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Abstract: Imlili Sebkha is a stable and flat depression in southern Morocco that is more than 10 km
long and almost 3 km wide. This region is mainly sandy, but its northern part holds permanent
water pockets that contain fauna and flora despite their hypersaline water. Google Earth Engine
(GEE) has revolutionized land monitoring analysis by allowing the use of satellite imagery and
other datasets via cloud computing technology and server-side JavaScript programming. This
work highlights the potential application of GEE in processing large amounts of satellite Earth
Observation (EO) Big Data for the free, long-term, and wide spatio-temporal wet/dry permanent
salt water cavities and moisture monitoring of Imlili Sebkha. Optical and radar images were used
to understand the functions of Imlili Sebkha in discovering underground hydrological networks.
The main objective of this work was to investigate and evaluate the complementarity of optical
Landsat, Sentinel-2 data, and Sentinel-1 radar data in such a desert environment. Results show
that radar images are not only well suited in studying desertic areas but also in mapping the
water cavities in desert wetland zones. The sensitivity of these images to the variations in the
slope of the topographic surface facilitated the geological and geomorphological analyses of
desert zones and helped reveal the hydrological functions of Imlili Sebkha in discovering buried
underground networks.
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1. Introduction

Sebkhas are wet depressions in desert environments that are generally regarded as floodplains of
significant environmental interest and have been closely linked to many environmental issues, such
as climate change, water quality, wildlife habitat, and biodiversity. Recent studies by the Scientific
Institute of Rabat and the Nature Initiative Association of Dakhla have focused on Imlili Sebkha
in southern Morocco, whose geomorphological structures have retained the impacts of previous
climate conditions in the Sahara [1–6]. Sebkhas are supratidal sandflats that are formed along arid
coastlines. These landforms have evaporate–carbonate deposits with siliciclastics and form subaerial,
prograding, and shoaling-upward sequences with an average thickness of 1 m or less [7]. Previous
studies have shown that the palaeoclimatic regimes over Saharan Morocco have alternated between
dry and wet periods throughout the Pleistocene [8] and that the reserves of Saharan fossil aquifers are
filled during humid periods [9]. The water supply of these pockets is not random and is guaranteed
by the small resurgences that appear at the lower part of the area, thereby preserving the moisture
on the groundwater surface of the sebkha’s soil, especially at the western and northern edges of the
area [10]. While the median part of this sebkha holds over tens (161) of pockets of permanent water
with diameters ranging from 1 m to 10 m, these pockets have a depth of approximately 4.6 decimetres
and a water salinity of 24 g/L to 350 g/L (Figure 1a). However, these water pockets host many animals
and fish (Figure 1b) as reported during a scientific field trip in April 2017. In fact, neither the general
landscape nor the climatic data of the region suggest the existence of permanent salt water cavities that
are capable of housing fish. Although its high salinity has caused birds to flee, Imlili Sebkha has created
a favorable habitat for a Cichlid fish species associated with Tilapia guineensis, a species previously
unknown in Morocco and whose northern limit was previously limited to the Senegal River.

Figure 1. A permanent water cavity in Imlili Sebkha (a) holding a fauna of the Tilapia species (b).

Rainwater is another source of water for these excavations. Although rare in these latitudes,
rainwater is transported to the sebkha via temporary watercourses, the most important of which is
located in the wet area. Imlili Sebkha is also known as Ramsar, a remnant of an old aquatic network in
the Sahara. All these reasons make the Imlili Sebkha an interesting area of study for scientists. Table 1
shows the area and depth of these cavities.
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Table 1. Area (m2) and depth (cm) of the permanent water cavities of Imlili Sebkha.

Minimum Surface 0.015 Minimum Depth 20.115
Maximum Surface 472.617 Maximum Depth 460

Mean Surface 18.769 Mean Depth 80
Standard Deviation 43.477 Standard Deviation 73.57

Google Earth Engine (GEE) (https://earthengine.google.com/) is a powerful web platform for the
large-scale, cloud-based processing and analysis of geospatial data. This engine contains archived
satellite images taken all over the world and trillions of scientific measurements that date back by
almost 40 years. This platform also offers an Application Programming Interface (API) service and other
tools that scientists and researchers can use to analyze spatial big data by detecting and monitoring
land cover changes and map trends and by quantifying the differences on the Earth’s surface [11].
GEE is a petabyte archive of Earth Observations (EO) data that provides and relates data by using an
efficient processing software coded in JavaScript or Python and describes these data in API format.
Through its high-performance cloud computing tools, users can perform complex geospatial analyses
and visualizations on GEE. The GEE and its API tools allow users to obtain, analyze, visualize, and
process EO information for any specified area without the need to import spatial data and export
the analysis results to the desktop environment of the user. The use of cloud platforms allows users
to process large volumes of data efficiently. These data include satellite images, which are largely
consumed in computationally intensive tasks, such as classification, spectral analysis, and feature
extraction, and when using advanced algorithms, such as machine learning. GEE is a free, open-access,
cloud-based geospatial analysis tool that can be used for education and nonprofit purposes [12] and
can provide an online accessible interface to any user with a Google account. Along with its JavaScript
API, the GEE has relevant datasets and algorithms for regional and global mapping and an extensive
collection of image data (including almost all Landsat and Copernicus archives) that can be directly
accessed by developers to interactively check and create algorithms and display their results almost
instantaneously. Archived data in GEE include signal data (e.g., topographic, climatic, optic, and radar
data) and thematic data (e.g., land cover data). For optical data, Landsat offers the largest open-access
archive of EO data. This study used archived Landsat-5 Thematic Mapper™ data from 1984 to 2012,
Landsat-8 Operational Land Imager (OLI) data from 2013, Synthetic Aperture Radar (SAR) Sentinel-1
data from 2014, and optical Multispectral Instrument (MSI) Sentinel-2 data from 2015. Monitoring
the location of water cavities from multisource spatial data in Imlili Sebkha posed three challenges.
The first challenge was in the method for image collection, which should guarantee a maximum image
coverage with a limited cloud coverage. The second challenge was setting up a cloud platform for
preprocessing image data and storing images. The third challenge was designing methods for mapping
the changes in the moisture/dry surface data of Imlili Sebkha while ensuring consistency in the results.
We took advantage of the computational power of GEE and supported the image collection process
to overcome the first two challenges mentioned above. As for the third challenge, we adopted an
index-based method for collecting optical and radar data. Given that we exploited two properties
of water cavities in our work, namely, the presence of water in cavities and the presence of salts, we
calculated two spectral indices from the optical images, namely, the all bands water index (ABWI) and
the salinity index (SI). From the Sentinel-1 SAR Ground Range Detected (GRD) data, we determined
a microwave-normalized difference polarization index (MNDPI) from all vertical–horizontal (VH)
and vertical–vertical (VV) polarization images captured by this sensor from 2014. Previous studies
have shown that index-based methods are efficient for applications that use GEE with different image
sources, such as Landsat [11–19], The Advanced Land Observing Satellite and the Phased Array type
L-band Synthetic Apertune Radar ALOS/Palsar [13], and Sentinel-1,2 [20].

