other minerals. The images also
showed that calcite, silica (quartz and diatoms), other silicates and
gypsum to some extent were commonly covered with hydrous aluminium
phyllosilicates and different-sized particles, particularly clay-sized par-
ticles that are visible as small aggregates (Fig. 6).

Quartz particles displayed typically sub-angular and sharp edges and
were mostly larger in size (50 μm) than the other mineral particles.
Calcite particles appeared as trigonal–rhombohedral crystals with semi-
rounded and irregular shapes of different sizes, whereas the large crys-
tals of 10–20 μm were identified as gypsum. Calcite and quartz were the
dominant minerals in all of the atmospheric dust samples. Rock-forming
minerals with diatomaceous materials (hydrated amorphous silica) and
clay minerals were prevalently observed in the dust samples, and their
sizes ranged from 2 μm to 10 μm. Diatom was detected in Sample 1,
786
which was collected at a higher altitude compared with the other sam-
ples. This amorphous silica had microorganisms that are generally found
in dry lake beds (Chou et al., 2008).

The SEM imaging measurements indicated that the sizes of dust
particles in Shiraz varied between 50 μm and 0.8 μm. Fine (<10 μm) and
ultrafine particles (<2.5 μm) can penetrate into the respiratory system
and cause various illnesses (WHO, 2006). SEM studies showed that <10
μm particle size is the most frequent size of Shiraz atmospheric dusts.
This situation can exert adverse effects on the health of citizens because
disposable dust masks cannot prevent the entry of these microscopic
particles into human lungs (Mazzoli and Favoni, 2012). These observa-
tions are consistent with the results of Mohammadi et al. (2015), who
concluded that 25.3% of the total mortality that occurred in 2012 was
attributed to PM10 with concentrations > 40 μg/m3.

3.2. Element composition

The elemental composition of atmospheric dust reflects mineral-
bearing soil from dust provenance. Most studies interpreted Ca–Mg
rich as carbonate phases and Si–Na–Mg–K–Al rich as silicate phases.
Hence, evaluation of the relationship between these elements is helpful
in clarifying the geochemical nature of dust storms.

3.2.1. Major elements
The statistical characteristics of the studied elements of the Shiraz

atmospheric dust samples are presented in Table 1. The total major
element contents in the collected samples decreased in the order of Ca >
Al > Mg > K > Na > Ti. According to the mineralogical results (Section
3.3), Al–Mg enriched represented palygorskite, whereas high contents of
Ca were related to carbonate particles. High Ti, Na and K contents re-
flected the presence of anatase, albitic plagioclase and muscovite in the
samples, respectively. The concentrations of these elements should be
compared with UCC (Table 1) to understand the status of the major el-
ements in atmospheric dust. The concentration of Al in all samples was
significantly lower than the UCC value. The concentrations of Ca and Mg
in the samples exceeded the corresponding values of UCC, whereas the
mean concentrations of the other elements were lower than the UCC
average. Compared with Saharan dust (North African dust), Shiraz at-
mospheric dust is richer in Ca and Mg (Moreno et al., 2006; Chou et al.,
2008). These results confirm that Middle East atmospheric dust has high
percentages of Ca and Mg (Engelbrecht et al., 2009b; Yigiterhan et al.,
2018a,b). The main reason for these observations is the geology of the
region, which is mainly characterised by sedimentary rocks (Engelbrecht
et al., 2009b).

Elemental ratio tracers make up a practical means of determining the
origin of dust phenomena, and scientists have used them extensively.
This method is commonly used in geochemical studies of atmospheric
dust (Yigiterhan et al., 2018a,b). Elemental ratio tracer assists to detect
depletions and enrichment of reactive elements with respect to Al and to
clarify the probable provenance areas. In geochemical studies, Al is
considered as an immobile element in the weathering process having a
high abundance of Al2O3 (Chen and Li, 2011; Scheuvens et al., 2013;
Yigiterhan et al., 2018a,b).

