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 10 

Abstract 11 

The expansion of agricultural land at the cost of pastoral land is the common cause of land degradation 12 
in the arid areas of developing countries, especially in Morocco. This study aims to assess and monitor 13 
the transformation of pastoral land to agricultural land in the arid environment of the Feija Basin 14 
(Southeast of Morocco) and to find the key drivers and the issues resulting from this transformation. 15 

Spectral mixture analysis was applied to multi-temporal (1975–2017) and multi-sensor (i.e. Multi-16 

spectral Scanner, Thematic Mapper, and Operational Land Imager) Landsat satellite images, from 17 

which land use classifications were derived. The remote sensing data in combination with ground 18 
reference data (household level), groundwater and climate statistics were used to validate and explain 19 
the derived land use change maps. The results of the spatiotemporal changes in agricultural lands show 20 
two pattens of changes, a middle expansion from 1975-2007, and a rapid expansion from 2008 to 2017. 21 
In addition, the overall accuracy demonstrated a high accuracy of 94.4%. In 1975 and 1984, the 22 
agricultural lands in Feija covered 0.17 km² and 1.32 km², respectively, compared with 20.10 km² in 23 
2017. Since the adoption of the Green Morocco Plan in 2008, the number of watermelon farms and wells 24 
has increased rapidly in the study area, which induced a piezometric level drawdown. The results show 25 
that spectral mixture analysis yields high accuracies for agricultural lands extraction in arid dry lands 26 
and accounts for mixed pixels issues.  Results of this study can be used by local administrators to prepare 27 
an effective environmental management plan of these fragile drylands. The proposed method can be 28 
replicated in other regions to analyse land transformation in similar arid conditions. 29 

Keywords: Land use monitoring; Landsat images; Linear-Mixture Analysis; GIS; Remote sensing; 30 
Morocco 31 

 32 

1. Introduction 33 

The population of the world has been growing rapidly in recent years, especially in Asian and 34 

African countries (FAO, 2017). In most developing countries, the changes in land use are 35 

mainly due to the intense population pressure and changes in the socioeconomic situation of 36 

the population. Human activities can change the structure and the biological capacity of 37 

ecosystems over a period of time (Long et al., 2010). Accordingly, the effect of anthropogenic 38 

impact on the biological ecosystems can be found through the identification and monitoring of 39 

the land cover alterations (Teixido et al., 2010). These man-made changes are one of the major 40 

causes of environmental degradation in any landscape (Ait Lamqadem et al., 2018). 41 
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The expansion of cultivated areas can mitigate the increasing demand for food, especially in 42 

developing countries. Therefore, agricultural lands are most vulnerable to changes under 43 

climate variabilities, political strategies and human pressures (Hamad et al., 2018). However, 44 

some adverse effects of this rapid expansion emerge, especially in arid areas (Foley et al., 2011). 45 

One of the major effects on the environment is the groundwater drawdown (Tilman and Clark, 46 

2015). However, in the arid regions of Morocco and due to heavy government subsidies (under 47 

the Green Morocco Plan since 2008), agricultural lands have been expanded on former pastoral 48 

lands in recent years (Faysse, 2015). 49 

Pastoral land use has been considered one of the traditional economic activities in arid regions. 50 

The Feija Basin, Central-South-Eastern Morocco, presents an example of pastoral land use. 51 

Nevertheless, this arid pastoral communal land underwent several environmental 52 

transformations, such as the expansion of agricultural lands instead of the traditional pastoral 53 

activities. 54 

In the last four decades, remote sensing data inherit the potential to map and monitor these 55 

environmental changes on various spatial and temporal scales (Ait Lamqadem et al., 2017; 56 

Allbed et al., 2014; Tang et al., 2017; Xie et al., 2017). Changes in the land use/land cover can 57 

be monitored and assessed using the historical data from the Landsat program using a 58 

multispectral scanner (MSS) which started in 1972 until the current operational land imager 59 

(OLI) in 2017 (Medjani et al., 2017; Zhu, 2017). Derived thematic maps can provide spatial 60 

information on historical data, thereby serving as a valuable source, for example in the land use 61 

and degradation monitoring of ecosystems (Xofis and Poirazidis, 2018; Zhang et al., 2018). 62 

Remote sensing data can be used to monitor the land use changes, specifically transformations 63 

from pastoral to agricultural uses (Kartya et al., 2005; McPeak and Little, 2018). Comparing 64 

satellite imagery from different Landsat sensors can be a challenge due to varying sensor types. 65 

A Spectral Mixture Analysis (SMA) technique was applied to overcome this problem (Schmidt 66 

et al., 2003). Several studies have proved that SMA can monitor land-cover/land-use changes 67 

in arid and semi-arid environments (Adams et al., 1995; Dawelbait et al., 2017; Salih et al., 68 