SAR is an active remote sensing technique that can penetrate the cloud cover, operate day or
night, and allow an effective classification of surface water [21]. Radar images are well suited for
studying and monitoring desertic areas [22]. The sensitivity of these images to the slope variations
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of the topographic surface can facilitate geological and geomorphological analyses [23]. Previous
studies have used single-polarized SAR satellites and classified the surface properties of Sebkhas
according to their particle size distribution and predominant rock composition [24]. However, Sebkha
objects have been classified only according to the intensity of backscattered energy, which is known as
the radar cross-section (σ◦) of the calibrated dual polarized SAR data, thereby leading to inaccurate
estimations of roughness and grain size [25–27]. The amount of backscattered SAR waves is affected
by two parameters, namely, the surface roughness (mean square height) and dielectric constant of
the surface (ε0), which show a linear relationship [28,29]. The degree of roughness of the surface
is controlled by the general topography, slope, and particle size of the surface object, whereas the
value of the dielectric constant is based on the volumetric moisture content (θv) and conductivity
(homogeneity) of the surface object [24,30,31]. As a result, the dual-polarized SAR data provided a dual
backscatter value for each pixel in a scene (VV and VH). By using these dual polarimetric SAR data,
additional information, such as the polarization index or reflectivity dependence of polarization, can be
determined for each pixel in the scene by calculating both the intensity of the backscattered waves and
the change in their phase (ϕ) and intensity [32]. The radar polarization signature of a target allowed
stronger deductions of the physical scattering mechanism than single polarization measurements by
identifying and characterizing the dominant scattering mechanism [33–35]. Therefore, the solution
for the geometric shape and dielectric constant of an object became less ambiguous [35]. Such radar
polarimetry can be used for object discrimination and characterisation in Sebkhas [23].

In this work, the GEE platform was used to (1) monitor the salt states of permanent water cavities
in Imlili Sebkha, (2) monitor the wet/dry conditions of these cavities, (3) assess the capability of
cloud computing to process several types of data, including the spectral or polarimetric indices on
multisensors and multitemporal imagery, and (4) analyze the function of the Sebkha aquifer system by
examining a buried underground network and map the location of saltwater cavities with a significantly
higher accuracy compared with what can be achieved by using the free data available on the GEE
platform. The primary objective of this paper was to monitor the evolution of water cavities in Imlili
Sebkha over a certain period. Specifically, this paper used the features of GEE to monitor Imlili
Sebkha by extracting its wetness, salt, and humidity indices and contribute to the development of a
GEE-based methodology. Moreover, the radar/optic combination was used to extract hydrogeological
and geomorphological information, and the random forest classification possibilities were used to
improve the mapping accuracy in this desert region.

2. Materials and Methods

2.1. Study Area and General Physiology

Imlili Sebkha is located in southern Morocco (2381703000–2381104500 N,
1585604100–1585303700 W) 40 km south of El Argoub and 15 km east of the Atlantic Ocean
(Figure 2). The vast area is comprised of more than a hundred pockets of permanent waterholes and
salt. The high salinity of this area has caused birds to flee from the region yet provides a favorable
habitat for a Cichlid fish species associated with T. guineensis, a species previously unknown in Morocco
whose northern limit was limited to the Senegal River (West Africa) before its recent discovery on a
tributary of Oued Chebeika and Banc d’Arguin in Mauritania. The temperature in the area varies from
5◦ in winter to 48◦ in summer with short and irregular rainfall. Imlili Sebkha is also exposed to winds
and sandstorms, has an annual rainfall ranging from 50 mm to 60 mm, and has a sufficient supply of
fog and dew to maintain a semidesert type of vegetation in the beds of small Oueds and Sebkhas [36].
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Figure 2. Location of Imlili Sebkha and its saltwater cavities. (A) Morocco, (B,C) location of sebkha,
(D) prospected part of sebkha containing several water holes as viewed from Google Earth (16
January 2018).

2.2. Earth Observation Data

Table 2 presents the spatial and reference datasets used in this study. These data include several
multisource images that were used to derive the spectral indices and the physicochemical properties of
water cavities (e.g., salinity, pH, water depth, resistivity, and presence or absence of fish) that were used
to validate the results of the proposed method. A total of 520 optical and 211 satellite radar imagery
were accessed and analyzed within GEE.

Table 2. Datasets used in this study and the spectral and polarimetric indices extracted from these data.

Data Source Characteristics Extracted Indices

Optical Imagery

280 individual 30-m TM/Landsat-5 images
acquired from the study area in 1984, 1994
and 2004 —Water index used in this study (ABWI)

—Normalised Difference Salinity Index
(NDSI)—Salt Water Cavity Index (SWCI)
—Sar/Optic Saltwater Cavity Index
(SOSWCI)

83 individual 10-m MSI/Sentinel-2A images
acquired from the study area in 2017

50 individual 10-m MSI/Sentinel-2A images
acquired from the study area in 2019

Radar Imagery
211 individual Sentinel-1 SAR
ground-range-detected images collected at a
10 m spatial resolution from 2015 to present

—Microwave-Normalised Difference
Polarisation Index (MNDPI)
—SAR/Optic Salt Cavity Index (SOSWCI)

Reference Data
CHIRPS Precipitation Data

Vector-point-based data that represent the
position of water cavities
Spatial: 0.05◦ Date range: 1985–2019

Water cavities characteristics in the
attribute table
Precipitation graph generated by
ClimateEngine.org

A 30-m spatial resolution digital elevation model (DEM) was obtained from the Advanced
Spaceborne Thermal Emission and Reflection Radiometer (ASTER) database and prepared in
Geographic Information System (GIS). This model requires several measures, such as gap filling,
spatial sorting, and subset analysis of the extracted region (Figure 3a). The radar Sentinel-1 C-band
Level-1 ground range-detected (GRD) images were collected at a 10-m spatial resolution (Figure 3b).
The Thematic Mapper (TM)/Landsat-5 (Figure 3c) and Sentinel-2 MSI are shown in Figure 3d.
The Landsat-5 TM images were acquired on 2 June 1984, 6 August 1994, and 21 April 2004, whereas
the Sentinel-2 MSI images were acquired on 16 April 2017 and 10 April 2019. The spatial resolution of
the Landsat images was 30 m, whereas that of the Sentinel-2 images was 10 m. The materials were
provided in ground range and georeferenced in the UTM, Universal Transverse Mercator coordinate
system (WGS84 zone 28N projection), which was the same projection of the DEM Aster, TM Landsat-5,
MSI Sentinel-2, and SAR (GRD) Sentinel-1 images.
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Figure 3. (a) Digital Elevation Model (DEM) with a hydrologic network and water cavities, (b) Sentinel-1
C-band (central frequency of 5.404 GHz) Level-1 GRD, (c) Landsat Thematic Mapper TM-2004, and (d)
Sentinel-2 MultiSpectral Instrument (MSI) 2019 used in the study.