Table 2 compares the elemental ratios between the published data
(UCC) and Ca, Mg, K and Ti to Al in the Middle East atmospheric dust
used in this study. There was no significant abnormal enrichment of Ti/
Al, Mg/Al and K/Al ratios found in the studied samples relative to UCC
ratios. The Ti/Al and K/Al ratios in our samples are close to the UCC
ratios. The ratio of Ca/Al in Shiraz atmospheric dust samples was 1.14,
which is similar to Iraq, Kuwait and the Arabian Peninsula, having higher
than the ratio of UCC (0.37). Ca/Al ratio shows that Ca content, which is
one of the major elements for Shiraz atmospheric dust, can be explained
by more carbonate fraction contribution in the Middle East atmospheric
dust (Engelbrecht et al., 2009a, b; Yigiterhan et al., 2018a,b). The Mg/Al
ratio of studied dust samples was significantly lower than those from
Kuwait and Iraq. Meanwhile, The Mg/Al ratio in this study is close to the



Fig. 6. SEM images showing the morphology and particle size of the atmospheric dust samples: (a) quartz, (b) calcite, (c) diatom, (d) clay aggregates, (e) gypsum and
(f) particles agglomerated by fibrous palygorskite; (g), (h) and (i) reveal the presence of various particle sizes in several samples. The scale bar is defined for
each image.
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ratio of the Arabian Peninsula (Table 2). This trend is due to the large
contribution of Al–Mg-silicate (palygorskite) minerals relative to
Mg–Ca-carbonate minerals such as dolomite.

3.2.2. Trace elements
The trace metal contents in the Shiraz atmospheric dust samples and

their descriptive statistics are summarised in Table 1. The average levels
of the trace metals decreased in the order of Sr > Zn > V > Cr > Ni > Cu
> Pb > Co > As > Cd. The mean concentrations of Mo, Sr and Co were
close to their UCC values, whereas the mean concentrations of As (4.51
mg kg�1), Cd (0.28 mg kg�1), Cr (95.8 mg kg�1), Ni (68.1 mg kg�1), Pb
(30.6 mg kg�1), Cu (40.5 mg kg�1), V (102.7 mg kg�1) and Zn (10.6.5
mg kg�1) were approximately 3, 2, 2.8, 3.4, 1.5, 1.6, 1.7 and 1.5 times
higher than the corresponding UCC values, respectively. The concen-
trations of these elements are compared with those of atmospheric dust
from other parts of Iran in Table 1. The atmospheric dust in Shiraz
787
showed higher average Co, Cr, Cu, Ni, Pb and V concentrations compared
with dust from southwest and southeast parts of Iran, but the Zn level in
the dust was lower than that of the southwest region. These differences
are probably related to sampling sites, times, methods and analyses.
However, the enrichment of these trace elements has been reported in
atmospheric dust samples from Iraq and western Iran (Table 1).

To improve our evaluation of whether the trace elements were
extracted from geogenic or anthropogenic sources, we implemented the
enrichment factor and hierarchical cluster analysis on the investigated
elements (Karimian Torghabeh et al., 2018). The calculated crustal EF
values of the studied elements in atmospheric dust are presented in Fig. 8.
The mean values of crustal EF computed for the elements increased in the
order of Na< K<Mo< Sr<Mg< Zn< Pb< V< Co, Ca< Cr< Cd< As
< Ni, with values of 0.3, 0.6, 0.62, 0.98, 1.77, 1.79, 1.8, 2.04, 2.23, 3.08,
3.36, 3.45, 3.59 and 4.07, respectively. The EFcrustal values of all studied
elements are less than 10, indicating a predominantly geogenic source.



Table 1
Summary statistics of concentration levels trace elements (mg/kg) and major elements (%) in the atmospheric dust of Shiraz during May 2018.

Element Minimum Maximum Mean S.D. CV UCCa Southwest of Iranb Southeast of Iranc Western Irand Iraqe

Al (%) 6.48 7.02 6.72 0.18 0.02 8.04 – – – –

Ca (%) 7.12 9.46 7.72 0.71 0.09 3.0 – – – –

Mg (%) 1.91 2.0 1.96 0.02 0.01 1.33 – – – –

Na (%) 0.91 0.79 0.86 0.03 0.03 2.89 – – – –

K (%) 1.4 1.5 1.5 0.03 0.02 2.80 – – – –

Ti (%) 0.48 0.53 0.51 0.01 0.03 0.30 – – – –

As (mg/kg) 3.2 5.9 4.5 0.93 0.2 1.5 1.48 – – –

Cd (mg/kg) 0.25 0.31 0.28 0.01 0.06 0.098 0.41 – 10.4 27
Co (mg/kg) 18 20 18.7 0.67 0.03 10 3.1 – 21 49
Cu (mg/kg) 40 43 40.5 0.97 0.02 25 10.05 11 50 53
Cr (mg/kg) 93 118 98.4 7.5 0.07 35 15.92 77 128.4 –