2017). SMA, as a subpixel classification, produces fractions or abundances of the different 69 

features of surfaces (Scarth et al., 2010). Endmembers are required as inputs to the unmixed 70 

different components of the surface. 71 

However, only a few studies on the arid areas of South-Eastern Morocco to detect the effects 72 

and the drivers of the specific types of land use changes are available. Consequently, an urgent 73 

need to monitor and assess the land use dynamics emerges. Therefore, this study aims to assess 74 
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and monitor the land use changes and analyse the possible change-driving forces and the impact 75 

of the transition from pastoral land use to an agricultural land use. Accordingly, multispectral 76 

and multitemporal Landsat satellite data (i.e. MSS, thematic mapper (TM) and OLI) from 1975 77 

to 2017 were used. SMA was used to extract the extent of agricultural land use in the Feija 78 

Basin at the time of the study. 79 

2. Study Area 80 

The sub-basin of Feija is part of the Middle Draa Valley (MDV). The MDV is located in the 81 

central-southern part of Morocco, middle of the 06° west meridian and below the 30° north 82 

parallel. The basin of Draa has an area of approximately 14380 km² and a width of 1200 km, 83 

crossed by Draa Wadi (typical ephemeral river), the longest wadi in Morocco. The basin is fed 84 

by the Mansour Eddahbi Dam upstream MDV, constructed in 1972. The Draa river forms a 85 

chain of six successive oases, varying from 100 m to 10 km in width (Mezguita, Tinzouline, 86 

Ternata, Fezouata, Ktaoua and M’Hamid) (Fig. 1). 87 

Geographically, the Feija Basin (2270 km²) is located in the southern foot slopes of the high 88 

Atlas Mountains in South Morocco. It stretches approximately 80 km from west to east and 8 89 

to 12 km from north to south. Feija is part of the Fezouata Basin and situated at the west of the 90 

River Draa near Zagora Town (Fig. 1). The sector of the study is characterized by arid climate 91 

with an average of 70 mm of annual precipitation equivalent to 15 days of rain. The potential 92 

evapotranspiration is high, reaching 2500 mm/year (Schmidt et al., 2003). Temperatures can 93 

reach more than 48 °C in the summer and varies between –1 and 7 °C in the winter (Ait 94 

Lamqadem et al., 2018). The hydrological system depends on the extent of water runoff in the 95 

central Anti-Atlas. In traditional oases (Mezguita to M’Hamid), the agricultural system usually 96 

consists of three production levels, namely, date palm trees (Phoenix dactylifera), fruit trees 97 

and surface-level vegetables (i.e. tomatoes, maize, alfalfa and henna) (Ait Lamqadem et al., 98 

2019). Outside of the palm oases, the surface-level system is the main agricultural system 99 

(henna, wheat and watermelon). Furthermore, the extensive mobile pastoralism on collective 100 

land is the traditional form of land use in the Feija area (Schmidt et al., 2003). This is the 101 

rationale behind selecting this basin as a study area.  102 

Over centuries and decades, pastoralism in arid areas has been considered a crucial economic 103 

activity and a method of land exploitation (Zainabi, 1989). Goats, sheep and dromedaries are 104 

the main livestock in the study site. 105 
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 106 

Fig. 1. Location map of study area: (A) Morocco in Africa; (B) study area in Zagora Province; and (C) 107 
study area. 108 

Water for agricultural purposes is directly pumped from private wells. The productivity of the 109 

groundwater is between 1 and 5 l/s with some exceptional zones where it reaches 40 l/s. In 110 

addition, traditional and drip irrigation systems are adopted in the Feija Basin. The soil consists 111 

of the lacustrine sediments that show fine textures and low skeleton contents, favouring water 112 

holding properties and the possibility of mechanical treatment (Klose, 2009). 113 

Historically, the sedentarisation in the Feija Basin (settling of a nomadic population) started in 114 

1970 because of the advances in well technologies. Livestock and agriculture are the main 115 

socioeconomic activities in the Feija. 116 

The figure 2 shows the main land cover/land use in the study area. 117 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



5 
 

 118 

Figure2.  (A) Watermelon fields; (B): Alfalfa fields; (C) Wheat fields; (D) Fields with fruit trees; (E) 119 
and (F): Pastoral lands. 120 

3. Data 121 

The data used in this study include the remote sensing images, factional vegetation field 122 

measurements and ancillary data. 123 

3.1. Remote sensing data 124 

Three multispectral image sets from Landsat Multispectral Scanner (MSS), Landsat 5 Thematic 125 

Mapper (TM) and Landsat 8 Operational land Imager (OLI) were collected. Georectification 126 