2.3. Surface Soil Data Measured in the Field

The data were collected from 14 April 2017 to 16 April 2017 during an on-site expedition where
a complete field study of the above sites was conducted. During this expedition, the data were
gathered in situ to cover a wide range of prospective Sebkha populations. The scientists carried out a
hydrobiological and ornithological mission in Imlili Sebkha, and their observations highlighted the
importance of this site as a stopover for tens of thousands of birds that are attracted by the concentration
of plants and permanent water pockets developed in a desert environment. Some migrants fall prey to
the Guinea tilapia and other marine species living in the salt pockets in this area.

The scientific team used Global Position System (GPS) to geotag the water cavities as points and
to determine their properties (e.g., salinity, pH, surface, water depth, and resistivity). Several digital
photographs and ancillary observations (e.g., presence or absence of fish) were also collected to prepare
the training samples. The recorded GPS points were then imported into Quantum GIS (QGIS), a free
software, where polygons that denote the classified delineated water cavities were generated.
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2.4. DEM, Geomorphology, Hydrology, and Geology of Imlili Sebkha

Similar to all sebkhas, Imlili Sebkha represents a dried depression in the desert. Given the
composition of the water table in saltwater, sebkhas are erratically flooded by precipitation events
during which they become short-lived endorheic salted lakes. Imlili Sebkha is a shallow depression
that is less than 10 m deep, approximately 12 km long, and 2.5 km wide in the general direction
of North-Northeast—South-Southwest (NNE–SSW). This sebkha is surrounded by sand dunes, and
plants form a narrow band (20 m to 30 m long) mostly on its western and northern boundaries.
Geomorphologists generally define the sandy area in the northern part of a sebkha as a flat-bottomed
depression where salty soils restrict vegetation growth. Sebkhas in desert countries or arid regions
represent a depression that is temporarily occupied by a generally salty lake that contains evaporite
deposits. In Imlili Sebkha, the water comes not only from runoff but also from groundwater (Figure 3a).
The sandy soil in the northern part of this sebkha is brick red with a fine whitish layer leading to salt
crystallization. The western and northern borders of the depression are wet and show plant formation
in a continuous band shape that is 20 m to 30 m wide. The northern part of this sebkha has several
permanent water pockets, the bottom of which has a sandy texture and edges have sand and salt
concretions [6–49]. The water in these pockets is supplied by small resurgences, and the sheet outcrops
and moistens the soil of the sebkha, especially at its western and northern borders [50]. Rainwater,
which is rare at these latitudes, is transported to the sebkha via streams, and the most important ones
arrive on the north side. However, except for the permanent pockets in the north, the rest of the sebkha
has never been in water during the on-site visits [50]. Imlili Sebkha has two features that cannot be
seen in other Moroccan wetlands. Firstly, this sebkha has retained its hydrological function (a huge
sebkha with permanent saltwater pockets where fish can live) up to the present, an unexplored zone
from a hydrological and hydrobiological studies point of view [6]. Secondly, despite not having any
connections to the sea, the water in this Sabha is very salty and may even be ‘hypersalty’. If the sea
salinity rate is as high as 35 g/kg, then the salinity of the water in Imlili Sebkha varies between 50 g/kg
and 70 g/kg, which is almost twice higher than that of seawater, due to the fact that “the substratum
is very salty and drained the saline water from the underground network” [1]. Imlili Sebkha is a
continental depression that lost its tabular structure under the marine influence. This sebhkha is
part of the Meso–Cenozoic basin of Tarfaya–Laayoune–Dakhla and comprises a set of small basins
that are elongated parallel to the coast and were formed during the Mesozoic period in the marine
direction of the stable craton West Africa; meanwhile, the southeastern part of this sebkha is included
in the domain of Oulad Dlim, which in turn belongs to the Réguibate Ridge located in the extreme
south of Morocco [36]. Towards its coastal margin, the region shows a Miocene formation with lateral
variations in facies and thickness and generally consists of sandy marl, lumachelles, and quartzites.
The Meso–Cenozoic structural evolution of this region is mainly manifested in its brittle tectonics,
which are responsible for the replaying of major at North directional: N 40◦ to N 50◦ faults and smaller
N 70◦ directional faults, respectively that have influenced the regional tectonic evolution further north
of the Tarfaya–Laayoune–Dakhla basin. The geological characteristics of the Imlili Sebkha benefit the
concentrations of industrial rocks and minerals, such as lumachellic limestones, marls, clays, gypsum,
and siliceous sands [50].

2.5. Spatial Datasets, PreProcessing, and Feature Extraction

2.5.1. Optical Imagery

The images were selected depending on their availability during the dry period between April and
September for 10 years starting from 1984. The spectral parameter inputs were extracted from a sequence
of 90, 45, and 145 Landsat-5/TM images from 1984, 1994, and 2004, respectively, 107 Landsat-8/OLI
images from 2014, and 133 Sentinel-2 images from 2017 and 2019 (Table 2). A customised JavaScript
cloud masking and compositing script algorithm was implemented in GEE to suppress different
types of clouds and noises and to generate a multispectral composite cloud-free image. The ‘raw’
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scenes in GEE contain scaled radiance imagery with digital numbers (DNs). Using the coefficients,
the conversion of DNs to at-sensor radiance was done using a linear transformation [37,38]. We used
the top of atmosphere (TOA) or at-sensor reflectance conversion algorithm, a linear transformation that
covers for solar elevation and seasonally variable Earth–Sun range. The bands were used to extract
water, soil salinity, and wet/dry areas within the spectral bands of solar reflectance. The raw images
of TM/Landsat-5 and OLI/Landsat-8 were stored in DN form (QCAL), which must be transformed to
explicit surface reflectance before processing by using the GEE algorithm. All images were subjected
to radiometric calibration and atmospheric correction. Radiometric calibration turned the original
QCAL into the radiance of TOA. For a specific wavelength λ, the TOA radiance Lλ and reflectivity ρλ
were computed by using Equations (1) and (2), respectively, for each band based on the metadata of
the images [37].