Mo (mg/kg) 0.68 0.88 0.79 0.05 0.07 1.5 0.84 – – –

Ni (mg/kg) 67 70 68.1 1.4 0.02 20 21.68 17 111.2 131
Pb (mg/kg) 23 57 30.6 9.96 0.3 20 10 10 109.2 182
Sr (mg/kg) 279 299 287 7.4 0.02 350 54.76 139 – –

V (mg/kg) 99 106 102.7 2.3 0.02 60 10 69 – –

Zn (mg/kg) 101 130 106.6 8.6 0.08 71 810.96 54 472.2 154

a Taylor and McLennan (1995).
b Zarasvandi et al. (2011).
c Rashki et al. (2013).
d Al-Dabbas et al. (2012); Najafi et al. (2014).
e Al-Dabbas et al. (2012).

Table 2
Elemental ratios for atmospheric dust samples from current study, compared to
those of bulk dust samples from other countries of the Middle East.

Ti/Al Mg/Al Ca/Al K/Al Analysis Reference

Shiraz
atmospheric
dust

0.07 0.29 1.14 0.22 ICP-OES This study

Kuwait 0.65 1.25 1.23 0.94 XRF Engelbrecht
et al. (2017)

Iraq 0.72 1.11 1.31 1.04 XRF Engelbrecht
et al. (2017)

Arabian
Peninsula

0.14 0.11 2.17 0.34 XRF Engelbrecht
et al. (2017)

UCC 0.04 0.16 0.37 0.34 – Taylor and
McLennan
(1995)

Fig. 7. Dendrogram of trace element concentrations of atmospheric dust
in Shiraz.

Fig. 8. Elemental crustal enrichment factors of atmospheric dust samples; the
error bars display standard deviations.
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Moreover, the EF values of As, Ni, Cd and Cr are between 2 and 5,
indicating that the concentrations of these elements are affected by the
788
anthropogenic processes.
The results of cluster analysis (Fig. 7) showed that the trace elements

in Shiraz atmospheric dust can be classified into three groups: Group 1
consisting of Ni, Sr, As, Cd and Zn; Group 2 consisting of Cr; and Group 3
consisting of Co, V, Mo, Cu and Pb. Group 1 included typical pollution-
derived heavy metals that were realised by anthropogenic sources. All
elements of Group 3 had crustal EFs values less than 2 in the samples,
demonstrating that these elements were mainly derived from natural
sources. However, this group could be minimally influenced by human
activities. In the second group, because Cr exhibits a distinct geochemical
behaviour, our argument is that Cr has a mixed source (crustal and
anthropogenic source). Nevertheless, based on the crustal EF value of Cr
> 3, we posit that atmospheric dust Cr concentrations were affected by
human activities.
3.3. Mineralogy of atmospheric dust samples

The mineralogical compositions of bulk dust can be a useful tool to
recognise the source of dust provenance and/or determine the health
effects of the particles on human society. Generally, the major mineral-
ogical phases of global dust are silicates, quartz, feldspars (albite,
orthoclase, anorthite) and parts of the group of clay minerals (illite,
kaolinite, smectite and chlorite), carbonates (calcite, dolomite), sul-
phates (gypsum) and iron oxides (haematite, goethite) (Scheuvens and



Fig. 9. Mineralogical composition by XRD analysis of collected atmospheric dust samples at various locations in Shiraz.
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Kandler, 2014). A semi-quantitative analysis (wt.%) result of six atmo-
spheric dust samples analysed via XRD isillustrated in Fig. 9. Notably, the
values calculated by XRD analysis should be interpreted carefully
because this method does not provide an accurate quantitative analysis.
These values only present an overview of the approximate magnitude
order of crystallographic composition. Nevertheless, the analysis of XRD
data showed that the Shiraz atmospheric dust samples were predomi-
nantly composed of calcite (CaCO3), quartz (SiO2) and palygorskite ((Mg,
Al)2Si4O10(OH)4H2O). The two calcareous particles, consisting mainly of
calcite and dolomite (CaMg(CO3)2) (24%–42%) and palygorskite (16%–