Level 1 Precision Terrain (L1TP) Landsat from 1975 to 2017 images with less than 10% cloud 127 

coverage were downloaded freely online from the U.S. Geological Survey platform 128 

(https://earthexplorer.usgs.gov/). The radiometric resolutions for the Landsat MSS and TM sensors 129 

were 8 bits, while the radiometric resolution of Landsat OLI sensor was 16 bits. Table 1 describes the 130 

main characteristics of the used images. The linear spatial resolution of MSS image is 79 by 79 131 
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meters. For Landsat 5 TM and Landsat 8 OLI images, the native resolution is 30 m. The selected 132 

period is from May to June (except 1975), which coincides best with a full ground cover of 133 

watermelon, cropped from January to June. This period was also chosen to avoid confusion and 134 

interference with the annual vegetation and agricultural cycles. Landsat images represent the 135 

only source of global, calibrated and moderate spatial resolution measurements of the Earth's 136 

surface with the longest lifespan among Earth Observation Systems that are preserved in a 137 

national archive and freely available to the public (https://landsat.usgs.gov/landsat-8-l8-data-138 

users-handbook-section-1). Furthermore, the L1TP products made available by the provider 139 

allow the user to have immediate access to ready-to-use high quality products suitable for pixel-140 

level time series analysis without further pre-processing. 141 

Table 1. Description of the used Landsat data. 142 

Satellite Sensor Spatial 

resolution 

(m) 

Acquired 

date 

Cloud 

cover 

(%) 

Path Raw 

Landsat 1 MSS 79 03-July-1975 0.00 216 39 

 

Landsat 5 

 

TM 

30 14-May-1984 0.00 200 39 

03-May-2000 0.00 200 39 

30-May-2007 0.00 200 39 

10-Juin-2011 0.00 200 39 

Landsat 8  

 

OLI 

 

30 30-May-2013 0.00 200 39 

 02-June-2014 0.00 200 39 

 20-May-2015 0.08 200 39 

 22-May-2016 0.07 200 39 

  25-May-2017 0.00 200 39 

3.2. Field data collection 143 

Fieldwork was conducted in the Feija Basin between April and May 2017. Preliminary 144 

topographic map and high-resolution images from Google Earth were used to identify the 145 

candidate areas to be surveyed, and the appropriate paths. In addition, agricultural lands, rocks, 146 

pastoral lands, sand, partial vegetation coverage and water plots were identified during 147 

fieldwork. 148 

An economical, efficient and high-speed method to estimate the vegetation fraction coverage 149 

is the use of a digital camera (Han and Han, 2015). In total, 38 plots were collected in the field 150 

using the vertical photography method, with an altitude of one meter. The chosen elementary 151 

size of sample plots matched with the spatial resolution of the Landsat images perfectly (30m 152 

× 30 m). An area size of 1 m² quadrant was selected and the photos were taken vertically using 153 

a Nikon D90 digital camera. Every plot was registered using a Gramin eTrex GPS, with 2 154 
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meters of precision, to allow integration with the other spatial data in the GIS and image 155 

processing systems. The vegetation percentage of each image was extracted after geometric 156 

correction, enhancement processing, colour space transformation and classification (Li et al., 157 

2015), which used the ISODATA-unsupervised classification algorithm in ENVI Exelis Harris 158 

Geospatial Solutions Software. In addition, 14 subclasses were determined to classify each 159 

photograph, and then the subclasses were combined to derive the bare land, nonphotosynthetic 160 

and photosynthetic vegetation. This method was previously validated and applied to extract the 161 

fractional vegetation coverage (Li et al., 2015; White et al., 2000; Zhang et al., 2013). The 162 

samples were randomly collected in the field. The data were collected in different land cover 163 

types in the study area (agricultural land, palm grove, sparse vegetation, and bare land). A 164 

portion of the collected samples was used to assess the accuracy of the fractional vegetation 165 

coverage extracted by the SMA subpixel model and the land use classification (agricultural vs. 166 

nonagricultural) and the remaining portion for the validation of the results. 167 

Field data also consisted of semi-structured interviews with the pastoralists. The interviews 168 

focused on the mains motivations of the process of sedentisarisation from a pastoral to an 169 

agricultural land use. The semi-structured interview is a method of qualitative study based on 170 

the performance of the individual or collective interviews during which the facilitator dictates 171 

only the different topics to be addressed without asking specific questions (Ait Lamqadem et 172 

al., 2019). 173 

3.3.Ancillary data 174 

The ancillary data were used to analyse the driving forces of the vegetation changes. The 175 

climatic and socioeconomic data were provided from different administrations. The climatic 176 

data were acquired from the Office Régional de Mise en Valeur Agricole de Ouarzazate 177 