Lλ = ((LMAX − LMIN) × (QCAL − QCALMIN)/(QCALMAX −QCALMIN)) + LMIN (1)

ρλ =
(
π ∗ Lλ ∗ d2

)
/(ESUNλ ∗ cosθ) (2)

where λ is the band number, LMAX is the spectral radiance scaled to QCALMAX, LMIN is the spectral
radiance scaled to QCALMIN, QCALMAX is the maximum quantized calibrated pixel value (corresponding
to LMAX) in DN (255 for TM and 65.535 for OLI), QCALMIN is the minimum quantized calibrated pixel
value (corresponding to LMIN) in DN (1 for both TM and OLI), and QCAL is the quantized calibrated
pixel value in DN [18]. All these parameters can be found in the metadata file (MTL) included in
the TM/OLI images. In addition, d2 denotes the inverse squared relative Earth–Sun distance, ESUNλ

denotes the mean exoatmospheric solar irradiance, and θ represents the solar zenith angle in degrees.
The permanent water cavities in Imlili Sebkha are characterized by high-salinity water. Therefore,

to extract the features of these cavities, we developed a 2D feature space (water index, salinity index).
In most situations, water exhibits a higher visible band reflectance compared with infrared bands [19,20].
The surfaces of nonwater objects usually do not have this spectral similarity, especially in desert
areas [39–43]. Therefore, we used the water index developed by Xiong to optimize the separability
of water and nonwater pixels [45]. This spectral index is called the normalized ABWI, which can be
obtained from TM images (Equation (3)), OLI images (Equation (4)), and MSI (Equation (5)).

ABWITM =
(ρ1 + ρ2 + ρ3) − (ρ4 + ρ5 + ρ7)

(ρ1 + ρ2 + ρ3) + (ρ4 + ρ5 + ρ7)
(3)

where ρ1, ρ2, ρ3, ρ4, ρ5, and ρ7 represent the blue, green, red, Near-Infrared (NIR), short wave infrared
(SWIR1), and SWIR2 band reflectances, respectively.

ABWIOLI =
(ρ1 + ρ2 + ρ3 + ρ4) − (ρ5 + ρ6 + ρ7)

(ρ1 + ρ2 + ρ3 + ρ4) + (ρ5 + ρ6 + ρ7)
(4)

where ρ1, ρ2, ρ3, ρ4, ρ5, ρ6, and ρ7 represent the coastal aerosol, blue, green, red, NIR, SWIR1, and
SWIR2 band reflectances, respectively.

ABWIMSI =
(ρ2 + ρ3 + ρ4) − (ρ8 + ρ11 + ρ12)

(ρ2 + ρ3 + ρ4) + (ρ8 + ρ11 + ρ12)
(5)

where ρ2, ρ3, ρ4, ρ8, ρ11, and ρ12 represent the blue, green, red, NIR, SWIR1, and SWIR2 band
reflectances, respectively.

Various spectral salinity indices have been developed for detecting and mapping salt objects [45–51].
For instance, the normalized difference salinity index (NDSI), which was developed from SWIR1 for
Landsat data (1.55–1.75) and SWIR2 (2.08–2.35), has been widely used in the literature given its ability
to reflect the salinization level of the soil [45,51]. However, this index becomes ineffective when the soil
is covered with vegetation [48]. Several studies have shown that the normalized difference vegetation
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index (NDVI) gradually decreases along with an increasing surface soil salinity [50]. Nevertheless,
this phenomenon was not observed in the study area because the most important characteristic of
vegetation resided in the presence of a mixed belt (Phragmites australis, Juncus rigidus, and Arthrocnemum
macrostachyum) [52], which is approximately 30 m wide and is continuous along the wet edges of the
west and north sides of the northern part of the prospected wetland. The salinity index can be obtained
from TM images (according to Equation (6)), OLI images (Equation (7)), and MSI (Equation (8)).

NDSITM =
ρ5 − ρ7

ρ5 + ρ7
(6)

NDSIOLI =
ρ6 − ρ7

ρ6 + ρ7
(7)

NDSIMSI =
ρ11 − ρ12

ρ11 + ρ12
(8)

The maximum and minimum values of these indices were calculated before they were transformed
into nondimensional sequences as follows:

IndexND =
Index− Indexmin

Indexmax + Indexmin
(9)

where Indexmin is the minimum index value, Indexmax is the maximum index value, and IndexND is the
normalized index value.

For the extraction of permanent water cavities, we developed an index on the basis of the properties
of these cavities, namely, their water capacity, high salinity, and the humidity of the bordering space.

We also drew a scatter plot (Figure 4a) to analyze the spectral space generated by the indices
ABWI and NDSI. After evaluating the statistical regression results, we found that ABWI and NDSI had
a positive linear correlation: 10. The equation for the regression is

NDSI = −79.97 + 1.67×ABWI (10)

Figure 4. (a) the All Band Water Index and the Normalised Difference Salinity Index (ABWI, NDSI)
feature space and the regression line, and (b) the Microwave-Normalized Difference Polarization Index
and Salt Water Cavity Index (MNDPI, SWCI) feature space and the regression line.

The correlation coefficient is 0.66 (Figure 4a), which indicates that soil salinity and ABWI
increased along with soil wetness. The soil wet/soil salt process was clearly reflected in the (ABWI, SI)
feature space.
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The saltwater cavity index (SWCI) was computed as follows by using optical radiometric data:

SWCI =
√

NDSI2
ND + ABWI2

ND, (11)

where NDSIND is the nondimensional salt index obtained from Equation (9), ABWIND is the
nondimensional water index obtained from Equation (9), and SWCI is the saltwater cavity
presence index.

2.5.2. SAR Imagery

Radar input variables were produced at a spatial resolution of 10 m (Table 2) from a series of 211
Sentinel-1 SAR C-band Level-1 GRD images. The radar images available in GEE were in upward and
downward orbits and were acquired in interferometric-wide (IW) mode with average incidence angles
ranging from 30 to 40. The data were subsequently preprocessed by using the Sentinel-1 toolbox,
which can perform radiometric calibration, radiometric terrain flattening, speckle filtering, and range
Doppler terrain correction [37].

The fastest and most useful index that can be extracted from intensity SAR data is the MNDPI,
which is measured from two VH and VV bands that were taken for one image by Sentinel-1 satellites
between 10 April and 10 August in 2015 and 2019. This index was transformed and smoothed by using
a 7 × 7 pixel refined Lee speckle reduction filter and Equation (12).