23%) compounds, accounted for more than 40% of the dust particle
contents in all of the collected samples. The third dominant mineral in
the six samples was quartz with a mass percentage between 19% and 5%,
whereas muscovite (KAl2(AlSi3O10)(FOH)2), albite (NaAlSi3O8) and
kaolinite (Al2Si2O5(OH)4) contributed approximately 14%, 11% and 7%,
respectively. The remaining compounds contained a small proportion of
the total mass of dust, and gypsum (CaSO4⋅2(H2O)) did not exceed 15%
in all the studied samples. The other primary silicate minerals, namely,
zircon (ZrSiO4) and anatase (TiO2) as heavy minerals, were observed
only in samples with low average mass percentages (3%–4%). Notably,
palygorskite and quartz were more dominant in Shiraz atmospheric dust
than other silicates (muscovite, albite and kaolinite). The presence of
heavy minerals in several samples (Fig. 9) indicates that mineral dust
originating from dry lands of Iraq, Saudi Arabia, Syria and Jordan were
probably the major source of the dust events that occurred in the Middle
East and Iran (Awadh, 2012; Najafi et al., 2014).

3.4. Backward trajectory simulation

In this study, backward trajectory simulations were performed to
identify the source of dust events and motion direction of dust plume
over Middle East and the study area in May 2018. Generally, backward
trajectory simulations are helpful in tracking the air mass path and
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aerosols at the receptor site. Fig. 10 shows the backward trajectory
modelling plots of Shiraz for three initial evaluations of 50, 500 and
1000 m (at 0 UTC on May 8 (Fig. 10a) and at 0 UTC on May 15 (Fig.
10b)). On May 8, 2018, the air mass affecting Shiraz was mainly passing
through the eastern desert of Saudi Arabia, Kuwait and Khuzestan
Province.

4. Discussion

The SEM analysis for dust particles showed a range of different
morphologies including rhombic, sub-angular, semi-rounded and irreg-
ular shapes with sizes varying between 2 μm and 50 μm. The shape of
dust particles is closely related to the geological nature of dust prove-
nance, meteorological conditions and transport distance among dust
provenance and deposited region (Al-Dabbas et al., 2012;
Ahmady-Birgani et al., 2015). Calcite was the dominant mineral in all of
the studied samples with different shapes and sizes. The variation in the
size and shape of the calcite particles may be due to their low hardness
and high solubility. Different morphology of calcite can be related to the
dust sources. For example, calcite particles with trigonal–rhombohedral
crystals could have originated from the nearest area compared to the
irregular shapes that might have transported a long-distance to the study
area. Also, diatom detected in SEM analysis as a unique feature. Several
scholars hypothesised that diatom is a biological marker to identify at-
mospheric dust sources lifted from African dry lakebeds (Muhs et al.,
2014). In separate papers, Moreno et al. (2006) and Chou et al. (2008)
reported that the Bod�el�e Depression in the southern edge of the Sahara
Desert in Chad is the main geogenic source of silicate dust, which
commonly originates from dehumidified diatomaceous lake deposits.
Thus, the presence of diatom as a unique feature in the atmospheric dust
samples in Shiraz is possibly associated with a specific source region (e.g.
originated from dry lakebeds), despite the fact that in Iran and neigh-
bouring countries (Iraq and Arabian Peninsula), the existence of diatoms



Fig. 10. HYSPLIT back trajectory simulations (a) at 0 UTC on May 8 and (b) at 0 UTC on May 15. The blue, red and green colour lines denote isobaric contours
beginning at 50, 500 and 1000 m, respectively. These plots are calculated by NOAA’s HYSPLIT trajectory model.
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in dust storms has not been reported. Moreover, Dehghan Madiseh
(2013) identified 85 species of diatoms in Hoor al-Azim Wetland. Our
argument is that the presence of diatoms in the collected samples is
probably related to the dry bed of Hoor al-AzimWetland that is located in
the western borders of Iran and Iraq and known as the main local source
of a dust storm in western Iran (Mojadam et al., 2018). Notably, the
appearance of diatom in the studied samples is not enough to support this
theory. Therefore, further research is recommended.