(ORMVAO). The household level data were provided through interviews with local residents 178 

and government administrators. 179 

Water samples were also collected during the field survey in the Feija Area with the aim to 180 

measure the salinity of the water. The water well was collected in different bottles and then the 181 

salinity was measured. Water salinity was measured through electrical conductivity. The 182 

electrical conductivity (mS cm-1) of the water samples was measured using a conductometer at 183 

25 °C (Yıldırım and Öner, 2015). 184 

4. Methodology 185 
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The adopted methodology in this study is divided into three main stages (Fig. 3). Firstly, the 186 

collection and pre-processing of Landsat images include co-registration check and atmospheric 187 

correction to assure the spatial and spectral consistency of multi-date images. Secondly, this 188 

stage includes the application of spectral mixture analysis and then the extraction of agricultural 189 

land use. Lastly, this stage includes the exploitation of ancillary data to evaluate the effects of 190 

the agricultural land use evolution and to discuss the driving forces of changes. 191 

 192 

Fig. 3. Methodological flowchart. 193 

4.1. Landsat images and pre-processing 194 

The downloaded images contain high-quality L1TP. The images selected in this research were 195 

radiometrically normalized to obtain the top of atmosphere reflectance by the USGS (Guo et 196 

al., 2017; Mihi et al., 2017). Subsequently, dark object subtraction  (Mantinfar et al., 2012; Pons 197 

et al., 2014) was applied for atmospheric correction, thereby obtaining surface reflectance. 198 

Landsat images were converted from digital numbers to surface reflectance through rescaling 199 

in accordance with the instructions of the provider (Afrasinei et al., 2018). Given the 200 

characteristics of the study area, no topographic correction was applied because L1TP was 201 

orthorectified using ground control points and a digital elevation model to correct the relief 202 

displacement (Afrasinei et al., 2018). Therefore, the geometric correction was unnecessary for 203 

L1TP (Roy et al., 2014). Landsat MSS image was resampled to the native resolution of Landsat 204 

OLI using the nearest neighbourhood algorithm (Ait Lamqadem et al., 2018). 205 
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4.2. Spectral mixture analysis 206 

SMA has been widely used as one of the most efficient models to assess and monitor vegetation 207 

coverage in arid and semiarid environments (Masoud, 2014; Meusburger et al., 2010; Smith et 208 

al., 1990). In comparison with the other classification techniques, such as support vector 209 

machine or artificial neural network, which offer high accuracy, SMA is more effective for 210 

subpixel classification, especially for the differentiation of vegetation and soil (Wang et al., 211 

2010). Further, the ranges of the spectral bands are different, as with the case of the sensors of 212 

the Landsat program (MSS, TM, and OLI). Furthermore, their ratios (NDVI and SAVI), as 213 

most vegetation indices, are also not directly comparable. The most common approach in SMA 214 

is to apply post-classification change detection (Schmidt et al., 2003). 215 

In the satellite images of arid and semi-arid areas, the pixels usually contain mixed spectral 216 

reflectance due to the variability in the distribution of different feature components on the 217 

surface. SMA is based on the presumption that the spectral reflectance of each pixel is a function 218 

of the weighted average of the objects within it (Dawelbait et al., 2017). 219 

SMA uses endmembers to transform the radiance or reflectance of the image into abundances 220 

or fractions (Elmore et al., 2000). The resulting image of the SMA is an image, with each band 221 

representing an endmember abundance (Adams et al., 1986; Smith et al., 1985). 222 

To perform SMA involves the evaluation of specific features in the image to extract the 223 

endmembers (pure pixels) and the selection of physical features. Lastly, the step allows the 224 

determination of fraction for each selected endmember. 225 

SMA was adopted due to its ability to compare the data acquired from different sensors, i.e. 226 

MSS, TM and OLI. SMA was performed with ENVI (ITT Exelis, USA) with the sum to unity 227 

constraints, which means that the sum of the endmember fraction for each pixel equals to one. 228 

The values of each fraction vary between 0 (0% of the material) and 1 (100% of the material). 229 

4.3. Endmembers extraction 230 

The selection of endmembers (pure pixels) is one of the most crucial stages in performing SMA 231 

(Lu, 2006). Endmember collection can be approached from the field or library, also known as 232 

the library endmember (Smith et al., 1990), or the selection of spectra directly from the image 233 