MNDPI =
VH −VV
VH + VV

, (12)

where VH and VV are the vertical–horizontal and vertical–vertical polarization bands obtained from
the Sentinel-1 sensor. The outputs of this index ranged from −1 to 1. Given that the VV in the study
area was generally greater than VH, the MNDPI ranged from −0.95 to 0.

The MNDPI was chosen for two reasons. Firstly, the permittivity of dry matter highly contrasted
that of water, and MNDPI has been proven to be useful in discriminating various levels of soil
moisture [53,54]. Secondly, MNDPI simulated the difference index of microwave polarization
introduced in [55–58], thereby highlighting its responsiveness to moisture soil states [58]. This
index also had considerable capacity for enhancing SAR-based land cover and sensitivity to some
specific parameters that characterize vegetation biomass, snow depth, or equivalent snow water [59].

To extract permanent water cavities with high precision, we developed a new index based on the
spectral of radiometric passive properties of the optical sensor and polarization of radiometric active
properties of SAR sensor.

For further study, the spectral space was formed by two indices. The first index was the spectral
from Sentinel-2 MSI, which was a radiometric passive optical sensor (SWCI), whereas the other index
was the polarimetric from Sentinel-1, which was a radiometric active dual-polarization C-band SAR
GRD sensor (MNDPI). Figure 4 presents the scatter plot chart. SWCI and MNDPI show a significant
positive linear relationship after the following quantitative regression on Equation (13):

SWCI = −1.79 + 0.64×MNDPI (13)

The correlation coefficient was 0.87 (Figure 4b), which suggested that when saltwater was present
in the permanent cavities, the surface moisture gradually increased along with MNDPI. The relationship
between surface moisture and the presence of saltwater in the cavity hole was clearly reflected in the
(MNDPI, SWCI) feature space.
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We combined the radiometric SAR polarization index (MNDPI) with radiometric optical index
(SWCI) to form the new SAR/Optic SWCI (SOSWCI), which we used to extract the holes filled with
saltwater with high precision Equation (14).

SOSWCI =
√

MNDPI2
ND + SWCI2

ND, (14)

2.6. Radar/Optical Data Fusion

Merge processes play a crucial role in remote sensing due to their capability to improve visual
quality and translation. These processes are also known as image spatial enhancement processes where
panchromatic images with high spatial and low spectral resolutions are merged with multispectral
images with low spatial and high spectral resolutions to produce multispectral images with high
spatial and spectral resolutions [59–62]. Apart from optical imaging, radar has also been commonly
used in woodland, urban, and agricultural settings. Several forestry studies show that the C-band
is very resistant to leaves and small branches and has a higher VH than VV and Horizontal
Transmit—Horizontal Receive Polarisation: HH. However, radar has been rarely applied in arid
and desert settings [63–65]. Optical sensors define the chemical composition of a surface object,
while microwave scattering is influenced by structural elements and object surface roughness. SAR
polarization is a determinant factor in water detection [66–68]. Previous studies [69–71] have shown
that HH-polarized images are more adequate for water detection compared with VV- or cross-polarized
VH images [25] because HH polarization yields the highest discrimination in backscatter values
between dry and wet soils and between smooth and rough soils. Given that the available image in
this study had an intensity VV and VH polarization, we used the MNDPI index, which has proven
useful in discriminating different levels of soil moisture [53,54]. MNDPI was selected instead of VV
or VH for the merge process with Sentinel-2 MSI multispectral. Three popular merging algorithms,
namely, principal component analysis (PCA) [72,73], intensity hue saturation [74,75], and wavelet
transform [76,77], were used to downscale the OLI multispectral band. The best result was obtained
from the PCA merging algorithm. PCA is a statistical procedure that converts a multivariate set of
correlated various parameters into a set of uncorrelated linear combinations of the original variables [73].
For the Sentinel-2 MSI image from 2017, the first principal component (PC) band 1 was substituted by a
high-resolution band (i.e., the MNDPI band), which was scaled to match PC band 1 to avoid distorting
the spectral data. A reverse transformation was applied afterwards. By using the bi-cubic convolution
method, the multispectral data were automatically resampled to the size of high-resolution pixels.
After merging, the resulting image contained the characteristic of a high-spatial resolution image (i.e.,
the MNDPI channel) and the high-spectral resolution of Sentinel-2 MSI.

2.7. Random Forest Classification within GEE

Random forests (RF) are nonparametric classification trained algorithms that can be described
as an improved version of bagging (a commonly used ensemble classifier) combined with a voting
process [78,79]. RFs have excellent computational efficiency due to their bootstrap aggregation, which
creates (majority vote) and averages a large collection of decorrelated decision trees to produce a
prediction or classified output. RFs also demonstrate a promising classification accuracy for multisource
data in the field of remote sensing [79,80], given that multisource data are too complex to be classified
by using a parametric decision rule [81]. Several studies have also highlighted the advantages of RF
in land cover classification. Specifically, this algorithm allows users to choose the number of trees,
the number of variables that each tree uses for splits, the best variable to split, and the splitting and
stopping rules [82–84]. RFs are tuned by changing the number of variables being used by each tree and
by predicting a validation set. In our cross-validation scheme, the model was trained on 90% of the
dataset and validated by using 10% of the dataset. GEE provides many machine-learning algorithms,
including RF.
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Figure 5 presents an overview of the key methodological measures used in the analysis. Firstly,
we preprocessed satellite reflectance datasets in GEE to extract and monitor the water (ABWI) and
salinity (NDSI) indices from 1984 to 2019 for every 10 years. Secondly, we defined a new index for
water cavities signal detection by studying the correlation between the salinity and water indices.
This new index measured the cavity presence signal filled with saltwater, which we called SWCI, and
monitored the presence or absence of saltwater in the studied cavities from 1984 to present. Thirdly,
we extracted a soil moisture index (MNDPI) in GEE from dual-polarization C-band SAR Sentinel-1
to monitor surface wetness from 2015 to present. This polarimetric index showed a high correlation
with the optical SWCI, thereby allowing us to define another index called SOSWCI that combined the
dielectric properties with the spectral properties. SOSWCI was applied only for the optical and radar
images obtained in April 2017, which corresponded to the date of collecting the in-situ data used for
the validation. These images were also used to merge passive and active radiometric data into one
image, which we used to explore the hydrologic operation mode of Imlili Sebkha. The last image was
used in the nonparametric classification process with RF as a decision rule.

Figure 5. Schematic overview of the methodological approach.