The Ca/Al ratio in the studied samples (1.14) was greater than the
UCC average (0.37). By contrast, Ca and Al yielded similar elemental
ratios for atmospheric dust samples of Iraq (1.31), Kuwait (1.23) and the
Arabian Peninsula (2.17), but a significant difference was observed in the
Ca/Al ratios (studied samples ¼ 1.14, UCC ¼ 0.37). This difference is
attributed to the regional distribution of calcisols in the mentioned
countries. Meanwhile, the Mg/Al ratio of the studied samples was lower
than those from Iraq and Kuwait. This result reflects the larger contri-
bution of Al–Mg-bearing minerals to the chemical composition of Shiraz
atmospheric dust compared to dolomite. The Mg/Al ratio in the current
study is close to the ratio for Saudi Arabia due to the high abundance of
palygorskite in the sediments and soils of the Eastern Arabian Peninsula
(Shadfan et al., 1985).

The lithogenic elements (Ti, K, Na, Mg, and V) and several trace el-
ements (Co, Sr, Zn, Pb, Mo, and Cu) showed crustal EFs less than 2 with
respect to Al (UCC) in the samples from the study area, thereby
demonstrating a predominantly geogenic source. The crustal EFs for Ca
ranged between 2.82 and 3.35. The high value of EFs for Ca suggests the
widespread distribution of carbonate rocks in theMiddle East. The results
indicate that the crustal EF values of As, Cd, Cr and Ni (2 < EFs<5)
exhibit a modest enrichment. Hence, atmospheric dusts are indeed
influenced by anthropogenic sources when they are transported to Shi-
raz. This influence is likely due to increasing industrial activities near
Fars Province, particularly in oil and gas industries. The most probable
reason for these observations is the petroleum industries in Khuzestan
and neighbouring countries (Zarasvandi et al., 2011; Tsiouri et al., 2015),
which are rich in dust-borne heavy metals, resulting in fly ash with a
relatively high abundance of Ni, Cr, Cd and As that can be absorbed by
particulate matter, such as clay minerals.

The present mineralogy results are consistent with those of Engel-
brecht et al. (2009), Zarasvandi et al. (2011), Al-Dabbas et al. (2012),
Hojati et al. (2012), Modaihsh and Mahjou (2013), Najafi et al. (2014),
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Ahmady-Birgani et al. (2015) and Javed et al. (2017), who conducted
studies in the Middle East region. Hence, dust episodes in the southern
and western parts of the Middle East are expected to have a similar
mineral composition. The high contents of quartz and calcareous parti-
cles, the low content of gypsum and the presence of kaolinite, albite and
muscovite in the dust were mainly due to a detrital sedimentary basin
(Zarasvandi et al., 2011). Engelbrecht et al. (2009a), Modaihsh and
Mahjou (2013) and Najafi et al. (2014) argued that middle and eastern
regions of Iraq, in addition to the western parts of Saudi Arabia, are
possibly the primary source of carbonatic phases during dust storms in
western and southern Iran. Also, Modaihsh (1997) stated that the high
value of calcite (32%) in the atmospheric dust of western parts of Saudi
Arabia originate from calcisols, which is distributed in the Arabian Shelf,
because the amount of rainfall is insufficient for leaching out carbonates.
Similar findings on mineralogy with dominant carbonates and quartz
have been reported for dust episodes in Iraq and Kuwait (Al-Dabbas et al.,
2012; Al-Awadhi and Al-Shuaibi, 2013).