(image endmember). In this study, the image-based method was performed to extract 234 

endmembers. The image endmember is easier to perform compared with the library 235 

endmember, which needs calibration between selected endmembers and the spectra measured 236 

in the field or laboratory (Lu, 2006). 237 
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For the extraction of endmembers and the development of high-quality fraction images, 238 

different image transformations can be used, such as principal components and minimum noise 239 

fraction (MNF). Several automated methods commonly used to extract endmembers (geometric 240 

perspective and pixel purity index [PPI]) employ PCA or MNF to reduce the dimensionality of 241 

data and image noise (Fernández-Manso, 2015). We determined the candidate endmembers by 242 

analysing the PPI. This algorithm has been widely used in hyperspectral image analysis for 243 

endmember extraction. The MNF was applied to each Landsat image, and then we connect the 244 

MNF transformation with the PPI using an n-dimensional visualization tool to apply n-245 

dimensional visualization analysis and extract the spectral information of all the components 246 

(Han and Han, 2015). The four endmembers defined in the study are vegetation, sand, clay and 247 

rock. 248 

4.4. Agricultural land selection 249 

Agricultural class use was derived by thresholding the vegetation fraction by the same amount 250 

in every image after performing SMA. Each vegetation fraction was classified by the binary 251 

decision rule. The pixels that were more than the fixed threshold will be classified as 252 

agricultural land; otherwise, they will be classified as non-agricultural (water, sand, rocks and 253 

clay). The threshold was defined on the basis of the collected fractional vegetation coverage in 254 

the field, visual interpretation and the exploitation of the high-resolution Google Earth images 255 

to affine the binary classification. 256 

 257 

4.5. Accuracy assessment 258 
 259 

Evaluating vegetation fraction estimates can be challenging due to the difficulty of obtaining 260 

reference data, especially for historical datasets. The land cover historical maps can be used to 261 

assess the accuracy when the ground points of verification are absent. Unfortunately, after a 262 

long research, we did not find the historical maps of Feija. Given the lack of high-quality 263 

reference images from the 1980s, an accuracy assessment was only possible for 2017 using 264 

Landsat OLI. We consider that the classification of the vegetation fraction from 1975 to 2016 265 

would have acceptable accuracy if the vegetation fraction image in 2017 was reasonably 266 

accurate. 267 

For the accurate comparison of the differences between the estimated and the measured 268 

fractional vegetation coverage, the coefficient of determination R² was used. Furthermore, the 269 

accuracy of the binary classification was assessed using confusion matrix validation. A part of 270 

the collected points was used in the initial phase of the SMA accuracy assessment, training and 271 
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binary classification of the vegetation (20 points). The other part was used for the confusion 272 

matrix validation (18 points). The confusion matrix was estimated with reference to ground 273 

reference data for producers, users and overall accuracy. 274 

4.6. Driving forces of changes 275 

This part discusses the extent to which the main factors contribute to the agricultural lands’ 276 

evolution. We conducted interviews with the local residents and stakeholders. The interviews 277 

were consistent with the triggering events in the water harvesting management, economic 278 

demand, agricultural policy changes and incentives. Several visits were made to the local 279 

administrators. The interviews focused on agriculture policy change. For this purpose, 16 280 

nomadic and 16 mainly sedentary households installed on communal pastoral land in the Feija 281 

area were selected and visited in 2017.  282 

5. Results 283 

5.1. Results of endmembers and SMA 284 

The application of PPI for each Landsat image allowed us to select four endmembers, which 285 

are vegetation, clay, rock and sand. Given the analysis of the four spectral indices of the pure 286 

pixels, rock, clay and sand had a similar spectral signature. Furthermore, the vegetation spectral 287 

response was characterised by a pick between red and NIR bands (Fig. 4). This result implies 288 

that the extraction of vegetated coverage can be easily distinguished from other features in the 289 

Feija Area. The result of the SMA was an image with four abundances and a band of RMS 290 

error. For each period, the RMS error was low (less than 0.02), indicating the pixel unmixing 291 

results performed with high accuracies. 292 

 293 

Fig. 4. Endmembers spectra of the Landsat OLI image. 294 
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After performing the SMA, we extracted the estimated coverage corresponding to each spatial 295 

position of field survey samples. Linear regression analysis was conducted between the 296 

measured and the estimated fractional vegetation for 20 points. The scatter plot of the accuracy 297 

assessment result presents a significant correlation (R²=0.90) (Fig. 5). 298 

 299 

Fig. 5. Relationship between field survey data and estimated fractional vegetation. 300 

5.2. Spatiotemporal evolution of agricultural land in the Feija Basin 301 

On the basis of the collected field vegetation coverage and Google Earth images, a threshold 302 

was terminated to separate the agricultural class with the other surface features, i.e. rangeland 303 

vegetation and barren lands. The class of agricultural land includes alfalfa, wheat, watermelon 304 

and date palm. A total of 30% of the vegetation was affirmed to have an accurate threshold that 305 

separates agricultural from the other land cover types. The classification accuracies are 306 

remarkably high due to the binary rule of a clear distinguishable feature. 307 

The overall accuracy was calculated for the map of agricultural land of the Feija Area in 2017. 308 