3. Results

This section presents the results obtained from the optical radiometric passive data. We start by
monitoring the soil salinity in Imlili Sebkha and studying the changes in NDSI from 1984 to present.
We then monitored the surface wetness of the sebkha by studying the changes in ABWI. We eventually
monitored the wet/dry state of the sebkha saltwater cavities by using a newly defined index, Salt
Water Cavity Hole Index (SWCHI), and by referring to the optical data. We then presented the results
obtained from the radiometric active SAR data. In this active domain, we used MNDPI to monitor
the changes in the surface moisture state, and we combined this index with another index extracted
from the optical domain to obtain SOSWCI, which mixed passive radiometry with active radiometry.
SOSWCI will not be used for the monitoring but rather for increasing the precision of the wet/dry state
of the sebkha saltwater cavities in 2017, during which the field data were collected. A work based on
the fusion of radar and optics was also performed to map the underground network and to understand
the hydrologic operation mode of the Sebkha.
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3.1. Imlili Sebkha Change Mapping Obtained from Optical Data

3.1.1. Monitoring of Sebkha Surface Soil Salinization

We obtained the soil salinization data of Imlili Sebkha for years 1984 to 2019 from the Landsat-5
TM images for years 1984, 1994, and 2004 (Figure 6a–c, respectively) and the Landsat-8 OLI image for
2014 (Figure 6d) and then derived soil salinization information from Sentinel-2 MSI (Figure 6e). We
also studied the spatial and temporal variations in the soil salinization between 1984 and 2019.

Figure 6. Monitoring of NDSI from 1984 to 2019 (a–e) spatial distribution and soil salinization
measured in the field, and (f) correlation between NDSI from Sentinel-2 MSI 2017 and the salt content
field measurements.

The correlation between the sample points of saltwater cavities (corresponding to the
field-measured salt content collected from 14 April 2017 to 16 April 2017 during a field survey
of the sites) and the NDSI attributes of the Sentinel-2 MSI image was analyzed. The Spatial Distribution
R2 correlation between the field-measured salinity of these cavities and the extracted remote sensing
index NDSI for MSI was 0.86 (Figure 6f).
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The soil salinization index of Imlili Sebkha was divided into nonsalinization, mild salinization,
moderate salinization, and extreme salinization according to the saline soil grading level (Table 3) from
1984 to 2019 (Figure 7a–e). Figure 7 shows a steady increase in the area with extremely salinized soil
between 1984 and 2019, whereas Figure 7f shows that cavities with severe salinization were almost
absent from 1984 to 1994 (Figure 7a,b,f). The number of cavities with severe salinization also increased
from 1994 to 2014 (Figure 7b–d) and stabilized between 2014 and 2019 (Figure 7f).

Table 3. Salinization classification from the literature.

NDSI Non-Salinisation Mild Salinisation Moderate Salinisation Severe Salinisation

Landsat ≤0.2 0.2–0.4 0.4–0.8 ≥0.8

Figure 7. (a–e) Soil salinization spatial class distribution from 1984 to 2019 versus the soil salt measured
in the field and reclassified into two classes, and (f) salinization states of the saltwater cavities extracted
from the classified NDSI.
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3.1.2. Monitoring Wet/Dry Cavity States Using SWCI

We collected data on the wet/dry states of permanent saltwater holes in Imlili Sebkha from 1984 to
2019 by calculating SWCHI from the Landsat-5 TM images taken on 1984, 1994 and 2004 (Figure 8a–c)
and the Landsat-8 OLI image taken on 2014 (Figure 8d). We also determined the presence or absence
of saltwater signals from Sentinel-2 MSI (Figure 8e). Figure 8a shows that all holes in the sebkha
were dry in 1984 except for some moderately wet holes. The same trend can also be clearly seen
in Figure 8f. Figure 8 classifies the soils of Imlili Sebkha into four grades according to their state of
wetness and salinity (i.e., dry, mild, moderately wet, and very wet salt water cavities) from 1984 to
2019 (Figure 8a–e). Figure 8 shows that the area of very wet saltwater cavities steadily increased from
1984 to 2019, whereas Figure 8f shows an abrupt change in these cavities from dry to very wet after
1994, which was followed by an increase in the moderately wet and very wet states from 2004 to 2019
(Figure 8c–e). This finding indicates that the very wet state of holes steadily increased from 1984 to 2014
(Figure 8f). However, in 2019, the number of holes filled with saltwater slightly decreased (Figure 8f).

Figure 8. (a–e) SWCI signal reclassified into four classes from dry to very wet saltwater cavities from
1984 to 2019 versus the depth of the saltwater cavities measured in the field and reclassified into two
classes, and (f) wet/dry state statistics of the saltwater cavities extracted from the classified SWCI.
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3.2. Imlili Sebkha Change Mapping Obtained from SAR Data

Monitoring of Saltwater Cavity Moisture State Using MNDPI

The soil moisture information from Imlili Sebkha was evaluated by calculating the MNDPI index
from the Sentinel-1 SAR C-band Level-1 GRD image for 2015 to 2019. The spatial and temporal
soil moisture patterns from the MNDPI signal were analysed. The moisture map was generated
by reclassifying the MNDPI signal into four classes (Figure 9a–e), and the moisture statistics of the
saltwater cavities were extracted (Figure 9f). The results obtained from the radar images were highly
precise because the radar signal was highly sensitive to the ground geomorphology. Near the water
cavities, the radar managed to detect a micro relief as denoted by the red dots in Figure 9a–e. Moreover,
the MNDPI index showed high sensitivity to humidity as indicated by its maximum signal at the
water cavities. These two factors improved the radar detection efficiency of water cavities, thereby
making our results more accurate than those obtained by optical sensors. We also observed a similar
moisture behaviour from 2015 to 2018, but in 2019 we observed a significant decrease in the wettest
wells (Figure 9f).

Figure 9. (a–e) Moisture map obtained from the reclassification of the MNDPI signal into four classes
from non-moisture to high moisture of the water holes from 2015 to 2019 versus the depth of the
saltwater cavities measured in the field and reclassified into two classes, and (f) moisture state statistics
of the saltwater cavities extracted from MNDPI.
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3.3. SAR/Optic Collaboration for Mapping Saltwater Cavities for 2017

3.3.1. Mapping of Wet/Dry Cavity States Using SOSWCI

To accurately detect wet or dry cavities, we developed SOSWCI, which combines the spectral
indices of wetness (ABWI) and salinity (NDSI) extracted from optical images with the moisture index
(MNDPI) extracted from the radiometric SAR polarization intensity of radar images. Given that both
the radar and optic images must be taken on the same date, we selected 2017, during which the data
were collected in the field. Compared with the results obtained from the radar moisture index alone
(Figure 9f), the result obtained from the index that combined radar and optics was closer to the results
obtained from the field (Figure 10c,d).