In addition, palygorskite occurrences have been recognised in dust
samples in the central and western regions of Iran (Hojati et al., 2012;
Najafi et al., 2014). Palygorskite as a hydrous Mg–Al silicate is a rare clay
mineral that is unsteady in the regions with precipitation levels of more
than 300 mm. Thus, arid climates are a favourable environment for the
formation of palygorskite in soil. Researchers have argued that paly-
gorskite is the main clay mineral in potential source soils and sediments
of Iraq (Dhannoun and Al-Dabbagh, 1988; Al-Juboury et al., 2009), Saudi
Arabia (Shadfan et al., 1985) and Jordan (Shadfan and Dixon, 1984).
Hence, the occurrence of palygorskite in dust samples can be described
by dust events uplifted from dry and semi-arid regions in Iraq, Saudi
Arabia and Jordan. The high palygorskite frequency in all of the current
samples can thus be considered a useful indicator for identifying the
source of dust storms in southern Iran. The dominant clay minerals,
namely, palygorskite and kaolinite, are attributed to certain climatic
environments because these minerals reflect arid and semi-arid climatic
conditions (Al-Dabbas et al., 2012). These source areas are in accordance
by backward trajectory simulations of dust plume trails (Fig. 10).

5. Conclusion

To determine the characteristics of atmospheric dust and identify the
potential provenance of dust storms, dust mineralogy and geochemistry
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characteristics in the area of Shiraz, southern Iran, were investigated by
gathering atmospheric dust samples at 10 sites.

The results of meteorological data indicated that spring has the
largest dust phenomenon, and most dusty days occurred in May. Pre-
vailing winds were from western and south western to easterly
directions.

SEM analyses of dust samples showed that atmospheric dust has semi-
rounded irregular, sub-angular, prismatic and rhombic shapes, with clay-
sized particles as small visible aggregates. Moreover, Shiraz atmospheric
dusts vary in size from 50 μm to 0.8 μm. However, the dust size is smaller
than 10 μm inmost cases. The diatom detected in the samples of the study
area is a noticeable feature. The diatom present in the collected dusts
may have originated from dried-up beds of Hoor al-Azim Wetland in the
southwest of Iran.

Shiraz atmospheric dust has higher mean Ca and Mg content than
UCC, whereas other major elements in the samples are similar to the
UCC value. For trace elements, the mean concentrations of As, Cd, Co,
Cr, Cu, Ni, Pb, V and Zn in the dust are higher than those in UCC. The
studied elements in Shiraz atmospheric dust can be divided into two
groups based on cluster analysis and crustal enrichment factor: (1) Ni,
Sr, As, Cr, Cd and Zn represent affected by anthropogenic sources, and
(2) Co, V, Mo, Cu and Pb likely originate from a geogenic source. The EF
values of As, Cd, Ni and Cr (2 < EFs<5) are indicative of modest
enrichment. This enrichment suggests that the atmospheric dust trans-
ported to Shiraz is affected by human activities, especially petroleum
industries.

On the basis of the results of XRD analyses, six mineral groups were
identified in Shiraz atmospheric dust as follows: (1) carbonates (calcite
and dolomite), (2) silica (quartz), (3) clay minerals (palygorskite and
kaolinite), (4) primary silicates (muscovite and albite), (5) evaporates
(gypsum) and (6) heavy minerals (zircon and anatase). Despite the
similarities in mineralogy of the studied atmospheric dust samples and
dust from other regions of Iran, the relative abundance of palygorskite
is different. The high presence of palygorskite in all samples could be a
useful tracer for detecting the provenance of atmospheric dust epi-
sodes in southern Iran. For instance, Khalaf et al. (1985) showed that
the dominant clay-mineral fraction of Kuwait dust storms is charac-
terised by a high relative frequency of palygorskite (40%–50%). The
authors posited that palygorskite originated from ancient Meso-
potamian floodplain deposits in southern Iraq and Sabkha sediments in
the southwest area of the Persian Gulf. If the source of dust storms had
been principally from desert areas bordering the Arabian Peninsula
and Iraq, then palygorskite would have been much more abundant
than it is at present. Therefore, the high occurrence of palygorskite in
the collected dust samples is not surprising and indicates that these
areas are the likely sources of dust events in southern Iran. Never-
theless, dust storms occur because of multiple environmental factors,
and any comprehensive study necessitates the incorporation of inter-
disciplinary science to thoroughly understand the nature of this phe-
nomenon. However, in accordance with the aforementioned
discussions and the results of Khalaf et al. (1985), Shadfan and
Mashhady (1985) and El-Sayed (2001), we posit that aridisols from the
Mesopotamian floodbasin (in Iraq), the desert area located in the
southwest of the Persian Gulf and the eastern parts of Saudi Arabia and
Kuwait are three probable sources of dust emission dominated by
palygorskite in the south of Iran.
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