The error matrix shows an overall accuracy of 94.4% (Table 2). No misclassification of 309 

nonagricultural samples into the agricultural class on the resulting map emerges. This illustrates 310 

that no commission error emerges in the agricultural class. However, an omission error in 311 

agricultural bounds emerges (only one pixel has been mapped as non-agricultural). 312 

Table 2. Overall accuracy matrix for the agricultural land use map of the Feija Area in 2017. 313 
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The evolution of agricultural area on the pastoral lands of Feija from 1975 to 2017, as a result 314 

of the binary classification tree, was presented in Fig. 6. The results demonstrate a rapid 315 

expansion over the time of the study. The total agricultural areas were 0.17 km² and 1.32 km² 316 

for 1975 and 1984, respectively, compared with 28.10 km² in June 2017. Ground observations 317 

revealed that these areas represent new farms within the former rangelands. The highest value 318 

of the agricultural land use surface was recorded in 2015 (30.25 km²). 319 

 320 

Fig.  6. Evolution of the agricultural land use area (Km²) from 1975 to 2017. 321 

The agricultural class is displayed in the time steps 1984, 2007 and 2017. Figure.7 displays the 322 

spatial distribution of the agricultural land for 1984, 2007 and 2017. Spots with abundant 323 

vegetation occurred since 1984. These areas were totally non-existent in 1975. These spots 324 

appeared and increased remarkably in 2011. Ground observations revealed that these areas 325 

represent newly founded farms within the former rangelands. 326 

The maps showed a rapid increase of farms in the north-east part of the study area, in Mgheder. 327 

Generally, the nearness to Zagora City was one of the reasons for the increasing farms in this 328 

region. New farmers prefer the areas near roads and cities for ease in selling products. 329 
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 330 

Fig. 7.  Spatial distribution of the agricultural land use evolution in the Feija Area for 1984, 2007, and 331 
2017. 332 

6. Discussion 333 

6.1. SMA and agricultural land use extraction in an arid context 334 

The conditions in this arid pastoral area are suitable for the application of the SMA model due 335 

to the clear separability of the agriculture class from the other surface features and pastoral 336 

vegetation as expressed in the example of the four endmembers. This approach fits well when 337 

used to discriminate only green biomass, but it cannot be expected to fit other purposes, such 338 

as distinguishing among different soil types. However, SMA was proven to yield good 339 

performance, which is consistent with the other studies that have compared SMA with other 340 

fractional vegetation cover extraction models (Jia et al., 2017). It also provides a remarkable 341 

result for the mapping of agricultural lands (Peddle and Smith, 2005). 342 

Previous studies analysed the oasis vegetation changes using spectral indices (NDVI) and 343 

Landsat images belonging from the previous sensors (Ait Lamqadem et al., 2017). In fact, 344 

applying the same threshold to separate vegetation and non-vegetation for the images from the 345 

different sensors is impossible. Given that during the last four decades the Landsat program 346 

employed different sensors and spectral band characteristics, SMA has proved to overcome the 347 

limitations of spectral indices. 348 

 349 
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6.2. Spatial and temporal evolution of the agricultural land use 351 

The expansion was the main change trend exhibited by the agriculture class in the Feija Area 352 

over the last 42 years. This situation is similar to the other arid pastoral areas across the world, 353 

such as the cases of Kyrgyzstan and Kazakhstan (Rahimon, 2012), in the communal rangeland 354 

grabbing in Sudan (Sulieman, 2018) and in China (Li et al., 2018). Generally, two stages can 355 

be distinguished in this study. Firstly, the stage of 1975–2007 was characterized by a moderate 356 

expansion in Feija. Secondly, the stage of 2007–2017 was characterized by a rapid expansion, 357 

especially in the areas near the main road and Zagora City. 358 

6.3. Driving forces of changes 359 

The extracted extent of the irrigation lands shows a rapid expansion during the last two 360 

decades. The number of inhabitants in the Feija Basin has increased rapidly during this period. 361 

The number of population jumped from 20 inhabitants to 1572 from 1972 to 2014, 362 

respectively (HCP, 2018). The sedentarisation of the pastoralists in this area can be 363 

explained by the existence of water in the Feija River, pastoral land and a groundwater 364 

characterized by its quality comparable with that of the oases in MDV. Furthermore, 78 new 365 

farms were managed and created in the collective lands of the Feija Basin 366 

between 1971 and 1985, and 169 news units were created from 1986 to 1997 (Proludra, 1998). 367 