Figure 10. (a) The Sar/Optic Saltwater Cavity Index (SOSWCI) signal reclassified into five classes from
2017 versus the depth of saltwater cavities measured in the field and reclassified into two classes;
(b) dry/wet states of saltwater cavities for 2017, wet/dry states statistics of saltwater cavities; (c) data
extracted from the classified SOSWCI for 2017; (d) data measured in the field for the same year and
reclassified into four classes.

3.3.2. Mapping of Underground Network by Merging the Radar and Optic Data

The SAR radar is an active form of remote sensing that illuminates the target and serves as an
all-time sensor that does not depend on sunlight. Unlike the reflected aspect of the electromagnetic
spectrum, microwave radiation is vulnerable to three factors, namely, surface tilt, roughness, and
target material dielectric constant [78–81]. Figure 11 presents an overview of the Sentinel-2 MSI
image (Figure 11a) and Sentinel-1 SAR merged with Sentinel-2 MSI data (Figure 11b). The difference
between the image produced by reflectance data and the backscatter merged with reflectance is
that the topography of the bedrock was slightly buried, and the radar managed to highlight the
hydrographic network under the sand, which the optical sensor alone cannot see because of its
superficial interaction [85–88]. This difference can be attributed to the surface penetration backscattering
from subsurface features. The hydrological and hydrogeological mechanisms of Imlili Sebkha can be
attributed to its aquifers, which are amongst the most important deep aquifers in the entire Sahara.
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Figure 11. (a) RGB color composite of Sentinel-2 MSI, (b) the Sentinel-1 SAR merged with the Sentinel-2
MSI image showing the buried hydrographic network (blue) highlighted by the radar data and the
superficial hydrographic network (yellow) highlighted by the optic data.

3.3.3. Application of Random Forest Classification to a Multibands Integrated Dataset

To fulfil our research goal, we created an optimized 11 multiband dataset comprising 6 reflectance
bands, 2 polarimetric SAR bands (VV and HV), and the 3 extracted indices (MNDPI, NDSI, and ABWI).
In view of the initial classification tests and the significant amount of evidence that highlights the
importance of RF (Figure 12a,b), we used an RF classification model that is available on the GEE
platform. The first step in the RF process was to draw a bootstrap sample of size N from the training
data. After an RF tree grows to the bootstrapped information for each sample, the following steps were
repeated for each tree node: (1) The m variables were randomly selected from the p variables, and
the best split-point variable was chosen among them. (2) The node was separated into two daughter
nodes. (3) For the classification, each random forest tree vote was used. Finally, the prediction showed
the majority vote of the ensemble.

Figure 12. (a) Random forest classification applied to the 11 multibands dataset of 2017, and (b) the
same image superposed to the position of the water cavities.

Table 4 provides the accuracy estimates for the full model. The columns show the map categories
depicting the RF model predictions (pixels classified by class), the rows show the field-validated
reference data (reference pixel for each class) and ni+ and n+j represent the totals of the preceding rows
and columns, respectively. In addition, Oer denotes the omission error, Cer denotes the commission
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error, Ui denotes the user’s accuracy, Pi denotes the producer’s accuracy, and OA denotes the overall
accuracy. For most open water, wet soils, and dry land areas (including salt caverns, very wet soils,
and very dry soils), the matrix showed a relatively high consumer and producer accuracy.

Table 4. Pixel counts of the error matrix with overall accuracy (OA).

Class Accuracy Assessment %

Reference (Ground Thruth) 1 2 3 4 5 6 n+j Oer Ui Pi OA

1 77 2 2 0 1 2 84 8.3 91.7 96.2 93.2
2 0 74 1 0 2 0 77 3.9 96 92.5
3 2 1 73 1 1 0 78 6.4 93.6 91.2
4 0 1 2 76 1 0 80 8 92 95
5 1 1 1 2 74 2 81 8.6 91.4 92.5
6 0 1 1 1 1 75 79 5 95 95

n+ j 80 80 80 80 80 97 479
Cer 3.75 7.5 8.75 5 7.5 5

The average categorization accuracy obtained by using this data subset was 93.20% (Table 4),
which is a very appropriate value. The percentages of correct classifications of pixels as holes with open
water, very wet soil, moderately wet soil, mildly wet soil, dry soil, and very dry soil were 96.2%, 92.5%,
91.2%, 95%, 92.5%, and 95%, respectively. The agreement coefficient value for this classification was
94.5%, the quantity disagreement was 2.1, the allocation disagreement was 2.77, and the disagreement
was 4.2. These values suggest that the RF classification and the collected ground truth data show
good agreement.

4. Discussion

Sebkha Imlili is an original freshwater structure in the Sahara that has witnessed historical tropical
events in the extreme south of Morocco. This sebkha represents a wet and dynamic section of an old
river that was isolated and dried up due to the desertification of the region over the last thousand
years [89]. The northern part of Sebkha Imlili has 160 permanent water pockets. Although the water in
this zone is salty and hypersaline, the pockets include marine flora and fauna and both stagnant and
flowing freshwater [51]. Before presenting our results, we first analyzed our monitoring results for the
salt and wet/dry conditions of permanent water pockets, determined the source of these permanent
water pockets, and discussed the radar optic merging process.

4.1. Monitoring of the Soil Salinity and Wet/Dry States of Permanent Water Cavities

4.1.1. Monitoring of the Soil Salinity of Imlili Sebkha

The intensity of soil salinity increased the reflection [90], and the rise in salinity affected the entire
spectrum of reflectance and the SWIR domain [50,91,92]. SWIR remote sensor satellite sensors can
easily capture the highly reflective characteristics of highly saline soils and play fundamental roles in
the remote monitoring of a large area of soil salinization [50]. Figure 6a–c shows that salinity largely
varies from one pocket to another even when these pockets are located close to each other and even if
only a small number of wells have severe salinity. The level of salinity became uniform and severe in
the years that follow (Figure 6d,e). These results are in agreement with those obtained by Qninba and
Emran [89,90].
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4.1.2. Monitoring of the Wet/Dry States of Permanent Water Cavities

The monitoring results for the wet/dry states of saltwater cavities can be validated by using
meteorological data for the years 1984 to 2004. Given that images for the years 2015 to 2019 were
available on GEE, we used these images to validate our results for optical and radar data performance.