However, an updated census does not exist. 368 

Several reasons can explain the sedentarisation in the study area. The pastoralists were coming 369 

from the nearby regions of Feija within the 1000 km buffer zones, after each rainy period, by 370 

vehicles. The results of the interviews prior to 2003 informed that the overgrazing in this area 371 

increased the land degradation in the Feija Plain. Consequently, mobile pastoral can no longer 372 

sustain grazing. Taking this into consideration plus the high cost of transportation, the 373 

transformation of these pastoral lands into an irrigation areas deemed the only solution. 374 

Regarding the climatic conditions, several drought episodes occurred in 1979–1984, 1987 and 375 

1993–1995. This climatic factor accelerated the sedentarisation of mobile pastoralists (Ait 376 

Lamqadem et al., 2018). 377 

Pastoralists started the cultivation of henna as a secondary source of income before 2008 using 378 

groundwater. However, this new form of farming does not solve overgrazing. Grazing was 379 

continued in the neighbouring settlements because of their reduced of mobility. Farmers 380 

reported scarcity of irrigation water, which had some negative effects. For some years, several 381 
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farmers had to deepen their wells from 2 to 5 m/year. In years of drought, cultivation in some 382 

cases was no longer possible and farms had to be abandoned. 383 

Starting 2008, Morocco launched the Moroccan Green Plan that gives subsidies to farmers in 384 

Morocco to support agricultural activities. Figure 8 illustrates the consequences of overgrazing 385 

and irrigation. 386 

 387 

Fig. 8. Vicious circle deriving from farming on collective pastoral land 388 

6.4. State policies and agricultural land use expansion 389 

The number of farmers growing watermelon rapidly increased especially after 2010 as shown 390 

in Figure 8 because of the development of new materials for drilling wells, motor-pumps and 391 

the subsidies given to farmers under the Green Morocco Plan, which began in 2008. It was 392 

introduced by the Ministry of Agriculture and Fisheries (Sedra, 2015; Sraïri, 2017). The Plan’s 393 

two pillars are for intensive farms and small subsistence farms or solidary agriculture. 394 

According to the ORMVAO, the farmers in Feija benefited from the installation of dripping 395 

irrigation and drilling wells. The Moroccan Green Plan gives subsidies to farmers to equip the 396 

farms. Those subsidies can go up to 90%. 397 

Since 2008, the cultivation of watermelon has spread in the southeast of Morocco to the 398 

provinces of Ouarzazate and Zagora (where the Feija is located). Indeed, the favourable climatic 399 
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conditions increased the quality and yield of crops, guaranteeing a high selling price (MAPM, 400 

2013). The results of the expansion of irrigation areas correlate with the official statistics of 401 

Morocco. According to the Ministry of Agriculture and Fisheries, the cultivated area of 402 

watermelon was increased from less than 100 ha in 2008 in the Zagora Province to 1100 ha in 403 

2013 (MAPM, 2013). 404 

Furthermore, the climatic and edaphic characteristics in the Feija Area favoured the cultivation 405 

of watermelon. In fact, watermelon (Citrullus vulgaris) is endemic in arid zones. Watermelons 406 

prefer an arid to a semiarid climate with average daily temperatures of 22 to 30 °C. The 407 

maximum and minimum temperatures required for their development are approximately 20 to 408 

35 °C (FAO, 1980), with sandy loam soil, which was found in the study area. Watermelons in 409 

arid regions have a high content of sugar (FAO, 1980). 410 

6.5.Towards a good environmental management in Feija and in the MDV 411 

The watermelon farms can mobilise the local economy of the region because of the crops’ added 412 

value, which has created job opportunities for the younger generations. The use of groundwater 413 

has two benefits for the locals, irrigation and drinking water supply for Zagora. The quality of 414 

this water is good (low concentration of salinity) compared with the water in the groundwater 415 

of the Ternata Oasis. In addition, the water in the Feija Basin is fresher than those of the other 416 

oases and compared with the other groundwater at the MDV. On the basis of the analysis of the 417 

collected water samples, the average water salinity in Feija was 1.09 g/l, against 2.51 g/l and 418 

5.56 g/l for the Ternata and M’Hamid oases, respectively. The expansion of the irrigated areas 419 

exerted pressure in the groundwater, thereby causing water scarcity in the area. The increasing 420 

number of wells and motor pumps resulted in a negative groundwater balance estimated at –421 

1.3Mm³/a in 2006 (Klose and Reichert, 2006) and more than 5 Mm³/a in 2014 (ABHSM, 2014). 422 

Between 1980 and 2014, the piezometric level showed a drawdown from 1 to 21 m, the high 423 

values registered in the localities of Lamghadre and Bouzkar (ABHSM, 2014). During the field 424 

visits and our interviews with locals, they affirmed that watermelons do not have any effect on 425 

the environment. However, date palm trees planted in the areas of the quaternary water table 426 

(rechargeable) must be taken into consideration, against the Feija Plain that is located in an area 427 

with a deep water table (ABHSM, 1997). 428 

In sum, damaging human practices were affirmed to be the dominant factor driving water 429 

scarcity in the Feija Area in the past decades, characterized by the integration of new 430 

cultivations that require large quantities of water, which leads to water scarcity. Water scarcity 431 
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in Zagora City was manifested by the shortage of drinking water in October 2017. This finding 432 

is similar in to those in other countries, e.g. north of China (Wang et al., 2016), Jordan (Abu-433 

Allaban et al., 2015), West Africa (Klose and Reichert, 2006) and Egypt (Ouda, 2016; Zohry 434 

and Ouda, 2016) with arid and Saharan climate, where water scarcity occurred due to the 435 

expansion of irrigated areas and the overuse of groundwater. 436 

In recent years, the cultural areas in the Feija basin has rapidly expanded, and the influence of 437 

the damaging agricultural practices have accelerated, which will cause serious environmental 438 

problems, such as groundwater recession, drinking water scarcity, land degradation by using 439 

chemicals fertilizers (Badraoui, 2006) and wind erosion after each cropping season. 440 

Furthermore, Morocco is severely affected by climate change (Brahim et al., 2017; Pascual et 441 

al., 2017) with the consequences evident in the rising temperatures and decreasing 442 

precipitations. The situation is getting aggravated in these arid areas. The government should 443 

pay considerable attention to the fragile ecosystem, and we propose in this research to stop 444 

cultivating watermelons in the Feija Basin and to adopt other cultivation with less water 445 

consumption and with high added value in the market, e.g. medicinal and aromatic plants, 446 

regeneration of old date palm in the oases and conversion of watermelon farmers to modern 447 

palm date palm farms equipped with the drip irrigation system and a sustainable rangeland 448 

governance for the remaining pastoral lands. To support this proposal, we compared the water 449 

requirement to irrigate watermelon and palm tree cultivations. The irrigation of 1 ha of 450 

watermelons requires 50,000 m3 of water, which is equivalent to 5 ha of date palm trees 451 

(ABHSM, 2014). This estimate covers the period of 2017–2022. We then estimated the required 452 

water for irrigation in two scenarios. The first scenario is if we continue cultivating watermelons 453 

and the second is if we adopt the cultivation of palm trees. For the first scenario, the expected 454 

agricultural land areas will reach 4758.77 ha in 2022, which needs 237.93M m3 to irrigate. If 455 

we adopt palm trees instead of watermelon crops for the same area, then the needed amount of 456 

water for irrigation is only 47.58M m3 (Fig. 9). 457 
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 458 
Fig.  9. Prevision of the agricultural land use for the period 2017–2022 and estimation of the needed 459 

water for irrigation for the cultivation of watermelon and palm date scenarios. 460 

Furthermore, increasing the awareness of the local population to adopt good practices through 461 

research like ours can provide a solution for reducing the negative effect damaging agricultural 462 

practices in these fragile lands. 463 

7. Conclusion 464 

Historical remote sensing data from multi-sensors and geospatial tools were used to reconstruct 465 

the past and present conditions in the Feija Area and the driving forces of the changes and their 466 

effects to the environment over the last three decades. The use of SMA was useful to detect the 467 

changes between 1975 and 2017 in the land use in Feija. This long-term monitoring shows not 468 

only the pattern of changes but also the extent and degree of the impact of damaging practices 469 

on the environment, specifically in an arid area. This study reveals that rapid expansion was the 470 

dominant change in the last 33 years. This area has seen a transition from mobile pastoral to 471 

agricultural land use. The results corroborated that, in the long term, the inhabitants suffer from 472 

uncontrolled changes in the land use. People are forced to change their way of living to survive. 473 

The vegetation area increased rapidly during the last three decades in Feija from 1.23 km² in 474 

1984 to 30.03 km² in June 2017.  The expansion caused several environmental problems, such 475 

as water scarcity of the population of Zagora City and groundwater drawdown due to the 476 

intensity of irrigation. The socioeconomic situations of population, policy and economic 477 

interests were the driving forces of these changes in this area. The Feija Area and the arid areas 478 
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of Morocco need considerable attention and studies to protect and adopt good practices, which 479 

are suitable for arid climatic conditions while considering the effects of climate change. The 480 

limitations of the study lies in the lack of the historical image of land use/ land cover, and 481 

accurate socio-economic data (precipitation, temperature, inhabitations number). In addition, 482 

to improve the results of the fraction vegetation extraction in the arid areas, the new remote 483 

sensing data of Sentienel-2 satellite could be a good alternative.    484 
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