According to the evolution of precipitation over the last four decades (1971–2019), the Sahara Desert
experienced a long dry episode from 1971 to 1993 and a period of recovery afterwards. Meanwhile, in
the late 1990s to 2010, the precipitation over the Sahara Desert showed an obvious recovery with an
increasing trend of 15.2% per decade (above the 95% level of significance). The temporal variability of
precipitation in this desert is comparable to the global anomaly of precipitation, which means that the
climate in the Sahara was influenced by anthropogenic forces that are responsible for the global change
in precipitation levels [3]. An unusually extreme precipitation was also observed in the Sahara Desert
in the mid-1990s, and we examined such abrupt change accordingly. Figure 13a,b shows that after this
abrupt change, the Sahara Desert experienced an increase in precipitation. Significant abrupt changes
in precipitation were also recorded in the summers of 1992 and 1993 [92], and these changes were
followed by frequent precipitation events as shown in Figure 14. These meteorological data agree well
with the results obtained from the monitoring of the wet/dry states of saltwater cavities (Figure 8f).

Figure 13. (a) Precipitation graph from 1985 to 2019 generated by using the ClimateEngine platform,
and (b) mean annual precipitation graph obtained from [92].

Figure 14. Temporal variation of the interannual summer precipitation anomaly (%) between 1971 and
2010 [92].

Figure 15 shows the wet/dry states of the water cavities from 2014 to 2018 as seen from GEE.
The water cavity denoted by the yellow circle was dry in 2014, mildly dry 2015, moderately wet in
2016, very wet in 2017, and moderately wet in 2018. Meanwhile, the water cavity denoted by the red
circle was very wet in 2014, slightly wet in 2015, dry in 2016, medium dry in 2017, and dry in 2018.
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Figure 15. Monitoring of four salt cavities denoted by the yellow, green, blue, and red circles from 2014
to 2018.

4.2. Origin of Permanent Saltwater Cavities

The radar images used in this work helped us understand the functions of Imlili Sebkha in
discovering underground hydrological networks by combining multispectral and polarimetric radar
images. These images are not only well suited to studying desert areas but also allow a better monitoring
of desert flood zones. The sensitivity of these images to variations in the slope of the topographic surface
and surface roughness can facilitate geological and geomorphological analyses. In this study, a dual
polarization of SAR satellites was combined with multispectral data to characterize the sebkha surface
terrain features, including their grain size distribution and prevailing rock composition. Meanwhile,
the discrimination of objects according to this dual polarization provides relatively accurate information
regarding roughness, particle size, and humidity from the surface [87,88]. Therefore, in studying soil
and terrain roughness, grain size, volumetric moisture content, and homogeneity, the dual imaging
polarimetric radar can be combined with multispectral data and used for discriminating different soil
types and soil moisture states in Imlili Sebkha [87,88]. The permanence of water in water pockets
can be ascribed to a combination of the geological, hydrogeological, and temporal variabilities in
the precipitation over the Sahara Desert. The precipitation phenomena allowed continuous feeding
of the underlying superficial water table especially during rainy episodes (the sebkha) [89,90]. This
water circulates in the permeable layer/impermeable layer interface, ensuring the quasi-permanent
filling of the pockets. The sebkha represents the outlet and lowest point of a large underground and
superficial hydrographic network. The hypersalinity of permanent water cavities can be ascribed to
the saltiness of the substratum and the draining of saline water from the underground network [92].
Given its large area, the study area receives a large volume of rainwater, but the rate of infiltration in
the subsoil plays against the surface runoff, thereby preventing floods from reaching the sebkha. In
this case, the slightly inclined soil of the sebkha enhances the visibility of runoff along channels, which
is hardly visible in topography and optical imagery. The origin of saltwater cavities can be ascribed to
the presence of faults under the surface of the sebkha, whereas their high salinity can be ascribed to the
leaching phenomena.

In this research, we tested the ability of full polarimetric radar, such as Radarsat-2 or Alos Palsar-2,
in detecting and monitoring the terrain features of interest of Imlili Sebkha. We believe that this
approach will be enhanced by polarization diversity of the full polarimetric data, their polarimetric
imaging capability, high-resolution mode, and ability to look to either side of the satellite track. This
approach can also provide useful information that can facilitate a detailed and accurate mapping
of soil moisture states, the spatial dynamics and status of permanent water pockets in its central
part of the sebkha, the vegetation characteristics at the edges, and the processes that actively shape
this environment.
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5. Conclusions

The integration of information technology in the fields of data accessibility, cloud computing, and
machine learning offers many possibilities for geospatial applications at the temporal and spatial levels.
Our study focused on the mapping and monitoring of the wet/dry conditions of a very vulnerable
Saharan wetland ecosystem. The findings highlight the functions of water cavities in the sebkha and
the ecological values of this area, which have been largely unexplored in the literature.

The use of a cloud-based geospatial workflow allowed us to efficiently and quickly map and
monitor the saltwater cavities in Imlili Sebkha. The results not only show the value of long-term
global monitoring for the effective and sustainable protection of these fragile ecosystems but also help
us understand the function of these Saharan wetlands. The geospatial workflow also allowed us to
detect the temporal fluctuations in the wet/dry conditions of these water cavities, which is crucial in
understanding how these areas operate and in devising ways to protect these areas from land use and
climate change.

The evolution of technology and the emergence of new trends in geospatial science over the past
few years have improved the efficiency of using geospatial data to map, monitor, and search terrestrial
systems, especially the fragile ones such as the Saharan wetlands. However, these new trends have also
brought about several challenges, including (1) the availability of multisensor, multiresolution, and
multitemporal satellite data streams in open access; (2) the development of geospatial big data in the
form of a data cube; (3) the availability of computing in cloud platforms and, (4) the increasing use of
machine learning algorithms and artificial intelligence. Not only do satellite EO data increase in number
and become easier to access, but the infrastructure platform has also become too sophisticated for
processing algorithms that have been built in a collaborative manner. Nevertheless, these advancements
have facilitated the integration of massive geospatial datasets and made them available to a larger
number of users worldwide. The simultaneous arrival and increasing availability of cloud computing
technologies and services add value to the large volumes of open-access satellite data flows. Indeed,
performing a chronological analysis of satellite images by using local computer resources is difficult
especially on a given area, such as the one we present in our study. With the emergence of geospatial
big data, networks, and free services such as GEE, users need a reliable Internet connection to access,
control, and analyze huge amounts of data. The increasing use of machine learning algorithms, such
as RF, also allows an accurate, fast mapping of permanent water cavities due to their great adaptability
to relatively complex merged radar and optic data. Meanwhile, standard scientific approaches to OE
image analysis that focus on simple data models, such as maximum likelihood or minimum distance
classification, have limited ability in managing complex datasets, such as geospatial big data.
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